1
|
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E, Alvarado-Ortiz E. Cancer Stem Cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci 2024; 355:123015. [PMID: 39182567 DOI: 10.1016/j.lfs.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Cancer Stem Cells (CSCs) are highly tumorigenic, chemoresistant, and immune evasive. They emerge as a central driver that gives rise to the bulk of tumoral mass, modifies the tumor microenvironment (TME), and exploits it, leading to poor clinical outcomes for patients with cancer. The existence of CSCs thus accounts for the failure of conventional therapies and immune surveillance. Identifying CSCs in solid tumors remains a significant challenge in modern oncology, with the use of cell surface markers being the primary strategy for studying, isolating, and enriching these cells. In this review, we explore CSC markers, focusing on the underlying signaling pathways that drive CSC self-renewal, which simultaneously makes them intrinsically chemoresistant and immune system evaders. We comprehensively discuss the autonomous and non-autonomous functions of CSCs, with particular emphasis on their interactions with the tumor microenvironment, especially immune cells. This reciprocal network enhances CSCs malignancy while compromising the surrounding niche, ultimately defining therapeutic vulnerabilities associated with each CSC marker. The most common CSCs surface markers addressed in this review-CD44, CD133, ICAM1/CD54, and LGR5-provide insights into the interplay between chemoresistance and immune evasion, two critically important phenomena in disease eradication. This new perspective on the state-of-the-art of CSCs will undoubtedly open new avenues for therapy.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
2
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
3
|
Liu B, Liu Y, Yang S, Ye J, Hu J, Chen S, Wu S, Liu Q, Tang F, Liu Y, He Y, Du Y, Zhang G, Guo Q, Yang C. Enhanced desmosome assembly driven by acquired high-level desmoglein-2 promotes phenotypic plasticity and endocrine resistance in ER + breast cancer. Cancer Lett 2024; 600:217179. [PMID: 39154704 DOI: 10.1016/j.canlet.2024.217179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Acquired resistance to endocrine treatments remains a major clinical challenge. In this study, we found that desmoglein-2 (DSG2) plays a major role in acquired endocrine resistance and cellular plasticity in ER+ breast cancer (BC). By analysing the well-established fulvestrant-resistant ER+ BC model using single-cell RNA-seq, we revealed that ER inhibition leads to a specific increase in DSG2 in cancer cell populations, which in turn enhances desmosome formation in vitro and in vivo and cell phenotypic plasticity that promotes resistance to treatment. DSG2 depletion reduced tumorigenesis and metastasis in fulvestrant-resistant xenograft models and promoted fulvestrant efficiency. Mechanistically, DSG2 forms a desmosome complex with JUP and Vimentin and triggers Wnt/PCP signalling. We showed that elevated DSG2 levels, along with reduced ER levels and an activated Wnt/PCP pathway, predicted poor survival, suggesting that a DSG2high signature could be exploited for therapeutic interventions. Our analysis highlighted the critical role of DSG2-mediated desmosomal junctions following antiestrogen treatment.
Collapse
Affiliation(s)
- Bohan Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Yang
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwen Ye
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajie Hu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Chen
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyi Wu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinqing Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fen Tang
- Department of Breast Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Yang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Khalil AA, Smits D, Haughton PD, Koorman T, Jansen KA, Verhagen MP, van der Net M, van Zwieten K, Enserink L, Jansen L, El-Gammal AG, Visser D, Pasolli M, Tak M, Westland D, van Diest PJ, Moelans CB, Roukens MG, Tavares S, Fortier AM, Park M, Fodde R, Gloerich M, Zwartkruis FJT, Derksen PW, de Rooij J. A YAP-centered mechanotransduction loop drives collective breast cancer cell invasion. Nat Commun 2024; 15:4866. [PMID: 38849373 PMCID: PMC11161601 DOI: 10.1038/s41467-024-49230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.
Collapse
Affiliation(s)
- Antoine A Khalil
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Daan Smits
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D Haughton
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karin A Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mirjam van der Net
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty van Zwieten
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lotte Enserink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisa Jansen
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Abdelrahman G El-Gammal
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daan Visser
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Milena Pasolli
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max Tak
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Denise Westland
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Guy Roukens
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anne-Marie Fortier
- Goodman Cancer Institute McGill University, Depts Biochemistry and Oncology, McGill University, Goodman Cancer Institute, Montréal, Canada
| | - Morag Park
- Goodman Cancer Institute McGill University, Depts Biochemistry and Oncology, McGill University, Goodman Cancer Institute, Montréal, Canada
| | - Riccardo Fodde
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martijn Gloerich
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Wb Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Johan de Rooij
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Yoon SB, Chen L, Robinson IE, Khatib TO, Arthur RA, Claussen H, Zohbi NM, Wu H, Mouw JK, Marcus AI. Subpopulation commensalism promotes Rac1-dependent invasion of single cells via laminin-332. J Cell Biol 2024; 223:e202308080. [PMID: 38551497 PMCID: PMC10982113 DOI: 10.1083/jcb.202308080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Phenotypic heterogeneity poses a significant hurdle for cancer treatment but is under-characterized in the context of tumor invasion. Amidst the range of phenotypic heterogeneity across solid tumor types, collectively invading cells and single cells have been extensively characterized as independent modes of invasion, but their intercellular interactions have rarely been explored. Here, we isolated collectively invading cells and single cells from the heterogeneous 4T1 cell line and observed extensive transcriptional and epigenetic diversity across these subpopulations. By integrating these datasets, we identified laminin-332 as a protein complex exclusively secreted by collectively invading cells. Live-cell imaging revealed that laminin-332 derived from collectively invading cells increased the velocity and directionality of single cells. Despite collectively invading and single cells having similar expression of the integrin α6β4 dimer, single cells demonstrated higher Rac1 activation upon laminin-332 binding to integrin α6β4. This mechanism suggests a novel commensal relationship between collectively invading and single cells, wherein collectively invading cells promote the invasive potential of single cells through a laminin-332/Rac1 axis.
Collapse
Affiliation(s)
- Sung Bo Yoon
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Luxiao Chen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Isaac E. Robinson
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tala O. Khatib
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Najdat M. Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, GA, USA
| | - Hao Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
7
|
Wang D, Keyoumu K, Yu R, Wen D, Jiang H, Liu X, Di X, Zhang S. Extracellular matrix marker LAMC2 targets ZEB1 to promote TNBC malignancy via up-regulating CD44/STAT3 signaling pathway. Mol Med 2024; 30:61. [PMID: 38760717 PMCID: PMC11100204 DOI: 10.1186/s10020-024-00827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.
Collapse
Affiliation(s)
- Ding Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Kailibinuer Keyoumu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rongji Yu
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Xinchun Liu
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410000, Hunan, China.
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
8
|
de Jong MME, Fokkema C, Papazian N, Czeti Á, Appelman MK, Vermeulen M, van Heusden T, Hoogenboezem RM, van Beek G, Tahri S, Sanders MA, van de Woestijne PC, Gay F, Moreau P, Büttner-Herold M, Bruns H, van Duin M, Broijl A, Sonneveld P, Cupedo T. An IL-1β-driven neutrophil-stromal cell axis fosters a BAFF-rich protumor microenvironment in individuals with multiple myeloma. Nat Immunol 2024; 25:820-833. [PMID: 38600356 DOI: 10.1038/s41590-024-01808-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Human bone marrow permanently harbors high numbers of neutrophils, and a tumor-supportive bias of these cells could significantly impact bone marrow-confined malignancies. In individuals with multiple myeloma, the bone marrow is characterized by inflammatory stromal cells with the potential to influence neutrophils. We investigated myeloma-associated alterations in human marrow neutrophils and the impact of stromal inflammation on neutrophil function. Mature neutrophils in myeloma marrow are activated and tumor supportive and transcribe increased levels of IL1B and myeloma cell survival factor TNFSF13B (BAFF). Interactions with inflammatory stromal cells induce neutrophil activation, including BAFF secretion, in a STAT3-dependent manner, and once activated, neutrophils gain the ability to reciprocally induce stromal activation. After first-line myeloid-depleting antimyeloma treatment, human bone marrow retains residual stromal inflammation, and newly formed neutrophils are reactivated. Combined, we identify a neutrophil-stromal cell feed-forward loop driving tumor-supportive inflammation that persists after treatment and warrants novel strategies to target both stromal and immune microenvironments in multiple myeloma.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Cathelijne Fokkema
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Natalie Papazian
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Ágnes Czeti
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Marjolein K Appelman
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Michael Vermeulen
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Teddie van Heusden
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Gregory van Beek
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Sabrin Tahri
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | | | - Francesca Gay
- Clinical Trial Unit, Division of Hematology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Philippe Moreau
- Department of Hematology, Nantes University Hospital Hotel-Dieu, Nantes, France
| | - Maike Büttner-Herold
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mark van Duin
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Annemiek Broijl
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands.
| | - Tom Cupedo
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Li X, Kong R, Hou W, Cao J, Zhang L, Qian X, Zhao L, Ying W. Integrative proteomics and n-glycoproteomics reveal the synergistic anti-tumor effects of aspirin- and gemcitabine-based chemotherapy on pancreatic cancer cells. Cell Oncol (Dordr) 2024; 47:141-156. [PMID: 37639207 DOI: 10.1007/s13402-023-00856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE AND DESIGN Pancreatic cancer is a highly malignant tumor that is well known for its poor prognosis. Based on glycosylation, we performed integrated quantitative N-glycoproteomics to investigate the synergistic anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells and explore the potential molecular mechanisms of chemotherapy in pancreatic cancer. METHODS AND RESULTS Two pancreatic cancer cell lines (PANC-1 and BxPC-3) were treated with gemcitabine, aspirin, and a combination (gemcitabine + aspirin). We found that the addition of aspirin enhanced the inhibitory effect of gemcitabine on the activity of PANC-1 and BxPC-3 cells. Quantitative N-glycoproteome, proteome, phosphorylation, and transcriptome data were obtained from integrated multi-omics analysis to evaluate the anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells. Mfuzz analysis of intact N-glycopeptide profiles revealed two consistent trends associated with the addition of aspirin, which showed a strong relationship between N-glycosylation and the synergistic effect of aspirin. Further analysis demonstrated that the dynamic regulation of sialylation and high-mannose glycoforms on ECM-related proteins (LAMP1, LAMP2, ITGA3, etc.) was a significant factor for the ability of aspirin to promote the anti-tumor activity of gemcitabine and the drug resistance of pancreatic cancer cells. CONCLUSIONS In-depth analysis of N-glycosylation-related processes and pathways in pancreatic cancer cells can provide new insight for future studies regarding pancreatic cancer therapeutic targets and drug resistance mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
- Institute of Analysis and Testing, Beijing Center for Physical & Chemical Analysis), Beijing Academy of Science and Technology, Beijing, 100094, China
| | - Ran Kong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
| | - Wenhao Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
| | - Junxia Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China.
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
10
|
Wu J, Pang X, Yang X, Zhang M, Chen B, Fan H, Wang H, Yu X, Tang Y, Liang X. M1 macrophages induce PD-L1 hi cell-led collective invasion in HPV-positive head and neck squamous cell carcinoma via TNF-α/CDK4/UPS14. J Immunother Cancer 2023; 11:e007670. [PMID: 38148114 PMCID: PMC10753854 DOI: 10.1136/jitc-2023-007670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Although the roles of PD-L1 in promoting tumor escape from immunosurveillance have been extensively addressed, its non-immune effects on tumor cells remain unclear. METHODS The spatial heterogeneity of PD-L1 staining in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) tissues was identified by immunohistochemistry. Three-dimensional (3D) specific cell-led invasion assay and 3D cancer spheroid model were used to investigate the roles of PD-L1hileader cells in collective invasion. The impact of M1 macrophages on specific PD-L1 expression in leader cells and its mechanisms were further studied. Finally, the effect of combination therapy of anti-PD-L1 and CDK4 inhibitor on HPV-positive tumors were evaluated on a mice model. RESULTS Here, we observed a distinctive marginal pattern of PD-L1 expression in HPV-positive HNSCC tissues. By mimicking this spatial pattern of PD-L1 expression in the 3D invasion assay, we found that PD-L1hi cells led the tumor collective invasion. M1 macrophages induced specific PD-L1 expression in leader cells, and depletion of macrophages in tumor-bearing mice abrogated PD-L1hileader cells and collective invasion. Mechanistically, TNF-α secreted by M1 macrophages markedly increased the abundance of PD-L1 via CDK4/ubiquitin-specific peptidase 14-mediated deubiquitination of PD-L1. We also found that suppression of CDK4 enhanced the efficacy of anti-PD-L1 therapy in an E6/E7 murine model. CONCLUSIONS Our study identified TNF-α/CDK4/ubiquitin-specific peptidase 14-mediated PD-L1 stability as a novel mechanism underlying M1 macrophage-induced PD-L1hileader cells and collective tumor invasion, and highlighted the potential of the combination therapy of anti-PD-L1 and CDK4 inhibitor for HPV-positive HNSCC.
Collapse
Affiliation(s)
- Jiashun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Xiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Bingjun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Huayang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Haofan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Xianghua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
11
|
Qiu Y, Wang H, Guo Q, Liu Y, He Y, Zhang G, Yang C, Du Y, Gao F. CD44s-activated tPA/LRP1-NFκB pathway drives lamellipodia outgrowth in luminal-type breast cancer cells. Front Cell Dev Biol 2023; 11:1224827. [PMID: 37842093 PMCID: PMC10569302 DOI: 10.3389/fcell.2023.1224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Some cancer cells migration and metastasis are characterized by the outgrowth of lamellipodia protrusions in which the underlying mechanism remains unclear. Evidence has confirmed that lamellipodia formation could be regulated by various adhesion molecules, such as CD44, and we previously reported that lamellipodia at the leading edge of luminal type breast cancer (BrCa) were enriched with high expression of CD44. In this study, we found that the overexpression of CD44s could promote lamellipodia formation in BrCa cells through inducing tissue type plasminogen activator (tPA) upregulation, which was achieved by PI3K/Akt signaling pathway activation. Moreover, we revealed that tPA could interact with LDL receptor related protein 1 (LRP1) to activate the downstream NFκB signaling pathway, which in turn facilitate lamellipodia formation. Notably, inhibition of the tPA/LRP1-NFkB signaling cascade could attenuate the CD44s-induced lamellipodia formation. Thus, our findings uncover a novel role of CD44s in driving lamellipodia outgrowth through tPA/LRP1-NFkB axis in luminal BrCa cells that may be helpful for seeking potential therapeutic targets.
Collapse
Affiliation(s)
- Yaqi Qiu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Bahreyni A, Mohamud Y, Zhang J, Luo H. Engineering a facile and versatile nanoplatform to facilitate the delivery of multiple agents for targeted breast cancer chemo-immunotherapy. Biomed Pharmacother 2023; 163:114789. [PMID: 37119737 DOI: 10.1016/j.biopha.2023.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
There is growing evidence showing that single administration of immunotherapeutic agents has limited efficacy in a number of cancer patients mainly due to tumor heterogeneity and immunosuppressive tumor microenvironment. In this study, a novel nanoparticle-based strategy was applied to achieve efficient tumor-targeted therapy by combining chemotherapeutic agents, i.e., doxorubicin (Dox) and melittin (Mel), with an immune checkpoint inhibitor (PD-L1 DsiRNA). The proposed nanoparticle was prepared by the formation of a complex between Mel and PD-L1 DsiRNA (Dicer-substrate short-interfering RNA), followed by the loading of Dox. The surface of the resultant particles (DoxMel/PD-L1 DsiRNA) was then modified with hyaluronic acid (HA) to increase their stability and distribution. In addition, HA can also act as a tumor-targeting agent through binding to its receptor CD44 on the surface of cancer cells. We demonstrated that the surface engineering of DoxMel/PD-L1 DsiRNA with HA significantly enhances its specificity towards breast cancer cells. Moreover, we observed a noticeable reduction in PD-L1 expression together with a synergistic effect of Dox and Mel on killing cancer cells and inducing immunogenic cell death, leading to significantly diminished tumor growth in 4T1-breast tumor bearing Balb/c mice, improved survival rate and extensive infiltration of immune cells including cytotoxic T cells into the tumor microenvironment. Safety analysis revealed that there is no significant toxicity associated with the developed nanoparticle. All in all, the proposed targeted combination treatment strategy can be considered as a useful method to reduce cancer-associated mortality.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver BC V6Z 1Y6, Canada
| | - Jingchun Zhang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver BC V6Z 1Y6, Canada.
| |
Collapse
|
14
|
Obr AE, Bulatowicz JJ, Chang YJ, Ciliento V, Lemenze A, Maingrette K, Shang Q, Gallagher EJ, LeRoith D, Wood TL. Breast tumor IGF1R regulates cell adhesion and metastasis: alignment of mouse single cell and human breast cancer transcriptomics. Front Oncol 2022; 12:990398. [PMID: 36568144 PMCID: PMC9769962 DOI: 10.3389/fonc.2022.990398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction The acquisition of a metastatic phenotype is the critical event that determines patient survival from breast cancer. Several receptor tyrosine kinases have functions both in promoting and inhibiting metastasis in breast tumors. Although the insulin-like growth factor 1 receptor (IGF1R) has been considered a target for inhibition in breast cancer, low levels of IGF1R expression are associated with worse overall patient survival. Methods To determine how reduced IGF1R impacts tumor phenotype in human breast cancers, we used weighted gene co-expression network analysis (WGCNA) of Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) patient data to identify gene modules associated with low IGF1R expression. We then compared these modules to single cell gene expression analyses and phenotypes of mouse mammary tumors with reduced IGF1R signaling or expression in a tumor model of triple negative breast cancer. Results WGCNA from METABRIC data revealed gene modules specific to cell cycle, adhesion, and immune cell signaling that were inversely correlated with IGF1R expression in human breast cancers. Integration of human patient data with single cell sequencing data from mouse tumors revealed similar pathways necessary for promoting metastasis in basal-like mammary tumors with reduced signaling or expression of IGF1R. Functional analyses revealed the basis for the enhanced metastatic phenotype including alterations in E- and P-cadherins. Discussion Human breast and mouse mammary tumors with reduced IGF1R are associated with upregulation of several pathways necessary for promoting metastasis supporting the conclusion that IGF1R normally helps maintain a metastasis suppressive tumor microenvironment. We further found that reduced IGF1R signaling in tumor epithelial cells dysregulates cadherin expression resulting in reduced cell adhesion.
Collapse
Affiliation(s)
- Alison E. Obr
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Joseph J. Bulatowicz
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers University, Piscataway, NJ, United States
| | - Virginia Ciliento
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Alexander Lemenze
- Department of Pathology, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Krystopher Maingrette
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Quan Shang
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Emily J. Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Icahn Sinai School of Medicine at Mt. Sinai, New York, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Icahn Sinai School of Medicine at Mt. Sinai, New York, NY, United States
| | - Teresa L. Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States,*Correspondence: Teresa L. Wood,
| |
Collapse
|
15
|
Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol 2022; 87:17-31. [PMID: 36354098 DOI: 10.1016/j.semcancer.2022.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Metastatic cancer is almost always terminal, and more than 90% of cancer deaths result from metastatic disease. Combating cancer metastasis and post-therapeutic recurrence successfully requires understanding each step of metastatic progression. This review describes the current state of knowledge of the etiology and mechanism of cancer progression from primary tumor growth to the formation of new tumors in other parts of the body. Open questions, avenues for future research, and therapeutic approaches with the potential to prevent or inhibit metastasis through personalization to each patient's mutation and/or immune profile are also highlighted.
Collapse
Affiliation(s)
- Maria Castaneda
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Petra den Hollander
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Nick A Kuburich
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Jeffrey M Rosen
- Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sendurai A Mani
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA.
| |
Collapse
|
16
|
Cell adhesion molecule CD44v10 promotes stem-like properties in triple-negative breast cancer cells via glucose transporter GLUT1-mediated glycolysis. J Biol Chem 2022; 298:102588. [PMID: 36243113 PMCID: PMC9647553 DOI: 10.1016/j.jbc.2022.102588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Cell adhesion molecule CD44v8-10 is associated with tumor ste0mness and malignancy; however, whether CD44v10 alone confers these properties is unknown. Here, we demonstrated that CD44v10 promotes stemness and chemoresistance of triple-negative breast cancers (TNBCs) individually. Next, we identified that genes differentially expressed in response to ectopic expression of CD44v10 are mostly related to glycolysis. Further, we showed that CD44v10 upregulates glucose transporter 1 to facilitate glycolysis by activating the MAPK/ERK and PI3K/AKT signaling pathways. This glycolytic reprogramming induced by CD44v10 contributes to the stem-like properties of TNBC cells and confers resistance to paclitaxel treatment. Notably, we determined that the knockdown of glucose transporter 1 could attenuate the enhanced effects of CD44v10 on glycolysis, stemness, and paclitaxel resistance. Collectively, our findings provide novel insights into the function of CD44v10 in TNBCs and suggest that targeting CD44v10 may contribute to future clinical therapy.
Collapse
|
17
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
18
|
Liu C, Wang J, Zheng Y, Zhu Y, Zhou Z, Liu Z, Lin C, Wan Y, Wen Y, Liu C, Yuan M, Zeng YA, Yan Z, Ge G, Chen J. Autocrine pro-legumain promotes breast cancer metastasis via binding to integrin αvβ3. Oncogene 2022; 41:4091-4103. [PMID: 35854065 DOI: 10.1038/s41388-022-02409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Abstract
Tumor metastasis is the leading cause of cancer-associated mortality. Unfortunately, the underlying mechanism of metastasis is poorly understood. Expression of legumain (LGMN), an endo-lysosomal cysteine protease, positively correlates with breast cancer metastatic progression and poor prognosis. Here, we report that LGMN is secreted in the zymogen form by motile breast cancer cells. Through binding to cell surface integrin αvβ3 via an RGD motif, the autocrine pro-LGMN activates FAK-Src-RhoA signaling in cancer cells and promotes cancer cell migration and invasion independent of LGMN protease activity. Either silencing LGMN expression or mutationally abolishing pro-LGMN‒αvβ3 interaction significantly inhibits cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Finally, we developed a monoclonal antibody against LGMN RGD motif, which blocks pro-LGMN‒αvβ3 binding, and effectively suppresses cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Thus, disruption of pro-LGMN‒integrin αvβ3 interaction may be a potentially promising strategy for treating breast cancer metastasis.
Collapse
Affiliation(s)
- Cui Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - JunLei Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - YaJuan Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ZhengHang Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - ZhaoYuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ChangDong Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - YaoYing Wan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - YaTing Wen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ChunYe Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - MengYa Yuan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - ZhanJun Yan
- Department of Orthopedics, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215000, China.
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
19
|
Tumour invasion and dissemination. Biochem Soc Trans 2022; 50:1245-1257. [PMID: 35713387 PMCID: PMC9246329 DOI: 10.1042/bst20220452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.
Collapse
|
20
|
Gao F, Zhang G, Liu Y, He Y, Sheng Y, Sun X, Du Y, Yang C. Activation of CD44 signaling in leader cells induced by tumor-associated macrophages drives collective detachment in luminal breast carcinomas. Cell Death Dis 2022; 13:540. [PMID: 35680853 PMCID: PMC9184589 DOI: 10.1038/s41419-022-04986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
Collective detachment of cancer cells at the invading front could generate efficient metastatic spread. However, how cancer cell clusters shed from the leading front remains unknown. We previously reported that the dynamic expression of CD44 in breast cancers (BrCas) at collectively invading edges was associated with tumor-associated macrophages (TAMs). In this study, we first observed that the highly expressed CD44 (CD44high) cancer cell clusters were located in the BrCa circulating vessels, accompanied by CD206+ TAMs. Next, we identified that the cancer cell clusters can be converted to an invasive CD44high state which was induced by TAMs, thus giving rise to CD44-associated signaling mediated cohesive detachment. Then, we showed that disrupting CD44-signaling inhibited the TAMs triggered cohesive detaching using 3D organotypic culture and mouse models. Furthermore, our mechanistic study showed that the acquisition of CD44high state was mediated by the MDM2/p53 pathway activation which was induced by CCL8 released from TAMs. Blocking of CCL8 could inhibit the signaling cascade which decreased the CD44-mediated cohesive detachment and spread. Our findings uncover a novel mechanism underlying collective metastasis in BrCas that may be helpful to seek for potential targets.
Collapse
Affiliation(s)
- Feng Gao
- grid.412528.80000 0004 1798 5117Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China ,grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Guoliang Zhang
- grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yiwen Liu
- grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yiqing He
- grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yumeng Sheng
- grid.412528.80000 0004 1798 5117Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Xiaodan Sun
- grid.412528.80000 0004 1798 5117Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yan Du
- grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Cuixia Yang
- grid.412528.80000 0004 1798 5117Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China ,grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| |
Collapse
|
21
|
Guo L, Ke H, Zhang H, Zou L, Yang Q, Lu X, Zhao L, Jiao B. TDP43 promotes stemness of breast cancer stem cells through CD44 variant splicing isoforms. Cell Death Dis 2022; 13:428. [PMID: 35504883 PMCID: PMC9065105 DOI: 10.1038/s41419-022-04867-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Alternative splicing (AS) is a promising clinical target for cancer treatment at the post-transcriptional level. We previously identified a unique AS profile in triple-negative breast cancer (TNBC), which is regulated by the splicing regulator TAR DNA-binding protein-43 (TDP43), thus indicating the crucial role of TDP43 in heterogeneous TNBC. Cluster of differentiation 44 (CD44), a widely recognized marker for breast cancer stem cells (BCSCs), is extensively spliced into CD44 variant AS isoforms (CD44v) during the development of breast cancer. At present, however, the regulatory mechanism of CD44v is not fully understood. In the current study, we found that loss of TDP43 inhibits BCSC stemness by reducing the abundance of CD44v. In addition, serine-arginine-rich splicing factor 3 (SRSF3), another splicing factor and partner of TDP43, acts as an upstream regulator of TDP43 to maintain CD44v isoforms and thereafter BCSC stemness. Mechanistically, SRSF3 stabilizes the mRNA of TDP43 by inhibiting nonsense-mediated decay (NMD). These findings illustrate the important role of complicated regulatory networks formed by splicing factors in TNBC progression, thus providing potential therapeutic targets from an AS perspective.
Collapse
Affiliation(s)
- Lu Guo
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201 China
| | - Hao Ke
- grid.260463.50000 0001 2182 8825Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031 Jiangxi China
| | - Honglei Zhang
- grid.440773.30000 0000 9342 2456Center for Scientific Research, Yunnan University of Chinese Medicine, Kunming, 650500 Yunnan China
| | - Li Zou
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qin Yang
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Xuemei Lu
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.9227.e0000000119573309KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| | - Limin Zhao
- grid.260463.50000 0001 2182 8825Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031 Jiangxi China
| | - Baowei Jiao
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.9227.e0000000119573309KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| |
Collapse
|
22
|
Aaltonen N, Kyykallio H, Tollis S, Capra J, Hartikainen JM, Matilainen J, Oikari S, Rilla K. MCF10CA Breast Cancer Cells Utilize Hyaluronan-Coated EV-Rich Trails for Coordinated Migration. Front Oncol 2022; 12:869417. [PMID: 35574334 PMCID: PMC9091308 DOI: 10.3389/fonc.2022.869417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Invasion of tumor cells through the stroma is coordinated in response to migratory cues provided by the extracellular environment. One of the most abundant molecules in the tumor microenvironment is hyaluronan, a glycosaminoglycan known to promote many hallmarks of tumor progression, including the migratory potential of tumor cells. Strikingly, hyaluronan is also often found to coat extracellular vesicles (EVs) that originate from plasma membrane tentacles of tumor cells crucial for migration, such as filopodia, and are abundant in tumor niches. Thus, it is possible that hyaluronan and hyaluronan-coated EVs have a cooperative role in promoting migration. In this work, we compared the hyaluronan synthesis, EV secretion and migratory behavior of normal and aggressive breast cell lines from MCF10 series. Single live cell confocal imaging, electron microscopy and correlative light and electron microscopy experiments revealed that migrating tumor cells form EV-rich and hyaluronan -coated trails. These trails promote the pathfinding behavior of follower cells, which is dependent on hyaluronan. Specifically, we demonstrated that plasma membrane protrusions and EVs left behind by tumor cells during migration are strongly positive for CD9. Single cell tracking demonstrated a leader-follower behavior, which was significantly decreased upon removal of pericellular hyaluronan, indicating that hyaluronan promotes the pathfinding behavior of follower cells. Chick chorioallantoic membrane assays in ovo suggest that tumor cells behave similarly in 3D conditions. This study strengthens the important role of extracellular matrix production and architecture in coordinated tumor cell movements and validates the role of EVs as important components and regulators of tumor matrix. The results suggest that tumor cells can modify the extracellular niche by forming trails, which they subsequently follow coordinatively. Future studies will clarify in more detail the orchestrated role of hyaluronan, EVs and other extracellular cues in coordinated migration and pathfinding behavior of follower cells.
Collapse
Affiliation(s)
- Niina Aaltonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Heikki Kyykallio
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Janne Capra
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jaana M. Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Matilainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
23
|
Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2031-2049. [PMID: 35366152 DOI: 10.1007/s11427-021-2054-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Cell phenotype heterogeneity within tumor tissue, especially which due to the emergence of epithelial-mesenchymal transition (EMT) in cancer cells, is associated with cancer invasion and metastasis. However, our understanding of the cellular mechanism(s) underlying the cooperation between EMT cell and epithelial cancer cell migration remains incomplete. Herein, heterotypic tumor spheroids containing both epithelial and EMT cancer cells were generated in vitro. We observed that EMT cells dominated the peripheral region of the self-organized heterotypic tumor spheroid. Furthermore, our results demonstrated that EMT cells could serve as leader cells to improve the collective migration efficiency of epithelial cancer cells and promote dispersion and invasion of the tumor spheroids, which was regulated by the force transition between EMT cells and epithelial cancer cells. Mechanistically, our data further suggest that force transmission is mediated by heterophilic N-cadherin/E-cadherin adhesion complexes between EMT and epithelial cancer cells. Impairment of N-cadherin/E-cadherin adhesion complex formation abrogated the ability of EMT cells to guide epithelial cancer cell migration and blocked the dispersion of tumor spheroids. Together, our data provide new insight into the mechanical interaction between epithelial and EMT cancer cells through heterophilic cadherin adhesion, which enables cooperative tumor cell migration, highlighting the role of EMT cells in tumor invasion.
Collapse
|
24
|
Stalmann USA, Banjanin B, Snoeren IAM, Nagai JS, Leimkühler NB, Li R, Benabid A, Pritchard J, Malyaran H, Neuss S, Bindels E, Costa IG, Schneider RK. Single cell analysis of cultured bone marrow stromal cells reveals high similarity to fibroblasts in situ. Exp Hematol 2022; 110:28-33. [PMID: 35341805 DOI: 10.1016/j.exphem.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Affiliation(s)
- U S A Stalmann
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - B Banjanin
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - I A M Snoeren
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - J S Nagai
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - N B Leimkühler
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - R Li
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - A Benabid
- Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, (RWTH) Aachen University, Aachen, Germany
| | - J Pritchard
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands; Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, (RWTH) Aachen University, Aachen, Germany
| | - H Malyaran
- Institute of Pathology, Faculty of Medicine, (RWTH) Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, Biointerface Group, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - S Neuss
- Institute of Pathology, Faculty of Medicine, (RWTH) Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, Biointerface Group, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - E Bindels
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - I G Costa
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - R K Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands; Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, (RWTH) Aachen University, Aachen, Germany.
| |
Collapse
|
25
|
Heft Neal ME, Brenner JC, Prince MEP, Chinn SB. Advancement in Cancer Stem Cell Biology and Precision Medicine-Review Article Head and Neck Cancer Stem Cell Plasticity and the Tumor Microenvironment. Front Cell Dev Biol 2022; 9:660210. [PMID: 35047489 PMCID: PMC8762309 DOI: 10.3389/fcell.2021.660210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Head and Neck cancer survival has continued to remain around 50% despite treatment advances. It is thought that cancer stem cells play a key role in promoting tumor heterogeneity, treatment resistance, metastasis, and recurrence in solid malignancies including head and neck cancer. Initial studies identified cancer stem cell markers including CD44 and ALDH in head and neck malignancies and found that these cells show aggressive features in both in vitro and in vivo studies. Recent evidence has now revealed a key role of the tumor microenvironment in maintaining a cancer stem cell niche and promoting cancer stem cell plasticity. There is an increasing focus on identifying and targeting the crosstalk between cancer stem cells and surrounding cells within the tumor microenvironment (TME) as new therapeutic potential, however understanding how CSC maintain a stem-like state is critical to understanding how to therapeutically alter their function. Here we review the current evidence for cancer stem cell plasticity and discuss how interactions with the TME promote the cancer stem cell niche, increase tumor heterogeneity, and play a role in treatment resistance.
Collapse
Affiliation(s)
- Molly E Heft Neal
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Mark E P Prince
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Steven B Chinn
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
26
|
Subbalakshmi AR, Ashraf B, Jolly MK. Biophysical and biochemical attributes of hybrid epithelial/mesenchymal phenotypes. Phys Biol 2022; 19. [PMID: 34986465 DOI: 10.1088/1478-3975/ac482c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/05/2022] [Indexed: 11/11/2022]
Abstract
The Epithelial-Mesenchymal Transition (EMT) is a biological phenomenon associated with explicit phenotypic and molecular changes in cellular traits. Unlike the earlier-held popular belief of it being a binary process, EMT is now thought of as a landscape including diverse hybrid E/M phenotypes manifested by varying degrees of the transition. These hybrid cells can co-express both epithelial and mesenchymal markers and/or functional traits, and can possess the property of collective cell migration, enhanced tumor-initiating ability, and immune/targeted therapy-evasive features, all of which are often associated with worse patient outcomes. These characteristics of the hybrid E/M cells have led to a surge in studies that map their biophysical and biochemical hallmarks that can be helpful in exploiting their therapeutic vulnerabilities. This review discusses recent advances made in investigating hybrid E/M phenotype(s) from diverse biophysical and biochemical aspects by integrating live cell-imaging, cellular morphology quantification and mathematical modelling, and highlights a set of questions that remain unanswered about the dynamics of hybrid E/M states.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- Indian Institute of Science, Centre for BioSystems Science and Engineering, Bangalore, 560012, INDIA
| | - Bazella Ashraf
- Central University of Kashmir, Department of Biotechnology, Ganderbal, Jammu and Kashmir, 191201, INDIA
| | - Mohit Kumar Jolly
- Indian Institute of Science, Centre for BioSystems Science and Engineering, Bangalore, 560012, INDIA
| |
Collapse
|
27
|
Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer. Breast Cancer Res 2021; 23:93. [PMID: 34579762 PMCID: PMC8477508 DOI: 10.1186/s13058-021-01468-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Cancer metastasis is a complex process involving the spread of malignant cells from a primary tumor to distal organs. Understanding this cascade at a mechanistic level could provide critical new insights into the disease and potentially reveal new avenues for treatment. Transcriptome profiling of spontaneous cancer models is an attractive method to examine the dynamic changes accompanying tumor cell spread. However, such studies are complicated by the underlying heterogeneity of the cell types involved. The purpose of this study was to examine the transcriptomes of metastatic breast cancer cells using the well-established MMTV-PyMT mouse model. Methods Organ-derived metastatic cell lines were harvested from 10 female MMTV-PyMT mice. Cancer cells were isolated and sorted based on the expression of CD44low/EpCAMhigh or CD44high/EpCAMhigh surface markers. RNA from each cell line was extracted and sequenced using the NextSeq 500 Illumina platform. Tissue-specific genes were compared across the different metastatic and primary tumor samples. Reads were mapped to the mouse genome using STAR, and gene expression was quantified using RSEM. Single-cell RNA-seq (scRNA-seq) was performed on select samples using the ddSeq platform by BioRad and analyzed using Seurat v3.2.3. Monocle2 was used to infer pseudo-time progression. Results Comparison of RNA sequencing data across all cell populations produced distinct gene clusters. Differential gene expression patterns related to CD44 expression, organ tropism, and immunomodulatory signatures were observed. scRNA-seq identified expression profiles based on tissue-dependent niches and clonal heterogeneity. These cohorts of data were narrowed down to identify subsets of genes with high expression and known metastatic propensity. Dot plot analyses further revealed clusters expressing cancer stem cell and cancer dormancy markers. Changes in relevant genes were investigated across pseudo-time and tissue origin using Monocle2. These data revealed transcriptomes that may contribute to sub-clonal evolution and treatment evasion during cancer progression. Conclusions We performed a comprehensive transcriptome analysis of tumor heterogeneity and organ tropism during breast cancer metastasis. These data add to our understanding of metastatic progression and highlight targets for breast cancer treatment. These markers could also be used to image the impact of tumor heterogeneity on metastases. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01468-x.
Collapse
|
28
|
Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer 2021; 21:592-604. [PMID: 34239104 DOI: 10.1038/s41568-021-00376-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Collective cancer invasion with leader-follower organization is increasingly recognized as a predominant mechanism in the metastatic cascade. Leader cells support cancer invasion by creating invasion tracks, sensing environmental cues and coordinating with follower cells biochemically and biomechanically. With the latest developments in experimental and computational models and analysis techniques, the range of specific traits and features of leader cells reported in the literature is rapidly expanding. Yet, despite their importance, there is no consensus on how leader cells arise or their essential characteristics. In this Perspective, we propose a framework for defining the essential aspects of leader cells and provide a unifying perspective on the varying cellular and molecular programmes that are adopted by each leader cell subtype to accomplish their functions. This Perspective can lead to more effective strategies to interdict a major contributor to metastatic capability.
Collapse
Affiliation(s)
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Department of Chemistry and Department of Biosciences, Rice University, Houston, TX, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
29
|
Wrenn E, Huang Y, Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis 2021; 38:373-399. [PMID: 34254215 PMCID: PMC8346286 DOI: 10.1007/s10585-021-10111-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
The metastatic process is arduous. Cancer cells must escape the confines of the primary tumor, make their way into and travel through the circulation, then survive and proliferate in unfavorable microenvironments. A key question is how cancer cells overcome these multiple barriers to orchestrate distant organ colonization. Accumulating evidence in human patients and animal models supports the hypothesis that clusters of tumor cells can complete the entire metastatic journey in a process referred to as collective metastasis. Here we highlight recent studies unraveling how multicellular coordination, via both physical and biochemical coupling of cells, induces cooperative properties advantageous for the completion of metastasis. We discuss conceptual challenges and unique mechanisms arising from collective dissemination that are distinct from single cell-based metastasis. Finally, we consider how the dissection of molecular transitions regulating collective metastasis could offer potential insight into cancer therapy.
Collapse
Affiliation(s)
- Emma Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, 98195, USA
| | - Yin Huang
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
30
|
Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer 2021; 125:164-175. [PMID: 33824479 PMCID: PMC8292450 DOI: 10.1038/s41416-021-01328-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Heterogeneity within a tumour increases its ability to adapt to constantly changing constraints, but adversely affects a patient's prognosis, therapy response and clinical outcome. Intratumoural heterogeneity results from a combination of extrinsic factors from the tumour microenvironment and intrinsic parameters from the cancer cells themselves, including their genetic, epigenetic and transcriptomic traits, their ability to proliferate, migrate and invade, and their stemness and plasticity attributes. Cell plasticity constitutes the ability of cancer cells to rapidly reprogramme their gene expression repertoire, to change their behaviour and identities, and to adapt to microenvironmental cues. These features also directly contribute to tumour heterogeneity and are critical for malignant tumour progression. In this article, we use breast cancer as an example of the origins of tumour heterogeneity (in particular, the mutational spectrum and clonal evolution of progressing tumours) and of tumour cell plasticity (in particular, that shown by tumour cells undergoing epithelial-to-mesenchymal transition), as well as considering interclonal cooperativity and cell plasticity as sources of cancer cell heterogeneity. We review current knowledge on the functional contribution of cell plasticity and tumour heterogeneity to malignant tumour progression, metastasis formation and therapy resistance.
Collapse
|
31
|
Xu X, Wang Y, Choi WS, Sun X, Godbout R. Super resolution microscopy reveals DHA-dependent alterations in glioblastoma membrane remodelling and cell migration. NANOSCALE 2021; 13:9706-9722. [PMID: 34018532 DOI: 10.1039/d1nr02128a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain fatty acid binding protein (FABP7; B-FABP) promotes glioblastoma (GBM) cell migration and is associated with tumor infiltration, properties associated with a poor prognosis in GBM patients. FABP7-expressing neural stem-like cells are known to drive tumor migration/infiltration and resistance to treatment. We have previously shown that FABP7's effects on cell migration can be reversed when GBM cells are cultured in medium supplemented with the omega-3 fatty acid, docosahexaenoic acid (DHA). Here, we use super-resolution imaging on patient-derived GBM stem-like cells to examine the importance of FABP7 and its fatty acid ligands in mitigating GBM cell migration. As FABPs are involved in fatty acid transport from membrane to cytosol, we focus on the effect of FABP7 and its ligand DHA on GBM membrane remodeling, as well as FABP7 nanoscale domain formation on GBM membrane. Using quantitative plasma membrane lipid order imaging, we show that FABP7 expression in GBM cells correlates with increased membrane lipid order, with DHA dramatically decreasing lipid order. Using super-resolution stimulated emission depletion (STED) microscopy, we observe non-uniform distribution of FABP7 on the surface of GBM cells, with FABP7 forming punctate nanoscale domains of ∼100 nm in diameter. These nanodomains are particularly enriched at the migrating front of GBM cells. Interestingly, FABP7 nanodomains are disrupted when GBM cells are cultured in DHA-supplemented medium. We demonstrate a tight link between cell migration, a higher membrane lipid order and increased FABP7 nanoscale domains. We propose that DHA-mediated disruption of membrane lipid order and FABP7 nanodomains forms the basis of FABP7/DHA-mediated inhibition of cell migration in GBM.
Collapse
Affiliation(s)
- Xia Xu
- Cross Cancer Institute, University of Alberta, Department of Oncology, 11560 University Avenue, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
32
|
The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nat Immunol 2021; 22:769-780. [PMID: 34017122 DOI: 10.1038/s41590-021-00931-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/09/2021] [Indexed: 01/20/2023]
Abstract
Progression and persistence of malignancies are influenced by the local tumor microenvironment, and future eradication of currently incurable tumors will, in part, hinge on our understanding of malignant cell biology in the context of their nourishing surroundings. Here, we generated paired single-cell transcriptomic datasets of tumor cells and the bone marrow immune and stromal microenvironment in multiple myeloma. These analyses identified myeloma-specific inflammatory mesenchymal stromal cells, which spatially colocalized with tumor cells and immune cells and transcribed genes involved in tumor survival and immune modulation. Inflammatory stromal cell signatures were driven by stimulation with proinflammatory cytokines, and analyses of immune cell subsets suggested interferon-responsive effector T cell and CD8+ stem cell memory T cell populations as potential sources of stromal cell-activating cytokines. Tracking stromal inflammation in individuals over time revealed that successful antitumor induction therapy is unable to revert bone marrow inflammation, predicting a role for mesenchymal stromal cells in disease persistence.
Collapse
|
33
|
Asadullah, Kumar S, Saxena N, Sarkar M, Barai A, Sen S. Combined heterogeneity in cell size and deformability promotes cancer invasiveness. J Cell Sci 2021; 134:jcs.250225. [PMID: 33602741 DOI: 10.1242/jcs.250225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/29/2021] [Indexed: 01/27/2023] Open
Abstract
Phenotypic heterogeneity is increasingly acknowledged to confer several advantages to cancer progression and drug resistance. Here, we probe the collective importance of heterogeneity in cell size and deformability in breast cancer invasion. A computational model of invasion of a heterogeneous cell aggregate predicts that combined heterogeneity in cell size and deformability enhances invasiveness of the whole population, with maximum invasiveness at intermediate cell-cell adhesion. We then show that small cells of varying deformability, a subpopulation predicted to be enriched at the invasive front, exhibit considerable overlap with the biophysical properties of cancer stem cells (CSCs). In MDA-MB-231 cells, these include CD44 hi CD24- mesenchymal CSCs, which are small and soft, and CD44 hi CD24+ hybrid CSCs, which exhibit a wide range of size and deformability. We validate our predictions by tracking the pattern of cell invasion from spheroids implanted in three-dimensional collagen gels, wherein we show temporal enrichment of CD44 hi cells at the invasive front. Collectively, our results illustrate the advantages imparted by biophysical heterogeneity in enhancing cancer invasiveness.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Asadullah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sandeep Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Neha Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Madhurima Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amlan Barai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
34
|
Yoshida GJ, Saya H. Molecular pathology underlying the robustness of cancer stem cells. Regen Ther 2021; 17:38-50. [PMID: 33869685 PMCID: PMC8024885 DOI: 10.1016/j.reth.2021.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Intratumoral heterogeneity is tightly associated with the failure of anticancer treatment modalities including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Such heterogeneity is generated in an evolutionary manner not only as a result of genetic alterations but also by the presence of cancer stem cells (CSCs). CSCs are proposed to exist at the top of a tumor cell hierarchy and are undifferentiated tumor cells that manifest enhanced tumorigenic and metastatic potential, self-renewal capacity, and therapeutic resistance. Properties that contribute to the robustness of CSCs include the abilities to withstand redox stress, to rapidly repair damaged DNA, to adapt to a hyperinflammatory or hyponutritious tumor microenvironment, and to expel anticancer drugs by the action of ATP-binding cassette transporters as well as plasticity with regard to the transition between dormant CSC and transit-amplifying progenitor cell phenotypes. In addition, CSCs manifest the phenomenon of metabolic reprogramming, which is essential for maintenance of their self-renewal potential and their ability to adapt to changes in the tumor microenvironment. Elucidation of the molecular underpinnings of these biological features of CSCs is key to the development of novel anticancer therapies. In this review, we highlight the pathological relevance of CSCs in terms of their hallmarks and identification, the properties of their niche—both in primary tumors and at potential sites of metastasis—and their resistance to oxidative stress dependent on system xc (−). Intratumoral heterogeneity driven by CSCs is responsible for therapeutic resistance. CTCs survive in the distant organs and achieve colonization, causing metastasis. E/M hybrid cancer cells due to partial EMT exhibit the highest metastatic potential. The CSC niche regulates stemness in metastatic disease as well as in primary tumor. Activation of system xc(-) by CD44 variant in CSCs is a promising therapeutic target.
Collapse
Key Words
- ABC, ATP-binding cassette
- ALDH, Aldehyde dehydrogenase
- BMP, Bone morphogenetic protein
- CAF, Cancer-associated fibroblast
- CD44 variant
- CD44v, CD44 variant
- CSC, Cancer stem cell
- CTC, Circulating tumor cell
- CagA, Cytotoxin-associated gene A
- Cancer stem cell
- DTC, Disseminated tumor cell
- E/M, Epithelial/mesenchymal
- ECM, Extracellular matrix
- EGF, Epidermal growth factor
- EMT, Epithelial-to-mesenchymal transition
- EpCAM, Epithelial cell adhesion moleculeE
- Epithelial-to-mesenchymal transition (EMT)
- GSC, Glioma stem cell
- GSH, reduced glutathione
- HGF, Hepatocyte growth factor
- HNSCC, Head and neck squamous cell cancer
- IL, Interleukin
- Intratumoral heterogeneity
- MAPK, mitogen-activated protein kinase
- MET, mesenchymal-to-epithelial transition
- NSCLC, non–small cell lung cancer
- Niche
- Nrf2, nuclear factor erythroid 2–related factor 2
- OXPHOS, Oxidative phosphorylation
- Plasticity
- Prrx1, Paired-related homeodomain transcription factor 1
- ROS, Reactive oxygen species
- SRP1, Epithelial splicing regulatory protein 1
- TGF-β, Transforming growth factor–β
Collapse
Affiliation(s)
- Go J Yoshida
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Understanding breast cancer heterogeneity through non-genetic heterogeneity. Breast Cancer 2021; 28:777-791. [PMID: 33723745 DOI: 10.1007/s12282-021-01237-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
Intricacy in treatment and diagnosis of breast cancer has been an obstacle due to genotype and phenotype heterogeneity. Understanding of non-genetic heterogeneity mechanisms along with considering role of genetic heterogeneity may fill the gaps in landscape painting of heterogeneity. The main factors contribute to non-genetic heterogeneity including: transcriptional pulsing/bursting or discontinuous transcriptions, stochastic partitioning of components at cell division and various signal transduction from tumor ecosystem. Throughout this review, we desired to provide a conceptual framework focused on non-genetic heterogeneity, which has been intended to offer insight into prediction, diagnosis and treatment of breast cancer.
Collapse
|
36
|
Jin X, Fu W, Li D, Wang N, Chen J, Zeng Z, Guo J, Liu H, Zhong X, Peng H, Yu X, Sun J, Zhang X, Wang X, Xu B, Lin Y, Liu J, Kutter C, Li Y. High Expression of LINC01268 is Positively Associated with Hepatocellular Carcinoma Progression via Regulating MAP3K7. Onco Targets Ther 2021; 14:1753-1769. [PMID: 33727826 PMCID: PMC7954037 DOI: 10.2147/ott.s295814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Objective As one of the most common neoplastic diseases, hepatocellular carcinoma (HCC) has a high morbidity and mortality, which seriously threatens human health and places a heavy burden on society and medical care. At present, effective early diagnosis, prognosis and treatment of HCC are limited. Altered gene expression patterns of lncRNA are associated with the occurrence, development and prognosis of various malignancies, including HCC. The aim of this study was to investigate the correlation between the expression of LINC01268 and HCC, and to elucidate the potential underlying molecular mechanism. Methods Expression level and localization of LINC01268 in human liver cancer cells and HCC tissues were investigated using RT-qPCR and fluorescent in situ hybridization (FISH), respectively. Correlation of expression levels of LINC01268 and MAP3K7 with differentiation and poor overall patient survival of HCC were analyzed using in house collected and publicly available HCC tissue data. RT-qPCR and Western blot were applied to inspect the effects of depletion and overexpression of LINC01268 on MAP3K7 expression. HCC cell proliferation and apoptosis were also investigated by simultaneous overexpression of LINC01268 and knockdown of MAP3K7, in order to delineate that MAP3K7 is a downstream effector of LINC01268. Results In this study, we identified that LINC01268 was highly expressed in HCC cell lines and tissues. High LINC01268 expression level was associated with lower HCC nodule number, moderate/poor differentiation and poor overall survival. Knockdown of LINC01268 inhibited the proliferation of HCC cells, which was enhanced by overexpression of LINC01268. Co-expression analysis implied an interaction between LINC01268 and MAP3K7. Similar to LINC01268, MAP3K7 was highly expressed in HCC cells, and positively correlated with moderate/poor differentiation as well as poor prognosis. Knockdown of LINC01268 in HCC cell lines led to reduction of MAP3K7 at both mRNA and protein levels. Phenotypic effects due to LINC01268 overexpression in HCC cells were reversed by knockdown of MAP3K7. Conclusion Taken together, the abnormal high expression of LINC01268 is associated with HCC progression via regulating MAP3K7, suggesting LINC01268 as a novel marker for HCC prognosis and potentially a new therapeutic target.
Collapse
Affiliation(s)
- Xiuli Jin
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Weixin Fu
- Science Experiment Center of China Medical University, Shenyang, 110122, People's Republic of China
| | - Dan Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Ningning Wang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiayu Chen
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Zilu Zeng
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiaqi Guo
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Hao Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xinping Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Hu Peng
- Emergency Department, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, People's Republic of China
| | - Xin Yu
- Department of Human Anatomy, School of Basic Medicine, Dali University, Dali, Yunnan, 671003, People's Republic of China
| | - Jing Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xinhe Zhang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xue Wang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Beibei Xu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 17177, Sweden
| | - Jianping Liu
- Emergency Department, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, People's Republic of China
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, 17177, Sweden
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
37
|
Aggarwal V, Montoya CA, Donnenberg VS, Sant S. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience 2021; 24:102113. [PMID: 33659878 PMCID: PMC7892926 DOI: 10.1016/j.isci.2021.102113] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), an evolutionary conserved phenomenon, has been extensively studied to address the unresolved variable treatment response across therapeutic regimes in cancer subtypes. EMT has long been envisaged to regulate tumor invasion, migration, and therapeutic resistance during tumorigenesis. However, recently it has been highlighted that EMT involves an intermediate partial EMT (pEMT) phenotype, defined by incomplete loss of epithelial markers and incomplete gain of mesenchymal markers. It has been further emphasized that pEMT transition involves a spectrum of intermediate hybrid states on either side of pEMT spectrum. Emerging evidence underlines bi-directional crosstalk between tumor cells and surrounding microenvironment in acquisition of pEMT phenotype. Although much work is still ongoing to gain mechanistic insights into regulation of pEMT phenotype, it is evident that pEMT plays a critical role in tumor aggressiveness, invasion, migration, and metastasis along with therapeutic resistance. In this review, we focus on important role of tumor-intrinsic factors and tumor microenvironment in driving pEMT and emphasize that engineered controlled microenvironments are instrumental to provide mechanistic insights into pEMT biology. We also discuss the significance of pEMT in regulating hallmarks of tumor progression i.e. cell cycle regulation, collective migration, and therapeutic resistance. Although constantly evolving, current progress and momentum in the pEMT field holds promise to unravel new therapeutic targets to halt tumor progression at early stages as well as tackle the complex therapeutic resistance observed across many cancer types. Partial EMT phenotype drives key hallmarks of tumor progression Role of tumor microenvironment in pEMT phenotype via cellular signaling pathways Engineering 3D in vitro models to study pEMT phenotype Opportunities and challenges in understanding pEMT phenotype
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Catalina Ardila Montoya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh, School of Medicine Pittsburgh, PA 15213, USA.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.,Department of Pharmaceutical Sciences, School of Pharmacy; Department of Bioengineering, Swanson School of Engineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC-Hillman Cancer Center, 700 Technology Drive, Room 4307, Pittsburgh, PA 15261, USA
| |
Collapse
|
38
|
Carvalho AM, Soares da Costa D, Paulo PMR, Reis RL, Pashkuleva I. Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomater 2021; 119:114-124. [PMID: 33091625 DOI: 10.1016/j.actbio.2020.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023]
Abstract
CD44 and the receptor for hyaluronic acid-mediated motility (RHAMM) are the main hyaluronan (HA) receptors. They are commonly overexpressed in different cancers activating signaling pathways related to tumor progression, metastasis and chemoresistance. Besides their involvement in signal transduction via interaction with HA, currently, there is a little information about the possible crosstalk between CD44 and RHAMM and the role of HA in this process. In the present work, we used immunocytochemistry combined with Förster resonance energy transfer (FRET) microscopy and co-immunoprecipitation to elucidate the involvement of HA in CD44 and RHAMM expression, co-localization and crosstalk. We studied breast cancer cells lines with different degrees of invasiveness and expression of these receptors in the absence of exogenous HA and compared the data with the results obtained for cultures supplemented with either soluble HA or seeded on substrates with end-on immobilized HA. Our results demonstrated that cells response depends on the HA presentation: CD44/RHAMM complexation was upregulated in all cell lines upon interaction with immobilized HA, but not with its soluble form. Moreover, the results showed that the expression of both CD44 and RHAMM is regulated via interactions with HA indicating cell-specific feedback loop(s) in the signaling cascade.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| | - Diana Soares da Costa
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Iva Pashkuleva
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| |
Collapse
|
39
|
The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity. Cancers (Basel) 2020; 12:cancers12123863. [PMID: 33371274 PMCID: PMC7766255 DOI: 10.3390/cancers12123863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer stem cells are a subset of transformed cells that sustain tumor growth and can metastasize to secondary organs. Since metastasis accounts for most cancer deaths, it is of paramount importance to understand the cellular and molecular mechanisms that regulate this subgroup of cells. The tumor microenvironment (TME) is the habitat in which transformed cells evolve, and it is composed by many different cell types and the extracellular matrix (ECM). A body of evidence strongly indicates that microenvironmental cues modulate stemness in breast cancer, and that the coevolution of the TME and cancer stem cells determine the fate of breast tumors. In this review, we summarize the studies providing links between the TME and the breast cancer stem cell phenotype and we discuss their specific interactions with immune cell subsets, stromal cells, and the ECM. Abstract Tumor progression involves the co-evolution of transformed cells and the milieu in which they live and expand. Breast cancer stem cells (BCSCs) are a specialized subset of cells that sustain tumor growth and drive metastatic colonization. However, the cellular hierarchy in breast tumors is rather plastic, and the capacity to transition from one cell state to another depends not only on the intrinsic properties of transformed cells, but also on the interplay with their niches. It has become evident that the tumor microenvironment (TME) is a major player in regulating the BCSC phenotype and metastasis. The complexity of the TME is reflected in its number of players and in the interactions that they establish with each other. Multiple types of immune cells, stromal cells, and the extracellular matrix (ECM) form an intricate communication network with cancer cells, exert a highly selective pressure on the tumor, and provide supportive niches for BCSC expansion. A better understanding of the mechanisms regulating these interactions is crucial to develop strategies aimed at interfering with key BCSC niche factors, which may help reducing tumor heterogeneity and impair metastasis.
Collapse
|
40
|
Nagai T, Ishikawa T, Minami Y, Nishita M. Tactics of cancer invasion: solitary and collective invasion. J Biochem 2020; 167:347-355. [PMID: 31926018 DOI: 10.1093/jb/mvaa003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomohiro Ishikawa
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
41
|
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 2020; 9:36. [PMID: 33303029 PMCID: PMC7727191 DOI: 10.1186/s40164-020-00192-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
CD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
42
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
43
|
Yang C, Sheng Y, Shi X, Liu Y, He Y, Du Y, Zhang G, Gao F. CD44/HA signaling mediates acquired resistance to a PI3Kα inhibitor. Cell Death Dis 2020; 11:831. [PMID: 33024087 PMCID: PMC7538592 DOI: 10.1038/s41419-020-03037-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Most luminal breast carcinomas (BrCas) bearing PIK3CA mutations initially respond to phosphoinositide-3-kinase (PI3K)-α inhibitors, but many eventually become resistant. The underlying mechanisms of this resistance remain obscure. In this work, we showed that a CD44high state due to aberrant isoform splicing was acquired from adaptive resistance to a PI3Kα inhibitor (BLY719) in luminal BrCas. Notably, the expression of CD44 was positively correlated with estrogen receptor (ER) activity in PIK3CA-mutant breast cancers, and ER-dependent transcription upon PI3Kα pathway inhibition was in turn mediated by CD44. Furthermore, the interaction of CD44 with the ligand hyaluronan (HA) initiated the Src-ERK signaling cascade, which subsequently maintained AKT and mTOR activity in the presence of a PI3Kα inhibitor. Activation of this pathway was prevented by disruption of the CD44/HA interaction, which in turn restored sensitivity to BLY719. Our results revealed that an ER-CD44-HA signaling circuit that mediates robust compensatory activation of the Src-ERK signaling cascade may contribute to the development of acquired resistance to PI3Kα inhibitors. This study provides new insight into the mechanism of adaptive resistance to PI3Kα inhibition therapy.
Collapse
Affiliation(s)
- Cuixia Yang
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Yumeng Sheng
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Xiaoxing Shi
- Department of Laboratory Medicine, Shanghai Wujing General Hospital, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Yan Du
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| |
Collapse
|
44
|
Gomez KE, Wu F, Keysar SB, Morton JJ, Miller B, Chimed TS, Le PN, Nieto C, Chowdhury FN, Tyagi A, Lyons TR, Young CD, Zhou H, Somerset HL, Wang XJ, Jimeno A. Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells. Cancer Res 2020; 80:4185-4198. [PMID: 32816856 DOI: 10.1158/0008-5472.can-20-1079] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
Tumor-associated macrophages (TAM) in the tumor microenvironment (TME) cooperate with cancer stem cells (CSC) to maintain stemness. We recently identified cluster of differentiation 44 (CD44) as a surface marker defining head and neck squamous cell carcinoma (HNSCC) CSC. PI3K-4EBP1-SOX2 activation and signaling regulate CSC properties, yet the upstream molecular control of this pathway and the mechanisms underlying cross-talk between TAM and CSC in HNSCC remain largely unknown. Because CD44 is a molecular mediator in the TME, we propose here that TAM-influenced CD44 signaling could mediate stemness via the PI3K-4EBP1-SOX2 pathway, possibly by modulating availability of hyaluronic acid (HA), the main CD44 ligand. HNSCC IHC was used to identify TAM/CSC relationships, and in vitro coculture spheroid models and in vivo mouse models were used to identify the influence of TAMs on CSC function via CD44. Patient HNSCC-derived TAMs were positively and negatively associated with CSC marker expression at noninvasive and invasive edge regions, respectively. TAMs increased availability of HA and increased cancer cell invasion. HA binding to CD44 increased PI3K-4EBP1-SOX2 signaling and the CSC fraction, whereas CD44-VCAM-1 binding promoted invasive signaling by ezrin/PI3K. In vivo, targeting CD44 decreased PI3K-4EBP1-SOX2 signaling, tumor growth, and CSC. TAM depletion in syngeneic and humanized mouse models also diminished growth and CSC numbers. Finally, a CD44 isoform switch regulated epithelial-to-mesenchymal plasticity as standard form of CD44 and CD44v8-10 determined invasive and tumorigenic phenotypes, respectively. We have established a mechanistic link between TAMs and CSCs in HNSCC that is mediated by CD44 intracellular signaling in response to extracellular signals. SIGNIFICANCE: These findings establish a mechanistic link between tumor cell CD44, TAM, and CSC properties at the tumor-stroma interface that can serve as a vital area of focus for target and drug discovery.
Collapse
Affiliation(s)
- Karina E Gomez
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - FangLong Wu
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cera Nieto
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Farshad N Chowdhury
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anit Tyagi
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hilary L Somerset
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
45
|
Gerashchenko TS, Zolotaryova SY, Kiselev AM, Tashireva LA, Novikov NM, Krakhmal NV, Cherdyntseva NV, Zavyalova MV, Perelmuter VM, Denisov EV. The Activity of KIF14, Mieap, and EZR in a New Type of the Invasive Component, Torpedo-Like Structures, Predetermines the Metastatic Potential of Breast Cancer. Cancers (Basel) 2020; 12:E1909. [PMID: 32679794 PMCID: PMC7409151 DOI: 10.3390/cancers12071909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022] Open
Abstract
Intratumor morphological heterogeneity reflects patterns of invasive growth and is an indicator of the metastatic potential of breast cancer. In this study, we used this heterogeneity to identify molecules associated with breast cancer invasion and metastasis. The gene expression microarray data were used to identify genes differentially expressed between solid, trabecular, and other morphological arrangements of tumor cells. Immunohistochemistry was applied to evaluate the association of the selected proteins with metastasis. RNA-sequencing was performed to analyze the molecular makeup of metastatic tumor cells. High frequency of metastases and decreased metastasis-free survival were detected in patients either with positive expression of KIF14 or Mieap or negative expression of EZR at the tips of the torpedo-like structures in breast cancers. KIF14- and Mieap-positive and EZR-negative cells were mainly detected in the torpedo-like structures of the same breast tumors; however, their transcriptomic features differed. KIF14-positive cells showed a significant upregulation of genes involved in ether lipid metabolism. Mieap-positive cells were enriched in genes involved in mitophagy. EZR-negative cells displayed upregulated genes associated with phagocytosis and the chemokine-mediated signaling pathway. In conclusion, the positive expression of KIF14 and Mieap and negative expression of EZR at the tips of the torpedo-like structures are associated with breast cancer metastasis.
Collapse
Affiliation(s)
- Tatiana S. Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (T.S.G.); (S.Y.Z.); (A.M.K.); (N.M.N.)
| | - Sofia Y. Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (T.S.G.); (S.Y.Z.); (A.M.K.); (N.M.N.)
| | - Artem M. Kiselev
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (T.S.G.); (S.Y.Z.); (A.M.K.); (N.M.N.)
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Liubov A. Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (L.A.T.); (M.V.Z.); (V.M.P.)
| | - Nikita M. Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (T.S.G.); (S.Y.Z.); (A.M.K.); (N.M.N.)
| | - Nadezhda V. Krakhmal
- Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Nadezhda V. Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Marina V. Zavyalova
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (L.A.T.); (M.V.Z.); (V.M.P.)
- Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Vladimir M. Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (L.A.T.); (M.V.Z.); (V.M.P.)
| | - Evgeny V. Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (T.S.G.); (S.Y.Z.); (A.M.K.); (N.M.N.)
| |
Collapse
|
46
|
Chen BJ, Wu JS, Tang YJ, Tang YL, Liang XH. What makes leader cells arise: Intrinsic properties and support from neighboring cells. J Cell Physiol 2020; 235:8983-8995. [PMID: 32572948 DOI: 10.1002/jcp.29828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Cancer cells collectively invading as a cohesive and polarized group is termed collective invasion, which is a fundamental property of many types of cancers. In this multicellular unit, cancer cells are heterogeneous, consisting of two morphologically and functionally distinct subpopulations, leader cells and follower cells. Leader cells at the invasive front are responsible for exploring the microenvironment, paving the way, and transmitting information to follower cells. Here, in this review, we will describe the important role of leader cells in collective invasion and the emerging underlying mechanisms of leader cell formation including intrinsic properties and the support from neighboring cells. It will help us to elucidate the essence of collective invasion and provide new anticancer therapeutic clues.
Collapse
Affiliation(s)
- Bing-Jun Chen
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:112. [PMID: 32546182 PMCID: PMC7296768 DOI: 10.1186/s13046-020-01611-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence indicates that intratumoral heterogeneity contributes to the development of resistance to anticancer therapeutics. Fibroblasts, which are components of the paraneoplastic stroma, play a crucial role in the wound-healing process. Activated fibroblasts accumulate in the wound and are involved in many aspects of the tissue remodeling cascade that initiates the repair process and prevents further tissue damage. The pathophysiological roles of cancer-associated fibroblasts (CAFs) in the heterogeneous tumor microenvironment have attracted increasing interest. CAFs play crucial roles in tumor progression and the response to chemotherapy. Several cytokines and chemokines are involved in the conversion of normal fibroblasts into CAFs, and some of these form a feedback loop between cancer cells and CAFs. In addition, the physical force between tumor cells and CAFs promotes cooperative invasion or co-migration of both types of cells. Pro-inflammatory cytokines, such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), are secreted by both cancer cells and CAFs, and mediate the epigenetic modification of CAFs. This enhances the pro-tumorigenic function of CAFs mediated by promoting actomyosin contractility and extracellular matrix remodeling to form the tracks used for collective cancer cell migration. The concept of intra-tumoral CAF heterogeneity refers to the presence of inflammatory CAFs with low levels of α-smooth muscle actin (α-SMA) and high levels of IL-6 expression, which are in striking contrast to transforming growth factor-β (TGF-β)-dependent myofibroblastic CAFs with high α-SMA expression levels. CAF populations that suppress tumor growth and progression through stroma-specific Hedgehog (Hh) activation have been detected in different murine tumor models including those of the bladder, colon, and pancreas. A new therapeutic strategy targeting CAFs is the "stromal switch," in which tumor-promoting CAFs are changed into tumor-retarding CAFs with attenuated stromal stiffness. Several molecular mechanisms that can be exploited to design personalized anticancer therapies targeting CAFs remain to be elucidated. Strategies aimed at targeting the tumor stroma as well as tumor cells themselves have attracted academic attention for their application in precision medicine. This novel review discusses the role of the activation of EGFR, Wnt/β-catenin, Hippo, TGF-β, and JAK/STAT cascades in CAFs in relation to the chemoresistance and invasive/metastatic behavior of cancer cells. For instance, although activated EGFR signaling contributes to collective cell migration in cooperation with CAFs, an activated Hippo pathway is responsible for stromal stiffness resulting in the collapse of neoplastic blood vessels. Therefore, identifying the signaling pathways that are activated under specific conditions is crucial for precision medicine.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
48
|
Heldin P, Kolliopoulos C, Lin CY, Heldin CH. Involvement of hyaluronan and CD44 in cancer and viral infections. Cell Signal 2019; 65:109427. [PMID: 31654718 DOI: 10.1016/j.cellsig.2019.109427] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Department of Surgery, Uppsala University, Sweden; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|