1
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Kong Y, Yang G, Feng X, Ji Z, Wang X, Shao Y, Meng J, Yao G, Ren C, Yang G. CTBP1 links metabolic syndrome to polycystic ovary syndrome through interruption of aromatase and SREBP1. Commun Biol 2024; 7:1174. [PMID: 39294274 PMCID: PMC11411056 DOI: 10.1038/s42003-024-06857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Some patients with polycystic ovarian syndrome (PCOS) suffered from metabolic syndrome (MetS) including dyslipidemia, hyperinsulinism, but the underlying mechanism is unclear. Although C-terminal Binding Protein 1 (CTBP1) is a transcriptional co-repressor frequently involved in hormone secretion disorders and MetS-associated diseases, the role of CTBP1 in PCOS is rarely reported. In the present study, we found that CTBP1 expression was significantly elevated in primary granulosa cells (pGCs) derived from the PCOS with MetS patients and was positively associated with serum triglyceride, but negatively correlated with serum estradiol (E2) or high-density lipoprotein. Mechanistic study suggested that CTBP1 physically bound to the promoter II of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) to inhibit the aromatase gene transcription and expression, resulting in the reduced E2 synthesis. Moreover, CTBP1 interacted with the phosphorylated SREBP1a at S396 in nuclei, leading to the FBXW7-dependent protein degradation, resulting in the reduced lipid droplets formation in pGCs. Therefore, we conclude that CTBP1 in GCs dysregulates the synthesis of steroid hormones and lipids through suppression of aromatase expression and promotion of SREBP1a protein degradation in PCOS patients, which may offer some fresh insights into the potential pathological mechanism for this tough disease.
Collapse
Affiliation(s)
- Yue Kong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xu Feng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhaodong Ji
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoling Wang
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Central Laboratory, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Huang M, Li Y, Li Y, Liu S. C-Terminal Binding Protein: Regulator between Viral Infection and Tumorigenesis. Viruses 2024; 16:988. [PMID: 38932279 PMCID: PMC11209466 DOI: 10.3390/v16060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
C-terminal binding protein (CtBP), a transcriptional co-repressor, significantly influences cellular signaling, impacting various biological processes including cell proliferation, differentiation, apoptosis, and immune responses. The CtBP family comprises two highly conserved proteins, CtBP1 and CtBP2, which have been shown to play critical roles in both tumorigenesis and the regulation of viral infections. Elevated CtBP expression is noted in various tumor tissues, promoting tumorigenesis, invasiveness, and metastasis through multiple pathways. Additionally, CtBP's role in viral infections varies, exhibiting differing or even opposing effects depending on the virus. This review synthesizes the advances in CtBP's function research in viral infections and virus-associated tumorigenesis, offering new insights into potential antiviral and anticancer strategies.
Collapse
Affiliation(s)
- Meihui Huang
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Yucong Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Yuxiao Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Shuiping Liu
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
4
|
Filograna A, De Tito S, Monte ML, Oliva R, Bruzzese F, Roca MS, Zannetti A, Greco A, Spano D, Ayala I, Liberti A, Petraccone L, Dathan N, Catara G, Schembri L, Colanzi A, Budillon A, Beccari AR, Del Vecchio P, Luini A, Corda D, Valente C. Identification and characterization of a new potent inhibitor targeting CtBP1/BARS in melanoma cells. J Exp Clin Cancer Res 2024; 43:137. [PMID: 38711119 PMCID: PMC11071220 DOI: 10.1186/s13046-024-03044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models. CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.
Collapse
Affiliation(s)
- Angela Filograna
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK. The Study Has Been Previously Performed at IEOS-CNR, Naples, Italy
| | - Matteo Lo Monte
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Francesca Bruzzese
- Animal Facility Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, 80145, Italy
| | - Adelaide Greco
- Interdepartmental Service Center of Veterinary Radiology, University of Naples Federico II, 80137, Naples, Italy
| | - Daniela Spano
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Assunta Liberti
- National Research Council (CNR), Piazzale Aldo Moro, 700185, Rome, Italy
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Nina Dathan
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131, Naples, Italy
| | - Laura Schembri
- National Research Council (CNR), Piazzale Aldo Moro, 700185, Rome, Italy
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Alberto Luini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Daniela Corda
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy.
| | - Carmen Valente
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy.
- Present address: Dompé Farmaceutici S.P.A, L'Aquila, Italy.
| |
Collapse
|
5
|
Wang D, Cao Y, Meng M, Qiu J, Ni C, Guo X, Li Y, Liu S, Yu J, Guo M, Wang J, Du B, Qiu W, Xie C, Zhao B, Ma X, Cheng X, Xu L. FOXA3 regulates cholesterol metabolism to compensate for low uptake during the progression of lung adenocarcinoma. PLoS Biol 2024; 22:e3002621. [PMID: 38805565 PMCID: PMC11161053 DOI: 10.1371/journal.pbio.3002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/07/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Gastrointestinal Surgery, the Affiliated Changzhou, No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chao Ni
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenwei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhao
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| | - Xinghua Cheng
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
7
|
Xiao Q, Xia M, Tang W, Zhao H, Chen Y, Zhong J. The lipid metabolism remodeling: A hurdle in breast cancer therapy. Cancer Lett 2024; 582:216512. [PMID: 38036043 DOI: 10.1016/j.canlet.2023.216512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.
Collapse
Affiliation(s)
- Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, 330031, PR China
| | - Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajun Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
8
|
Zheng H, Wu X, Guo L, Liu J. MyD88 signaling pathways: role in breast cancer. Front Oncol 2024; 14:1336696. [PMID: 38347830 PMCID: PMC10859757 DOI: 10.3389/fonc.2024.1336696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
MyD88 plays a central role in breast cancer, exerting a multitude of effects that carry substantial implications. Elevated MyD88 expression is closely associated with aggressive tumor characteristics, suggesting its potential as a valuable prognostic marker and therapeutic target. MyD88 exerts influence over several critical aspects of breast cancer, including metastasis, recurrence, drug resistance, and the regulation of cancer stem cell properties. Furthermore, MyD88 modulates the release of inflammatory and chemotactic factors, thereby shaping the tumor's immune microenvironment. Its role in immune response modulation underscores its potential in influencing the dynamic interplay between tumors and the immune system. MyD88 primarily exerts intricate effects on tumor progression through pathways such as Phosphoinositide 3-kinases/Protein kinase B (PI3K/Akt), Toll-like Receptor/Nuclear Factor Kappa B (TLR/NF-κB), and others. Nevertheless, in-depth research is essential to unveil the precise mechanisms underlying the diverse roles of MyD88 in breast cancer. The translation of these findings into clinical applications holds great promise for advancing precision medicine approaches for breast cancer patients, ultimately enhancing prognosis and enabling the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhua Liu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| |
Collapse
|
9
|
Chaudhary R, Goodman LS, Wang S, Asimakopoulos A, Weiskirchen R, Dooley S, Ehrlich M, Henis YI. Cholesterol modulates type I/II TGF-β receptor complexes and alters the balance between Smad and Akt signaling in hepatocytes. Commun Biol 2024; 7:8. [PMID: 38168942 PMCID: PMC10761706 DOI: 10.1038/s42003-023-05654-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Cholesterol mediates membrane compartmentalization, affecting signaling via differential distribution of receptors and signaling mediators. While excessive cholesterol and aberrant transforming growth factor-β (TGF-β) signaling characterize multiple liver diseases, their linkage to canonical vs. non-canonical TGF-β signaling remained unclear. Here, we subjected murine hepatocytes to cholesterol depletion (CD) or enrichment (CE), followed by biophysical studies on TGF-β receptor heterocomplex formation, and output to Smad2/3 vs. Akt pathways. Prior to ligand addition, raft-dependent preformed heteromeric receptor complexes were observed. Smad2/3 phosphorylation persisted following CD or CE. CD enhanced phospho-Akt (pAkt) formation by TGF-β or epidermal growth factor (EGF) at 5 min, while reducing it at later time points. Conversely, pAkt formation by TGF-β or EGF was inhibited by CE, suggesting a direct effect on the Akt pathway. The modulation of the balance between TGF-β signaling to Smad2/3 vs. pAkt (by TGF-β or EGF) has potential implications for hepatic diseases and malignancies.
Collapse
Affiliation(s)
- Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Laureen S Goodman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167, Mannheim, Germany
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074, Aachen, Germany
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167, Mannheim, Germany
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
10
|
Li X, Bai Z, Li Z, Wang J, Yan X. Toosendanin Restrains Idiopathic Pulmonary Fibrosis by Inhibiting ZEB1/CTBP1 Interaction. Curr Mol Med 2024; 24:123-133. [PMID: 37138491 PMCID: PMC10804237 DOI: 10.2174/1566524023666230501205149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Extensive deposition of extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) is due to hyperactivation and proliferation of pulmonary fibroblasts. However, the exact mechanism is not clear. OBJECTIVE This study focused on the role of CTBP1 in lung fibroblast function, elaborated its regulation mechanism, and analyzed the relationship between CTBP1 and ZEB1. Meanwhile, the antipulmonary fibrosis effect and its molecular mechanism of Toosendanin were studied. METHODS Human IPF fibroblast cell lines (LL-97A and LL-29) and normal fibroblast cell lines (LL-24) were cultured in vitro. The cells were stimulated with FCS, PDGF-BB, IGF-1, and TGF-β1, respectively. BrdU detected cell proliferation. The mRNA expression of CTBP1 and ZEB1 was detected by QRT-PCR. Western blotting was used to detect the expression of COL1A1, COL3A1, LN, FN, and α-SMA proteins. An animal model of pulmonary fibrosis was established to analyze the effects of CTBP1 silencing on pulmonary fibrosis and lung function in mice. RESULTS CTBP1 was up-regulated in IPF lung fibroblasts. Silencing CTBP1 inhibits growth factor-driven proliferation and activation of lung fibroblasts. Overexpression of CTBP1 promotes growth factor-driven proliferation and activation of lung fibroblasts. Silencing CTBP1 reduced the degree of pulmonary fibrosis in mice with pulmonary fibrosis. Western blot, CO-IP, and BrdU assays confirmed that CTBP1 interacts with ZEB1 and promotes the activation of lung fibroblasts. Toosendanin can inhibit the ZEB1/CTBP1protein interaction and further inhibit the progression of pulmonary fibrosis. CONCLUSION CTBP1 can promote the activation and proliferation of lung fibroblasts through ZEB1. CTBP1 promotes lung fibroblast activation through ZEB1, thereby increasing excessive deposition of ECM and aggravating IPF. Toosendanin may be a potential treatment for pulmonary fibrosis. The results of this study provide a new basis for clarifying the molecular mechanism of pulmonary fibrosis and developing new therapeutic targets.
Collapse
Affiliation(s)
- Xingbin Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050005, China
- Department of Respiratory and Critical Care Medicine, Hebei Chest Hospital, Shijiazhuang, Hebei, 050041,China
| | - Zina Bai
- Department of Respiratory and Critical Care Medicine, Hebei Chest Hospital, Shijiazhuang, Hebei, 050041,China
| | - Zhensheng Li
- Department of Respiratory and Critical Care Medicine, Hebei Chest Hospital, Shijiazhuang, Hebei, 050041,China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, Hebei Chest Hospital, Shijiazhuang, Hebei, 050041,China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050005, China
| |
Collapse
|
11
|
Centonze G, Natalini D, Grasso S, Morellato A, Salemme V, Piccolantonio A, D'Attanasio G, Savino A, Bianciotto OT, Fragomeni M, Scavuzzo A, Poncina M, Nigrelli F, De Gregorio M, Poli V, Arina P, Taverna D, Kopecka J, Dupont S, Turco E, Riganti C, Defilippi P. p140Cap modulates the mevalonate pathway decreasing cell migration and enhancing drug sensitivity in breast cancer cells. Cell Death Dis 2023; 14:849. [PMID: 38123597 PMCID: PMC10733353 DOI: 10.1038/s41419-023-06357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvia Grasso
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giacomo D'Attanasio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Olga Teresa Bianciotto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matteo Fragomeni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Andrea Scavuzzo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matteo Poncina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Francesca Nigrelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Mario De Gregorio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT, London, UK
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Italy; Molecular Biotechnology Center, Piazza Nizza 44, 10126, Torino, Italy
| | - Sirio Dupont
- Department of Molecular Medicine (DMM), University of Padova, Padua, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Italy; Molecular Biotechnology Center, Piazza Nizza 44, 10126, Torino, Italy.
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
12
|
Wang X, Eichhorn PJA, Thiery JP. TGF-β, EMT, and resistance to anti-cancer treatment. Semin Cancer Biol 2023; 97:1-11. [PMID: 37944215 DOI: 10.1016/j.semcancer.2023.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates cell-specific programs involved in embryonic development, wound-healing, and immune homeostasis. Yet, during tumor progression, these TGF-β-mediated programs are altered, leading to epithelial cell plasticity and a reprogramming of epithelial cells into mesenchymal lineages through epithelial-to-mesenchymal transition (EMT), a critical developmental program in morphogenesis and organogenesis. These changes, in turn, lead to enhanced carcinoma cell invasion, metastasis, immune cell differentiation, immune evasion, and chemotherapy resistance. Here, we discuss EMT as one of the critical programs associated with carcinoma cell plasticity and the influence exerted by TGF-β on carcinoma status and function. We further explore the composition of carcinoma and other cell populations within the tumor microenvironment, and consider the relevant outcomes related to the programs associated with cancer treatment resistance.
Collapse
Affiliation(s)
- Xuecong Wang
- Guangzhou National Laboratory, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| | | |
Collapse
|
13
|
Wang C, Song CM, Liu S, Chen LM, Xue SF, Huang SH, Lin H, Liu GH. ZFX-mediated upregulation of CEBPA-AS1 contributes to acute myeloid leukemia progression through miR-24-3p/CTBP2 axis. Cell Biol Toxicol 2023; 39:2631-2645. [PMID: 36715854 DOI: 10.1007/s10565-023-09792-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Emerging reports demonstrated that long non-coding RNAs (lncRNAs) play a role in the pathogenesis and metastasis of cancers. However, the biological functions and underlying mechanisms of LncRNA CEBPA-AS1 in acute myeloid leukemia (AML) remain largely elusive. The level of CEBPA-AS1 was examined in AML clinical tissues and cell lines via fluorescence in situ hybridization (FISH) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In vivo and in vitro functional tests were applied to identify the pro-oncogenic role of CEBPA-AS1 in AML development. The overexpressed CEBPA-AS1 was linked to poor survival in AML patients. Moreover, the relationships among CEBPA-AS1, Zinc Finger Protein X-Linked (ZFX), and miR-24-3p were predicted by bioinformatics and validated by RNA immunoprecipitation (RIP) and luciferase reporter assays. Our findings unveiled that transcription factor ZFX particularly interacted with the promoter of CEBPA-AS1 and activated CEBPA-AS1 transcription. Downregulation of CEBPA-AS1 inhibited the proliferation and invasion while promoted apoptosis of AML cells in in vitro, as well as in vivo, xenograft tumor growth was modified. However, overexpression of CEBPA-AS1 observed the opposite effects. Furthermore, CEBPA-AS1 acted as a competitive endogenous RNA (ceRNA) of miR-24-3p to attenuate the repressive effects of miR-24-3p on its downstream target CTBP2. Taken together, this study emphasized the pro-oncogenic role of CEBPA-AS1 in AML and illustrated its connections with the upstream transcription factor ZFX and the downstream regulative axis miR-24-3p/CTBP2, providing important insights to the cancerogenic process in AML.
Collapse
Affiliation(s)
- Chengyi Wang
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Chao-Min Song
- Department of Neonatology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Shan Liu
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Lu-Min Chen
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Shu-Fang Xue
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Si-Han Huang
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Han Lin
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guang-Hua Liu
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China.
- Fujian Children's Hospital, Fuzhou, China.
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
14
|
Lu J, Chen S, Bai X, Liao M, Qiu Y, Zheng LL, Yu H. Targeting cholesterol metabolism in Cancer: From molecular mechanisms to therapeutic implications. Biochem Pharmacol 2023; 218:115907. [PMID: 37931664 DOI: 10.1016/j.bcp.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Cholesterol is an essential component of cell membranes and helps to maintain their structure and function. Abnormal cholesterol metabolism has been linked to the development and progression of tumors. Changes in cholesterol metabolism triggered by internal or external stimuli can promote tumor growth. During metastasis, tumor cells require large amounts of cholesterol to support their growth and colonization of new organs. Recent research has shown that cholesterol metabolism is reprogrammed during tumor development, and this can also affect the anti-tumor activity of immune cells in the surrounding environment. However, identifying the specific targets in cholesterol metabolism that regulate cancer progression and the tumor microenvironment is still a challenge. Additionally, exploring the potential of combining statin drugs with other therapies for different types of cancer could be a worthwhile avenue for future drug development. In this review, we focus on the molecular mechanisms of cholesterol and its derivatives in cell metabolism and the tumor microenvironment, and discuss specific targets and relevant therapeutic agents that inhibit aspects of cholesterol homeostasis.
Collapse
Affiliation(s)
- Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuejiao Bai
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Xu X, Liu Y, Hu H, Wang J, Cai Y, Xie J, Kang M, He F. Relationship between cancer stem cell-related SNPs and survival outcomes in patients with primary lung cancer. World J Surg Oncol 2023; 21:243. [PMID: 37563730 PMCID: PMC10416443 DOI: 10.1186/s12957-023-03064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/04/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Cancer stem cells may be the source of cancer-causing mutant cells and are closely related to the prognosis of cancer. Our study aimed to investigate the potential association between single-nucleotide polymorphisms (SNPs) of cancer stem cell-related genes and the prognosis of lung cancer patients. METHODS The SNP loci were genotyped by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), and the overall survival of subjects was analyzed by log-rank test after stratifying and adjusting their demographic data, clinical data, and genotypes. The correlation between survival time and quality of life of lung cancer under codominant, dominant, recessive, and additive genetic models was analyzed by the Cox regression model. The association between SNP polymorphism and the prognosis of lung cancer was analyzed by Stata16.0 software, and their heterogeneity was tested. Interaction analysis was performed using R software (version 4.2.0). RESULTS Stratified analysis unveiled that rs3740535 had recessive AA genotype and additive GG genotype; Rs3130932 dominant GT + GG genotype, additive TT genotype; Rs13409 additive TT genotype; Rs6815391 recessive CC genotype and additional TT genotype were associated with increased risk of lung cancer death. Rs3130932 recessive GG genotype was associated with a reduced risk of lung cancer death. CONCLUSION Rs3740535, rs3130932, rs13409, and rs6815391 are associated with the overall survival of lung cancer patients and may be valuable for the prognosis of lung cancer patients.
Collapse
Affiliation(s)
- Xinying Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuhang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huiyi Hu
- Department of Labor Health, School of Public Health, China Medical University, Shenyang, China
| | - Jinshen Wang
- Department of Venereal Disease Prevention, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Cai
- Department of Health Toxicology, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Xie
- Sanming Dermatology Hospital, Sanming, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
16
|
Zhao H, Wang L, Ji X, Zhang L, Li C. Biology of breast cancer brain metastases and novel therapies targeting the blood brain barrier: an updated review. Med Oncol 2023; 40:181. [PMID: 37202575 DOI: 10.1007/s12032-023-02047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Brain metastasis (BM) is a critical cause of morbidity and mortality in patients with breast cancer (BC). Compared with other cancer cells, BC cells (BCs) exhibit special features in the metastatic process. However, the underlying mechanisms are still unclear, especially the crosstalk between tumour cells and the microenvironment. To date, novel therapies for BM, including targeted therapy and antibody‒drug conjugates, have been developed. Due to an improved understanding of the blood‒brain barrier (BBB) and blood-tumour barrier (BTB), the development and testing of therapeutic agents in clinical phases have substantially increased. However, these therapies face a major challenge due to the low penetration of the BBB or BTB. As a result, researchers have increasingly focused on finding ways to promote drug penetration through these barriers. This review provides an updated overview of breast cancer brain metastases (BCBM) and summarizes the newly developed therapies for BCBM, especially drugs targeting the BBB or BTB.
Collapse
Affiliation(s)
- Hongfang Zhao
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Xiaolin Ji
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Lijian Zhang
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Postdoctoral Research Station of Neurosurgery, Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
| | - Chunhui Li
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
| |
Collapse
|
17
|
Jaiswal A, Singh R. CtBP: A global regulator of balancing acts and homeostases. Biochim Biophys Acta Rev Cancer 2023; 1878:188886. [PMID: 37001619 DOI: 10.1016/j.bbcan.2023.188886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The classical role of C-terminal binding protein (CtBP) is that of a global corepressor. However, its exact mechanism of repression is not known. In this review, we elucidate the repression motif used by CtBP. Further, we provide other unifying features of its mechanism of action. For example, in the presence of a high NADH/NAD+ ratio in the cell, causing a low glycolytic condition, the NADH-bound dimeric form of CtBP causes global repression, maintaining balances and homeostases of many cellular processes, under the cell surveillance of p53 and NFkB. In contrast, in the presence of a low NADH/NAD+ ratio, causing a high glycolytic condition, the NADH-free monomeric form of CtBP blocks p53 function and NFkB-mediated transcription. Further, a low NADH/NAD+ ratio upsets the homeostases and balances in the absence of the cell surveillances of p53 and NFkB, causing global instability, the dominant outcome of CtBP's action in carcinogenesis, in cells in a high glycolytic state.
Collapse
|
18
|
25-Hydroxycholesterol Mediates Cholesterol Metabolism to Restrict Porcine Deltacoronavirus Infection via Suppression of Transforming Growth Factor β1. Microbiol Spectr 2022; 10:e0219822. [PMID: 36314946 PMCID: PMC9769798 DOI: 10.1128/spectrum.02198-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus in pigs, is one of the major pathogens for lethal watery diarrhea in piglets and poses a threat to public health because of its potential for interspecies transmission to humans. 25-Hydroxycholesterol (25HC), a derivative of cholesterol, exhibits multiple potential modulating host responses to pathogens, including viruses and bacteria, as well as pathogen-induced inflammation, while its antiviral effect on PDCoV and how it mediates the biological process of host cells to counter against infections remain poorly understood. Here, we thoroughly explored the antiviral effect of 25HC on PDCoV infection and tried to elucidate the underlying mechanisms. 25HC showed no toxic effect in LLC-PK1 cells and exerted antiviral ability against PDCoV infection in vitro. The viral cycle and time-of-addition analyses showed that 25HC mainly restricted the early and middle periods of the PDCoV postentry stage to inhibit infection. 25HC regulated disordered cholesterol metabolism induced by PDCoV infection and stimulated interferon-related lipid droplet accumulation. Transforming growth factor β1 (TGF-β1), screened by bioinformatic analyses, seemed to play an important role in PDCoV infection and was downregulated by 25HC. One interesting finding is that inhibition of TGF-β1 with the inhibitor asiaticoside exhibited a similar antiviral capacity to 25HC and demonstrated regulation of cholesterol metabolism. Taking all of the findings together, we verified the antiviral effect of 25HC on PDCoV through interference with cholesterol metabolism, which may be related to its suppression of TGFβ1. IMPORTANCE As an emerging enteropathogenic coronavirus in pigs, porcine deltacoronavirus (PDCoV) causes giant economic loss in the pig industry because of lethal diarrhea and possesses the potential for transmission from animals to humans. Several pieces of evidence have suggested the antiviral potential of cholesterol-25-hydroxylase and importance of cholesterol in viral infection. This study reports that 25-hydroxycholesterol (25HC) significantly restricted PDCoV infection through modulation of cholesterol metabolism, and we identified that lipid droplets play important roles in interferon response against virus infection. Moreover, this study identified the importance of TGF-β1 in CoV infection by bioinformatic analysis and verified that the inhibition of TGF-β1 showed anti-PDCoV capacity. Moreover, we uncovered the relationship between TGF-β and cholesterol metabolism initially. Given that the importance of cholesterol in viral infection, 25HC has a great potential to treat PDCoV infection and TGF-β1 can be a crucial antiviral target.
Collapse
|
19
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
20
|
The PRMT5-LSD1 axis confers Slug dual transcriptional activities and promotes breast cancer progression. J Exp Clin Cancer Res 2022; 41:191. [PMID: 35655230 PMCID: PMC9164399 DOI: 10.1186/s13046-022-02400-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Downregulation of epithelial markers and upregulation of mesenchymal markers are the characteristics of the epithelial to mesenchymal transition (EMT) program, which provides the metastatic advantage of breast cancer. However, the mechanism underlying the switch of EMT markers remains poorly understood. Methods In this study, we used the affinity purification and mass spectrometry coupled approach to identify the interactome of Slug. CoIP, GST-pulldown, ChIP, Re-ChIP, qPCR and Immunoblot were used to investigate the underlying mechanism of Slug-PRMT5-LSD1 complex. The role of PRMT5 and LSD1 in breast cancer progression was evaluated both in vivo and in vitro. Results Here we found that the transcription factor Slug associates with PRMT5 and LSD1 in a complex and facilitates the breast cancer invasion in vitro. Mechanistically, PRMT5 and LSD1 work with Slug to exert dual transcriptional activities to inhibit E-cadherin expression by PRMT5-catalyzed H4R3me2s and LSD1-mediated demethylation of H3K4me2 on the E-cadherin (CDH1) promoter, and activate vimentin (VIM) expression via PRMT5-driven H3R2me2s and LSD1-mediated removal of H3K9me2. Importantly, PRMT5 and LSD1 are coordinately expressed in breast cancer patients and pharmacologic perturbation of both PRMT5 and LSD1 shows a synergetic effect on the inhibition of breast tumor growth and metastasis in vivo. Conclusions Our study suggests that PRMT5 and LSD1 function as a dual epigenetic modifier to promote Slug induced EMT program, suggesting that the inhibition of PRMT5 and LSD1 presents a potential therapeutic strategy against cancer metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02400-7.
Collapse
|
21
|
Ferrarese R, Izzo A, Andrieux G, Lagies S, Bartmuss JP, Masilamani AP, Wasilenko A, Osti D, Faletti S, Schulzki R, Yuan S, Kling E, Ribecco V, Heiland DH, Tholen S, Prinz M, Pelicci G, Kammerer B, Boerries M, Carro MS. ZBTB18 inhibits SREBP-dependent lipid synthesis by halting CTBPs and LSD1 activity in glioblastoma. Life Sci Alliance 2022; 6:6/1/e202201400. [PMID: 36414381 PMCID: PMC9684030 DOI: 10.26508/lsa.202201400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Enhanced fatty acid synthesis is a hallmark of tumors, including glioblastoma. SREBF1/2 regulate the expression of enzymes involved in fatty acid and cholesterol synthesis. Yet, little is known about the precise mechanism regulating SREBP gene expression in glioblastoma. Here, we show that a novel interaction between the co-activator/co-repressor CTBP and the tumor suppressor ZBTB18 regulates the expression of SREBP genes. In line with our findings, metabolic assays and glucose tracing analysis confirm the reduction in several phospholipid species upon ZBTB18 expression. Our study identifies CTBP1/2 and LSD1 as co-activators of SREBP genes and indicates that the functional activity of the CTBP-LSD1 complex is altered by ZBTB18. ZBTB18 binding to the SREBP gene promoters is associated with reduced LSD1 demethylase activity of H3K4me2 and H3K9me2 marks. Concomitantly, the interaction between LSD1, CTBP, and ZNF217 is increased, suggesting that ZBTB18 promotes LSD1 scaffolding function. Our results outline a new epigenetic mechanism enrolled by ZBTB18 and its co-factors to regulate fatty acid synthesis that could be targeted to treat glioblastoma patients.
Collapse
Affiliation(s)
- Roberto Ferrarese
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Annalisa Izzo
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis, University of Freiburg, Breisgau, Germany,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Johanna Paulina Bartmuss
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Anie Priscilla Masilamani
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Alix Wasilenko
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Daniela Osti
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Rana Schulzki
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Shuai Yuan
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Eva Kling
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Valentino Ribecco
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Tholen
- Institute of Clinical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany
| | - Giuliana Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy,Department of Translational Medicine, Piemonte Orientale University “Amedeo Avo-Gadro,” Novara, Italy
| | - Bernd Kammerer
- Center for Biological Systems Analysis, University of Freiburg, Breisgau, Germany,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany,BIOSS Centre of Biological Signaling Studies, University of Freiburg, Freiburg Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Stella Carro
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| |
Collapse
|
22
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
23
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
24
|
Wang Y, Zhou X, Lei Y, Chu Y, Yu X, Tong Q, Zhu T, Yu H, Fang S, Li G, Wang L, Wang GY, Xie X, Zhang J. NNMT contributes to high metastasis of triple negative breast cancer by enhancing PP2A/MEK/ERK/c-Jun/ABCA1 pathway mediated membrane fluidity. Cancer Lett 2022; 547:215884. [PMID: 35988817 DOI: 10.1016/j.canlet.2022.215884] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
Elucidating the mechanism for high metastasis capacity of triple negative breast cancers (TNBC) is crucial to improve treatment outcomes of TNBC. We have recently reported that nicotinamide N-methyltransferase (NNMT) is overexpressed in breast cancer, especially in TNBC, and predicts poor survival of patients undergoing chemotherapy. Here, we aimed to determine the function and mechanism of NNMT on metastasis of TNBC. Additionally, analysis of public datasets indicated that NNMT is involved in cholesterol metabolism. In vitro, NNMT overexpression promoted migration and invasion of TNBCs by reducing cholesterol levels in the cytoplasm and cell membrane. Mechanistically, NNMT activated MEK/ERK/c-Jun/ABCA1 pathway by repressing protein phosphatase 2A (PP2A) activity leading to cholesterol efflux and membrane fluidity enhancement, thereby promoting the epithelial-mesenchymal transition (EMT) of TNBCs. In vivo, the metastasis capacity of TNBCs was weakened by targeting NNMT. Collectively, our findings suggest a new molecular mechanism involving NNMT in metastasis and poor survival of TNBC mediated by PP2A and affecting cholesterol metabolism.
Collapse
Affiliation(s)
- Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Department of Clinical Laboratory, Xiasha Campus, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Xi Zhou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Yinjiao Lei
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Yadong Chu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China; Department of Clinical Laboratory, Zhejiang Armed Police Corps Hospital, Hangzhou, Zhejiang, PR China
| | - Xingtong Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Qingchao Tong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Haitao Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Sining Fang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Guoli Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, 29425, SC, USA; Cancer Cell Biology Program of the Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Department of Clinical Laboratory, Xiasha Campus, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Department of Clinical Laboratory, Xiasha Campus, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
25
|
Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022; 11:46. [PMID: 35945203 PMCID: PMC9363460 DOI: 10.1038/s41389-022-00420-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Lipids are essential constituents for malignant tumors, as they are absolutely required for tumor growth and dissemination. Provided by the tumor microenvironment (TME) or by cancer cells themselves through activation of de novo synthesis pathways, they orchestrate a large variety of pro-tumorigenic functions. Importantly, TME cells, especially immune cells, cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs), are also prone to changes in their lipid content, which hinder or promote tumor aggressiveness. In this review, we address the significant findings for lipid contribution in tumor progression towards a metastatic disease and in the poor response to therapeutic treatments. We also highlight the benefits of targeting lipid pathways in preclinical models to slow down metastasis development and overcome chemo-and immunotherapy resistance.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France.
| |
Collapse
|
26
|
Maja M, Mohammed D, Dumitru AC, Verstraeten S, Lingurski M, Mingeot-Leclercq MP, Alsteens D, Tyteca D. Surface cholesterol-enriched domains specifically promote invasion of breast cancer cell lines by controlling invadopodia and extracellular matrix degradation. Cell Mol Life Sci 2022; 79:417. [PMID: 35819726 PMCID: PMC9276565 DOI: 10.1007/s00018-022-04426-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Tumor cells exhibit altered cholesterol content. However, cholesterol structural subcellular distribution and implication in cancer cell invasion are poorly understood mainly due to difficulties to investigate cholesterol both quantitatively and qualitatively and to compare isogenic cell models. Here, using the MCF10A cell line series (non-tumorigenic MCF10A, pre-malignant MCF10AT and malignant MCF10CAIa cells) as a model of breast cancer progression and the highly invasive MDA-MB-231 cell line which exhibits the common TP53 mutation, we investigated if cholesterol contributes to cancer cell invasion, whether the effects are specific to cancer cells and the underlying mechanism. We found that partial membrane cholesterol depletion specifically and reversibly decreased invasion of the malignant cell lines. Those cells exhibited dorsal surface cholesterol-enriched submicrometric domains and narrow ER-plasma membrane and ER-intracellular organelles contact sites. Dorsal cholesterol-enriched domains can be endocytosed and reach the cell ventral face where they were involved in invadopodia formation and extracellular matrix degradation. In contrast, non-malignant cells showed low cell invasion, low surface cholesterol exposure and cholesterol-dependent focal adhesions. The differential cholesterol distribution and role in breast cancer cell invasion provide new clues for the understanding of the molecular events underlying cellular mechanisms in breast cancer.
Collapse
Affiliation(s)
- Mauriane Maja
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Sandrine Verstraeten
- Cellular and Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Maxime Lingurski
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium
| | | | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium.
| |
Collapse
|
27
|
Wang R, Wang J, Chen Y, Chen Y, Xi Q, Sun L, Zhang X, Zhang G, Ding X, Shi T, Chen W. Circular RNA circLDLR facilitates cancer progression by altering the miR-30a-3p/SOAT1 axis in colorectal cancer. Cell Death Dis 2022; 8:314. [PMID: 35821230 PMCID: PMC9276972 DOI: 10.1038/s41420-022-01110-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular RNAs (circRNAs) have been reported to play critical regulatory roles in tumorigenesis, serving as tumor biomarkers and therapeutic targets. However, the contributions of circRNAs to CRC tumorigenesis are unclear. In our study, high expression of circLDLR was found in CRC tissues and cells and was closely associated with the malignant progression and poor prognosis of CRC patients. We demonstrated that circLDLR boosts growth and metastasis of CRC cells in vitro and in vivo, and modulates cholesterol levels in vitro. Mechanistically, we showed that circLDLR competitively binds to miR-30a-3p and prevents it from reducing the SOAT1 level, facilitating the malignant progression of CRC. In sum, our findings illustrate that circLDLR participates in CRC tumorigenesis and metastasis via the miR-30a-3p/SOAT1 axis, serving as a potential biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Ruoqin Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Yanjun Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Linqing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 178 East Ganjiang Road, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 178 East Ganjiang Road, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Xianglin Ding
- Department of Gastroenterology Suzhou Yongding Hospital, 1388 Gaoxin Road, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China. .,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China. .,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 178 East Ganjiang Road, Suzhou, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China. .,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China. .,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China. .,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 178 East Ganjiang Road, Suzhou, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| |
Collapse
|
28
|
Centonze G, Natalini D, Piccolantonio A, Salemme V, Morellato A, Arina P, Riganti C, Defilippi P. Cholesterol and Its Derivatives: Multifaceted Players in Breast Cancer Progression. Front Oncol 2022; 12:906670. [PMID: 35719918 PMCID: PMC9204587 DOI: 10.3389/fonc.2022.906670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol is an essential lipid primarily synthesized in the liver through the mevalonate pathway. Besides being a precursor of steroid hormones, bile acid, and vitamin D, it is an essential structural component of cell membranes, is enriched in membrane lipid rafts, and plays a key role in intracellular signal transduction. The lipid homeostasis is finely regulated end appears to be impaired in several types of tumors, including breast cancer. In this review, we will analyse the multifaceted roles of cholesterol and its derivatives in breast cancer progression. As an example of the bivalent role of cholesterol in the cell membrane of cancer cells, on the one hand, it reduces membrane fluidity, which has been associated with a more aggressive tumor phenotype in terms of cell motility and migration, leading to metastasis formation. On the other hand, it makes the membrane less permeable to small water-soluble molecules that would otherwise freely cross, resulting in a loss of chemotherapeutics permeability. Regarding cholesterol derivatives, a lower vitamin D is associated with an increased risk of breast cancer, while steroid hormones, coupled with the overexpression of their receptors, play a crucial role in breast cancer progression. Despite the role of cholesterol and derivatives molecules in breast cancer development is still controversial, the use of cholesterol targeting drugs like statins and zoledronic acid appears as a challenging promising tool for breast cancer treatment.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Pietro Arina
- University College London (UCL), Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Chiara Riganti
- Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| |
Collapse
|
29
|
Vilgrain I, Martin DK. Letter re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review: Label-free diagnostic technique to differentiate cancer cells from healthy cells. Eur J Cancer 2022; 172:400-402. [PMID: 35717368 DOI: 10.1016/j.ejca.2022.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Isabelle Vilgrain
- Univ. Grenoble Alpes, UMRS INSERM-CEA-UGA-CNRS U1292, Biology and Biotechnology for Health, Institute of Interdisciplinary Research of Grenoble, Endothelial Cell Junctions in Vascular Disease and Vascular Engineering Team, Grenoble 38054, France.
| | - Donald K Martin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC-SyNaBi, 38000 Grenoble, France.
| |
Collapse
|
30
|
Ruan H, Wang Z, Sun Z, Wei J, Zhang L, Ju H, Wang T, Zhang C, Guan M, Pan S. Single-cell RNA sequencing reveals the characteristics of cerebrospinal fluid tumour environment in breast cancer and lung cancer leptomeningeal metastases. Clin Transl Med 2022; 12:e885. [PMID: 35678121 PMCID: PMC9178395 DOI: 10.1002/ctm2.885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Leptomeningeal metastases (LM) occur in patients with breast cancer (BC) and lung cancer (LC) showing exceptionally poor prognosis. The cerebrospinal fluid (CSF) tumour microenvironment (TME) of LM patients is not well defined at a single‐cell level. Based on the 10× genomics single‐cell RNA sequencing (scRNA‐seq) data from GEO database including five patient‐derived CSF samples of BC‐LM and LC‐LM, and four patient‐derived CSF samples of idiopathic intracranial hypertension (IIH) as controls, we analysed single‐cell transcriptome characteristics of CSF TME in LM patients compared to controls simultaneously and comprehensively. In addition, we performed 10× genomics scRNA‐seq on CSF cells derived from a BC‐LM patient to help generate a solid conclusion. The CSF macrophages in LM patients showing M2‐subtype signature and the emergence of regulatory T cells in LM confirmed the direction of tumour immunity toward immunosuppression. Then, the characteristics of CSF circulating tumour cells (CTCs) of breast cancer LM (BC‐LM) patients were classified into five molecular subtypes by PAM50 model. The communication between macrophages and five subtype‐specific CSF‐CTCs showed largest number of ligand‐receptor interactions. The five subtypes‐specific CSF‐CTCs showed great heterogeneities which were manifested in cell proliferation and cancer‐testis antigens expression. Gene regulatory networks (GRNs) analysis revealed that transcription factor SREBF2 was universally activated in the five subtypes‐specific CSF‐CTCs. Our results will provide inspiration on new directions of the mechanism research, diagnosis and therapy of LM.
Collapse
Affiliation(s)
- Haoyu Ruan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Zhe Wang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Ziwei Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jia Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Lei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Huanyu Ju
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
31
|
Zhang X, Li T, Yang M, Du Q, Wang R, Fu B, Tan Y, Cao M, Chen Y, Wang Q, Hu R. Acquired temozolomide resistance in MGMT low gliomas is associated with regulation of homologous recombination repair by ROCK2. Cell Death Dis 2022; 13:138. [PMID: 35145081 PMCID: PMC8831658 DOI: 10.1038/s41419-022-04590-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 02/08/2023]
Abstract
It was reported that MGMTlow gliomas may still be resistant to TMZ, while the mechanisms remain poorly understood. In this study, we demonstrated that rho-associated kinase 2 (ROCK2), a cytoskeleton regulator, was highly expressed in MGMTlow recurrent gliomas, and its expression strongly correlated with poor overall survival (OS) time in a subset of MGMTlow recurrent gliomas patients with TMZ therapy. And we also found that overactive ROCK2 enhanced homologous recombination repair (HR) in TMZ-resistant (TMZ-R) glioma cell lines with low MGMT expression. Silencing ROCK2 impaired HR repair, and induced double-strand break (DSB) and eradicated TMZ-R glioma cells in culture. Notably, in MGMTlow TMZ-R models, as a key factor of HR, ataxia telangiectasia-mutated (ATM) expression was upregulated directly by hyper-activation of ROCK2 to improve HR efficiency. ROCK2 enhanced the binding of transcription factor zinc finger E-box binding homeobox 1 (ZEB1) to ATM promoter for increasing ATM expression. Moreover, ROCK2 transformed ZEB1 into a gene activator via Yes-associated protein 1 (YAP1). These results provide evidence for the use of ROCK inhibitors in the clinical therapy for MGMTlow TMZ-resistant glioma. Our study also offered novel insights for improving therapeutic management of MGMTlow gliomas.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tao Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bin Fu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingying Tan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qing Wang
- Department of Neurosurgery, Wuxi Second Hospital Affiliated Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
32
|
Yu X, Mi S, Ye J, Lou G. Aberrant lipid metabolism in cancer cells and tumor microenvironment: the player rather than bystander in cancer progression and metastasis. J Cancer 2022; 12:7498-7506. [PMID: 35003369 PMCID: PMC8734401 DOI: 10.7150/jca.64833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
As the primary cause of cancer-induced fatality and morbidity, cancer metastasis has been a hard nut to crack. Existing studies indicate that lipid metabolism reprogramming occurring in cancer cells and surrounding cells in TME also endows the aggressive and spreading properties with malignant cells. In this review we describe the lipid metabolic reprogramming of cancer cells at different steps along the metastatic process, we also summarize the altered lipid metabolism of non-cancer cells in TME during tumor metastasis. Additionally, we reveal both intrinsic and extrinsic factors which influence the cellular lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Xiujing Yu
- Department of Endoscopy Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shuyi Mi
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Guochun Lou
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
33
|
Ju Q, Jiang M, Huang W, Yang Q, Luo Z, Shi H. CtBP2 interacts with TGIF to promote the progression of esophageal squamous cell cancer through the Wnt/β‑catenin pathway. Oncol Rep 2021; 47:29. [PMID: 34878149 PMCID: PMC8674710 DOI: 10.3892/or.2021.8240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
C-terminal-binding protein 2 (CtBP2), a transcriptional co-repressor, plays a main role in tumorigenesis and in the development of multiple tumors. Transforming growth interacting factor (TGIF) is involved in a number of cellular signal transduction pathways and is related to tumor occurrence and development. In the present study, the proteins interacting with CtBP2 were identified and the mechanisms underlying the biological activity of CtBP2 in esophageal squamous cell carcinoma (ESCC) were investigated. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to search for known proteins interacting with CtBP2, and co-immunoprecipitation (Co-IP) assay was performed to validate the interactions. Reverse transcription-quantitative PCR (RT-qPCR), immunohistochemistry (IHC) and western blot analysis were performed to examine the expression levels of CtBP2 and TGIF in ESCC. The correlation between CtBP2 and TGIF was analyzed using Gene Expression Profiling Interactive Analysis (GEPIA) by Pearson's correlation analysis, and the co-localization of CtBP2 with TGIF in the ECA109 cells was identified using immunofluorescence staining. XAV939 treatment, CCK-8, 5-ethynyl-2′-deoxyuridine (EdU) staining, wound healing and Transwell assays were performed to investigate the signaling pathways involved in the biological activity of CtBP2 in ECA109 cells. According to the results obtained from STRING and Co-IP analysis, an interaction between CtBP2 and TGIF was indicated, and these proteins were co-localized in the nucleus. CtBP2 and TGIF mRNA and protein expression levels were robustly and simultaneously increased in both ESCC tissues and cell lines. There was a direct correlation between CtBP2 and TGIF expression levels in ESCC tissues, and both were significantly associated with metastasis and survival. The TGIF and CtBP2 expression levels were significantly increased or decreased simultaneously, in ECA109 cells transfected with LV-CtBP2 or sh-CtBP2, and vice versa. According to the results of CCK-8 assay, EdU staining and Transwell assay, CtBP2 promoted the proliferation, migration and invasion of ECA109 cells through the Wnt/β-catenin pathway. On the whole, the present study demonstrates that CtBP2 interacts with TGIF and promotes the malignant progression of ESCC through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Qianqian Ju
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Maorong Jiang
- Key Laboratory for Neuroregeneration, Medical College of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenxin Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Qingbo Yang
- Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Zhenghong Luo
- Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Hui Shi
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
34
|
Abdulla N, Vincent CT, Kaur M. Mechanistic Insights Delineating the Role of Cholesterol in Epithelial Mesenchymal Transition and Drug Resistance in Cancer. Front Cell Dev Biol 2021; 9:728325. [PMID: 34869315 PMCID: PMC8640133 DOI: 10.3389/fcell.2021.728325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the significant advancements made in targeted anti-cancer therapy, drug resistance constitutes a multifaceted phenomenon leading to therapy failure and ultimately mortality. Emerging experimental evidence highlight a role of cholesterol metabolism in facilitating drug resistance in cancer. This review aims to describe the role of cholesterol in facilitating multi-drug resistance in cancer. We focus on specific signaling pathways that contribute to drug resistance and the link between these pathways and cholesterol. Additionally, we briefly discuss the molecular mechanisms related to the epithelial-mesenchymal transition (EMT), and the documented link between EMT, metastasis and drug resistance. We illustrate this by specifically focusing on hypoxia and the role it plays in influencing cellular cholesterol content following EMT induction. Finally, we provide a proposed model delineating the crucial role of cholesterol in EMT and discuss whether targeting cholesterol could serve as a novel means of combatting drug resistance in cancer progression and metastasis.
Collapse
Affiliation(s)
- Naaziyah Abdulla
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - C Theresa Vincent
- Department of Immunology, Genetics and Pathology, Uppsala, Sweden.,Department of Microbiology, New York University School of Medicine, New York, NY, United States
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
35
|
He J, Chu Z, Lai W, Lan Q, Zeng Y, Lu D, Jin S, Xu H, Su P, Yin D, Chu Z, Liu L. Circular RNA circHERC4 as a novel oncogenic driver to promote tumor metastasis via the miR-556-5p/CTBP2/E-cadherin axis in colorectal cancer. J Hematol Oncol 2021; 14:194. [PMID: 34781990 PMCID: PMC8591961 DOI: 10.1186/s13045-021-01210-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The main cause of death in colorectal cancer patients is metastasis. Accumulating evidences suggest that circRNA plays pivotal roles in cancer initiation and development. However, the underlying molecular mechanisms of circRNAs that orchestrate cancer metastasis remain vague and need further clarification. METHODS Two paired CRC and adjacent normal tissues were used to screen the upregulated circRNAs by circRNA-seq; then, cell invasion assay was applied to confirm the functional invasion-related circRNAs. According to the above methods, circHERC4 (hsa_circ_0007113) was selected for further research. Next, we investigated the clinical significance of circHERC4 in a large cohort of patients with CRC. The oncogenic activity of circHERC4 was investigated in both CRC cell lines and animal xenograft studies. Finally, we explored the molecular mechanisms underlying circHERC4 as a malignant driver. RESULTS We demonstrated that circHERC4 was aberrantly elevated in CRC tissues (P < 0.001), and was positively associated with lymph node metastasis and advanced tumor grade (P < 0.01). Notably, the expression of circHERC4 was associated with worse survival in patients with CRC. Silencing of circHERC4 significantly inhibited the proliferation and migration of two highly aggressive CRC cell lines and reduced liver and lung metastasis in vivo. Mechanistically, we revealed that circHERC4 inactivated the tumor suppressor, miR-556-5p, leading to the activation of CTBP2/E-cadherin pathway which promotes tumor metastasis in CRC. CONCLUSIONS CircHERC4 exerts critical roles in promoting tumor aggressiveness through miR-556-5p/CTBP2/E-cadherin pathway and is a prognostic biomarker of the disease, suggesting that circHERC4 may serve as an exploitable therapeutic target for patients with CRC.
Collapse
Affiliation(s)
- Jiehua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, People's Republic of China
| | - Ziqiang Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wei Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Qiusheng Lan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yujie Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, People's Republic of China
| | - Shaowen Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Heyang Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Pengwei Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, People's Republic of China.
| | - Zhonghua Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Lu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
36
|
Determination of Genetic and Epigenetic Modifications-Related Prognostic Biomarkers of Breast Cancer: Genome High-Throughput Data Analysis. JOURNAL OF ONCOLOGY 2021; 2021:2143362. [PMID: 34557230 PMCID: PMC8455195 DOI: 10.1155/2021/2143362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
The high heterogeneity of breast cancer (BRCA) makes it more challenging to interpret the genetic variation mechanisms involved in BRCA pathogenesis and prognosis. Areas with high DNA methylation (such as CpG islands) were accompanied by copy number variation (CNV), and these genomic variations affected the level of DNA methylation. In this study, we characterized intertumor heterogeneity and analyzed the effects of CNV on DNA methylation and gene expression. In addition, we performed a Genetic Set Enrichment Analysis (GSEA) to identify key pathways for changes between patients with low and high expression of genes. Our analysis found two key genes, namely, HPDL and SOX17. The protein expressed by HPDL is 4-hydroxyphenylpyruvate dioxygenase-like protein, which has dioxygenase activity. SOX17 is a transcription factor that can inhibit Wnt signaling, promote the degradation of activated CTNNB1, and participate in cell proliferation. Our analysis found that the CNV of HPDL and SOX17 is not only related to the patient's prognosis, but also related to gene methylation and expression levels affecting the patient's survival time. Among them, the high-methylation, low-expression HPDL and SOX17 showed poor prognosis. And the addition of two copies of SOX17 is associated with a lower survival rate, while a decrease in the copy number of HPDL also suggests a poor prognosis. This study provided an effective bioinformatics basis for further exploration of molecular mechanisms related to BRCA and assessment of patient prognosis, but the development of biomarkers for diagnosis and treatment still requires further clinical data validation.
Collapse
|
37
|
Jiao K, Zhen J, Wu M, Teng M, Yang K, Zhou Q, Hu C, Zhou M, Li Y, Li Z. 27-Hydroxycholesterol-induced EndMT acts via STAT3 signaling to promote breast cancer cell migration by altering the tumor microenvironment. Cancer Biol Med 2021; 17:88-100. [PMID: 32296578 PMCID: PMC7142833 DOI: 10.20892/j.issn.2095-3941.2019.0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: The endothelial to mesenchymal transition (EndMT) plays a major role in cancer metastasis by regulating the complexity of the tumor microenvironment (TME). Here, we investigated whether 27-hydroxycholesterol (27HC) induces EndMT in endothelial cells (ECs). Methods: EndMT markers in the human microvascular endothelial cell-1 (HMEC-1) cell line and human umbilical vein endothelial cells (HUVECs) stimulated with 27HC were evaluated with Western blot. Epithelial to mesenchymal transition (EMT) markers in breast cancer (BC) cells cultured in conditioned medium were investigated with quantitative real time polymerase chain reaction (qRT-PCR). The MMP-2 and MMP-9 mRNA expression and activity were detected with qRT-PCR and gelatin zymography assays, respectively. The effect of activated STAT3 on 27HC-induced EndMT was validated by Western blot, immunofluorescence staining, and cell transfection assays. The migration ability of BC cells was evaluated with Transwell assays. Results: We found that 27HC induced EndMT in HMEC-1 and HUVECs, and 27HC-induced EndMT facilitated EMT and BC cell migration. The 27HC-induced EMT of BC cells also promoted EndMT and HUVEC migration. Investigation of the underlying molecular mechanisms revealed that STAT3 knockdown repressed EndMT in HUVECs as well as migration in BC cells induced with 27HC. In addition, C646 and resveratrol, inhibitors of STAT3 acetylation, repressed the expression of Ac-STAT3, p-STAT3, and EndMT markers in HUVECs exposed to 27HC; these HUVECs in turn attenuated the migration ability of BC cells in 27HC-induced EndMT. Conclusions: Cross-talk between 27HC-induced EndMT and EMT was observed in the TME. Moreover, activation of STAT3 signaling was found to be involved in 27HC-induced EndMT.
Collapse
Affiliation(s)
- Kailin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Maoxuan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Keke Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
38
|
2-Hydroxypropyl-β-cyclodextrin Regulates the Epithelial to Mesenchymal Transition in Breast Cancer Cells by Modulating Cholesterol Homeostasis and Endoplasmic Reticulum Stress. Metabolites 2021; 11:metabo11080562. [PMID: 34436503 PMCID: PMC8399758 DOI: 10.3390/metabo11080562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol metabolism affects endoplasmic reticulum (ER) stress and modulates epithelial-mesenchymal transition (EMT). Our previous study demonstrated that 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) attenuated EMT by blocking the transforming growth factor (TGF)-β/Smad signaling pathway and activating ER stress in MDA-MB-231 cells. To further assess the detailed mechanisms between cholesterol metabolism, ER stress, and EMT, LXR-623 (an agonist of LXRα) and simvastatin were used to increase and decrease cholesterol efflux and synthesis, respectively. Here, we found that high HP-β-CD concentrations could locally increase cholesterol levels in the ER by decreasing LXRα expression and increasing Hydroxymethylglutaryl-Coenzyme A reductase (HMGCR) expression in MDA-MB-231 and BT-549 cells, which triggered ER stress and inhibited EMT. Meanwhile, tunicamycin-induced ER stress blocked the TGF-β/Smad signaling pathway. However, low HP-β-CD concentrations can decrease the level of membrane cholesterol, enhance the TGF-β receptor I levels in lipid rafts, which helped to activate TGF-β/Smad signaling pathway, inhibit ER stress and elevate EMT. Based on our findings, the use of high HP-β-CD concentration can lead to cholesterol accumulation in the ER, thereby inducing ER stress, which directly suppresses TGF-β pathway-induced EMT. However, HP-β-CD is proposed to deplete membrane cholesterol at low concentrations and concurrently inhibit ER stress and induce EMT by promoting the TGF-β signaling pathways.
Collapse
|
39
|
The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med (Berl) 2021; 99:1335-1347. [PMID: 34196767 DOI: 10.1007/s00109-021-02107-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Gene transcription is strictly controlled by transcriptional complexes, which are assemblies of transcription factors, transcriptional regulators, and co-regulators. Mammalian genomes encode two C-terminal-binding proteins (CtBPs), CtBP1 and CtBP2, which are both well-known transcriptional corepressors of oncogenic processes. Their overexpression in tumors is associated with malignant behavior, such as uncontrolled cell proliferation, migration, and invasion, as well as with an increase in the epithelial-mesenchymal transition. CtBPs coordinate with other transcriptional regulators, such as histone deacetylases (HDACs) and histone acetyltransferases (p300 and CBP [CREBP-binding protein]) that contain the PXDLS motif, and with transcription factors to assemble transcriptional complexes that dock onto the promoters of genes to initiate gene transcription. Emerging evidence suggests that CtBPs function as both corepressors and coactivators in different biological processes ranging from apoptosis to inflammation and osteogenesis. Therapeutic targeting of CtBPs or the interactions required to form transcriptional complexes has also shown promising effects in preventing disease progression. This review summarizes the most recent progress in the study of CtBP functions and therapeutic inhibitors in different biological processes. This knowledge may enable a better understanding of the complexity of the roles of CtBPs, while providing new insights into therapeutic strategies that target CtBPs.
Collapse
|
40
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
41
|
The pan-cancer landscape of crosstalk between epithelial-mesenchymal transition and immune evasion relevant to prognosis and immunotherapy response. NPJ Precis Oncol 2021; 5:56. [PMID: 34158591 PMCID: PMC8219790 DOI: 10.1038/s41698-021-00200-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
An emerging body of evidence has recently recognized the coexistence of epithelial-mesenchymal transition (EMT) and immune response. However, a systems-level view and survey of the interplay between EMT and immune escape program, and their impact on tumor behavior and clinical outcome across various types of cancer is lacking. Here, we performed comprehensive multi-omics analyses to characterize the landscape of crosstalk between EMT and immune evasion and their clinical relevance across 17 types of solid cancer. Our study showed the presence of complex and dynamic immunomodulatory crosstalk between EMT and immune evasion shared by pan-cancer, and the crosstalk was significantly associated with cancer prognosis and immunotherapy response. Integrative quantitative analyses of genomics and immunogenomics revealed that cellular composition of immune infiltrates, non-synonymous mutation burden, chromosomal instability and oncogenic gene alterations are associated with the balance between EMT and immune evasion. Finally, we proposed a scoring model termed EMT-CYT Index (ECI) to quantify the EMT-immunity axis, which was a superior predictor of prognosis and immunotherapy response across different malignancies. By providing a systematic overview of crosstalk between EMT and immune evasion, our study highlights the potential of pan-cancer EMT-immunity crosstalk as a paradigm for dissecting molecular mechanisms underlying cancer progression and guiding more effective and generalized immunotherapy strategies.
Collapse
|
42
|
Pan-cancer characterization of lncRNA modifiers of immune microenvironment reveals clinically distinct de novo tumor subtypes. NPJ Genom Med 2021; 6:52. [PMID: 34140519 PMCID: PMC8211863 DOI: 10.1038/s41525-021-00215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023] Open
Abstract
The emerging field of long noncoding RNA (lncRNA)-immunity has provided a new perspective on cancer immunity and immunotherapies. The lncRNA modifiers of infiltrating immune cells in the tumor immune microenvironment (TIME) and their impact on tumor behavior and disease prognosis remain largely uncharacterized. In the present study, a systems immunology framework integrating the noncoding transcriptome and immunogenomics profiles of 9549 tumor samples across 30 solid cancer types was used, and 36 lncRNAs were identified as modifier candidates underlying immune cell infiltration in the TIME at the pan-cancer level. These TIME lncRNA modifiers (TIL-lncRNAs) were able to subclassify various tumors into three de novo pan-cancer subtypes characterized by distinct immunological features, biological behaviors, and disease prognoses. Finally, a TIL-lncRNA-derived immune state index (TISI) that was reflective of immunological and oncogenic states but also predictive of patients' prognosis was proposed. Furthermore, the TISI provided additional prognostic value for existing tumor immunological and molecular subtypes. By applying the TISI to tumors from different clinical immunotherapy cohorts, the TISI was found to be significantly negatively correlated with immune-checkpoint genes and to have the ability to predict the effectiveness of immunotherapy. In conclusion, the present study provided comprehensive resources and insights for future functional and mechanistic studies on lncRNA-mediated cancer immunity and highlighted the potential of the clinical application of lncRNA-based immunotherapeutic strategies in precision immunotherapy.
Collapse
|
43
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
44
|
Parfenyev SE, Shabelnikov SV, Pozdnyakov DY, Gnedina OO, Adonin LS, Barlev NA, Mittenberg AG. Proteomic Analysis of Zeb1 Interactome in Breast Carcinoma Cells. Molecules 2021; 26:molecules26113143. [PMID: 34074001 PMCID: PMC8197395 DOI: 10.3390/molecules26113143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.
Collapse
Affiliation(s)
- Sergey E. Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Sergey V. Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Danila Y. Pozdnyakov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Olga O. Gnedina
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Leonid S. Adonin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Alexey G. Mittenberg
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
- Correspondence: or
| |
Collapse
|
45
|
Jia L, Li J, Li P, Liu D, Li J, Shen J, Zhu B, Ma C, Zhao T, Lan R, Dang L, Li W, Sun S. Site-specific glycoproteomic analysis revealing increased core-fucosylation on FOLR1 enhances folate uptake capacity of HCC cells to promote EMT. Am J Cancer Res 2021; 11:6905-6921. [PMID: 34093861 PMCID: PMC8171077 DOI: 10.7150/thno.56882] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Epithelial-mesenchymal transition (EMT) has been recognized as an important step toward high invasion and metastasis of many cancers including hepatocellular carcinoma (HCC), while the mechanism for EMT promotion is still ambiguous. Methods: The dynamic alterations of site-specific glycosylation during HGF/TGF-β1-induced EMT process of three HCC cell lines were systematically investigated using precision glycoproteomic methods. The possible roles of EMT-related glycoproteins and site-specific glycans were further confirmed by various molecular biological approaches. Results: Using mass spectrometry-based glycoproteomic methods, we totally identified 2306 unique intact glycopeptides from SMMC-7721 and HepG2 cell lines, and found that core-fucosylated glycans were accounted for the largest proportion of complex N-glycans. Through quantification analysis of intact glycopeptides, we found that the majority of core-fucosylated intact glycopeptides from folate receptor α (FOLR1) were up-regulated in the three HGF-treated cell lines. Similarly, core-fucosylation of FOLR1 were up-regulated in SMMC-7721 and Hep3B cells with TGF-β1 treatment. Using molecular approaches, we further demonstrated that FUT8 was a driver for HGF/TGF-β1-induced EMT. The silencing of FUT8 reduced core-fucosylation and partially blocked the progress of HGF-induced EMT. Finally, we confirmed that the level of core-fucosylation on FOLR1 especially at the glycosite Asn-201 positively regulated the cellular uptake capacity of folates, and enhanced uptake of folates could promote the EMT of HCC cells. Conclusions: Based on the results, we proposed a potential pathway for HGF or TGF-β1-induced EMT of HCC cells: HGF or TGF-β1 treatment of HCC cells can increase the expression of glycosyltransferase FUT8 to up-regulate the core-fucosylation of N-glycans on glycoproteins including the FOLR1; core-fucosylation on FOLR1 can then enhance the folate uptake capacity to finally promote the EMT progress of HCC cells.
Collapse
|
46
|
Sharma B, Randhawa V, Vaiphei K, Gupta V, Dahiya D, Agnihotri N. Expression of miR-18a-5p, miR-144-3p, and miR-663b in colorectal cancer and their association with cholesterol homeostasis. J Steroid Biochem Mol Biol 2021; 208:105822. [PMID: 33465419 DOI: 10.1016/j.jsbmb.2021.105822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/29/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Though cholesterol accumulation is an established hallmark of a tumor cell, the relationship between the two is still not clear. Previously, we identified 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), Sterol Regulatory Element BindingTranscription Factor 2 (SREBF2), Nuclear Receptor Subfamily 1 Group H Member 3 (NR1H3), and Nuclear Receptor Subfamily 1 Group H Member 2 (NR1H2) as the key cholesterol homeostasis genes involved in colorectal cancer (CRC). In the present study, we aimed to identify microRNAs regulating these key genes in CRC. METHODS miR-18a-5p, miR-144-3p, and miR-663b were selected as the miRNAs targeting NR1H2, HMGCR, and SREBF2, respectively, based on the bioinformatic prediction tools and literature review. Their expression was evaluated in the local and The Cancer Genome Atlas (TCGA) cohorts. Receiver Operating Characteristic Curves and Kaplan Meier analysis were performed to elucidate their diagnostic and prognostic potential. Pearson or Spearman's correlations were used to evaluate the relationship between miRNAs and their target genes. Protein-protein interaction networks and Gene Ontology analyses were performed to investigate the potential molecular mechanism of these miRNAs. RESULTS Deregulated expression of miR-18a-5p, miR-144-3p, and miR-663b was associated with various clinicopathological features. miR-18a-5p exhibited an inverse correlation with NR1H2. miR-18a-5p and miR-144-3p also had a significant direct correlation with miR-33a-5p, an important modulator of cholesterol homeostasis. These miRNAs also exhibited high centrality in the mirna-protein interaction network. miR-144-3p and miR-663b exhibited the potential to be used as diagnostic biomarkers. CONCLUSIONS miR-18a-5p and miR-144-3p exhibited the potential to modulate cholesterol homeostasis in CRC. miR-663b is an interesting candidate in CRC pathophysiology.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Vinay Randhawa
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Kim Vaiphei
- Department of Histopathology, Post Graduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India.
| | - Vikas Gupta
- Department of General Surgery, Post Graduate Institute of Medical Education & Research (PGIMER), Sector 12, Chandigarh, 160012, India.
| | - Divya Dahiya
- Department of General Surgery, Post Graduate Institute of Medical Education & Research (PGIMER), Sector 12, Chandigarh, 160012, India.
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
47
|
Goldmann T, Schmitt B, Müller J, Kröger M, Scheufele S, Marwitz S, Nitschkowski D, Schneider MA, Meister M, Muley T, Thomas M, Kugler C, Rabe KF, Siebert R, Reck M, Ammerpohl O. DNA methylation profiles of bronchoscopic biopsies for the diagnosis of lung cancer. Clin Epigenetics 2021; 13:38. [PMID: 33596996 PMCID: PMC7890863 DOI: 10.1186/s13148-021-01024-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related death in most western countries in both, males and females, accounting for roughly 20–25% of all cancer deaths. For choosing the most appropriate therapy regimen a definite diagnosis is a prerequisite. However, histological characterization of bronchoscopic biopsies particularly with low tumor cell content is often challenging. Therefore, this study aims at (a) determining the value of DNA methylation analysis applied to specimens obtained by bronchoscopic biopsy for the diagnosis of lung cancer and (b) at comparing aberrantly CpG loci identified in bronchoscopic biopsy with those identified by analyzing surgical specimens. Results We report the HumanMethylation450-based DNA methylation analysis of paired samples of bronchoscopic biopsy specimens either from the tumor side or from the contralateral tumor-free bronchus in 37 patients with definite lung cancer diagnosis and 18 patients with suspicious diagnosis. A differential DNA methylation analysis between both biopsy sites of patients with definite diagnosis identified 1303 loci. Even those samples were separated by the set of 1303 loci in which histopathological analysis could not unambiguously define the dignity. Further differential DNA methylation analyses distinguished between SCLC and NSCLC. We validated our results in an independent cohort of 40 primary lung cancers obtained by open surgical resection and their corresponding controls from the same patient as well as in publically available DNA methylation data from a TCGA cohort which could also be classified with high accuracy. Conclusions Considering that the prognosis correlates with tumor stage at time of diagnosis, early detection of lung cancer is vital and DNA methylation analysis might add valuable information to reliably characterize lung cancer even in histologically ambiguous sample material. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01024-6.
Collapse
Affiliation(s)
- Torsten Goldmann
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Lübeck and the Research Center Borstel, Lübeck, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | - Julia Müller
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Lübeck and the Research Center Borstel, Lübeck, Borstel, Germany
| | - Maren Kröger
- Institute of Human Genetics, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Germany
| | - Swetlana Scheufele
- Institute of Human Genetics, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Sebastian Marwitz
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Lübeck and the Research Center Borstel, Lübeck, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Dörte Nitschkowski
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Lübeck and the Research Center Borstel, Lübeck, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Thomas
- Internistische Onkologie der Thoraxtumoren, Thoraxklinik im Universitätsklinikum Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | | | - Klaus F Rabe
- LungenClinic Grosshansdorf, Grosshansdorf, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Medical Center Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martin Reck
- LungenClinic Grosshansdorf, Grosshansdorf, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Medical Center Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany. .,Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.
| |
Collapse
|
48
|
Werner S, Heidrich I, Pantel K. Clinical management and biology of tumor dormancy in breast cancer. Semin Cancer Biol 2021; 78:49-62. [PMID: 33582172 DOI: 10.1016/j.semcancer.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
Clinical tumor dormancy is specified as an extended latency period between removal of the primary tumor and subsequent relapse in a cancer patient who has been clinically disease-free. In particular, patients with estrogen receptor-positive breast cancer can undergo extended periods of more than five years before they relapse with overt metastatic disease. Recent studies have shown that minimal residual disease in breast cancer patients can be monitored by different liquid biopsy approaches like analysis of circulating tumor cells or cell-free tumor DNA. Even though the biological principles underlying tumor dormancy in breast cancer patients remain largely unknown, clinical observations and experimental studies have identified emerging mechanisms that control the state of tumor dormancy. In this review, we illustrate the latest discoveries on different molecular aspects that contribute to the control of tumor dormancy and distant metastatic relapse, then discuss current treatments affecting minimal residual disease and dormant cancer cells, and finally highlight how novel liquid biopsy based diagnostic methodologies can be integrated into the detection and molecular characterization of minimal residual disease.
Collapse
Affiliation(s)
- Stefan Werner
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany; Mildred-Scheel-Nachwuchszentrum HaTRiCs4, Universitäres Cancer Center Hamburg, Germany
| | - Isabel Heidrich
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
49
|
Gao S, Soares F, Wang S, Wong CC, Chen H, Yang Z, Liu W, Go MYY, Ahmed M, Zeng Y, O’Brien CA, Sung JJY, He HH, Yu J. CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer. Oncogene 2021; 40:6601-6613. [PMID: 34621019 PMCID: PMC8639446 DOI: 10.1038/s41388-021-01882-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are responsible for tumor progression, recurrence, and drug resistance. To identify genetic vulnerabilities of colon cancer, we performed targeted CRISPR dropout screens comprising 657 Drugbank targets and 317 epigenetic regulators on two patient-derived colon CSC-enriched spheroids. Next-generation sequencing of pooled genomic DNAs isolated from surviving cells yielded therapeutic candidates. We unraveled 44 essential genes for colon CSC-enriched spheroids propagation, including key cholesterol biosynthetic genes (HMGCR, FDPS, and GGPS1). Cholesterol biosynthesis was induced in colon cancer tissues, especially CSC-enriched spheroids. The genetic and pharmacological inhibition of HMGCR/FDPS impaired self-renewal capacity and tumorigenic potential of the spheroid models in vitro and in vivo. Mechanistically, HMGCR or FDPS depletion impaired cancer stemness characteristics by activating TGF-β signaling, which in turn downregulated expression of inhibitors of differentiation (ID) proteins, key regulators of cancer stemness. Cholesterol and geranylgeranyl diphosphate (GGPP) rescued the growth inhibitory and signaling effect of HMGCR/FDPS blockade, implying a direct role of these metabolites in modulating stemness. Finally, cholesterol biosynthesis inhibitors and 5-FU demonstrated antitumor synergy in colon CSC-enriched spheroids, tumor organoids, and xenografts. Taken together, our study unravels novel genetic vulnerabilities of colon CSC-enriched spheroids and suggests cholesterol biosynthesis as a potential target in conjunction with traditional chemotherapy for colon cancer treatment.
Collapse
Affiliation(s)
- Shanshan Gao
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China ,grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Fraser Soares
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Shiyan Wang
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Chi Chun Wong
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenjie Yang
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Minnie Y. Y. Go
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Musaddeque Ahmed
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Yong Zeng
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Catherine Adell O’Brien
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Joseph J. Y. Sung
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Housheng Hansen He
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Ontario, ON Canada
| | - Jun Yu
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|