1
|
Maji S, Pradhan AK, Kumar A, Bhoopathi P, Mannangatti P, Guo C, Windle JJ, Subler MA, Wang XY, Semmes OJ, Nyalwidhe JO, Mukhopadhyay N, Paul AK, Hatfield B, Levit MM, Madan E, Sarkar D, Emdad L, Cohen DJ, Gogna R, Cavenee WK, Das SK, Fisher PB. MDA-9/Syntenin in the tumor and microenvironment defines prostate cancer bone metastasis. Proc Natl Acad Sci U S A 2023; 120:e2307094120. [PMID: 37922327 PMCID: PMC10636346 DOI: 10.1073/pnas.2307094120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2023] Open
Abstract
Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Oliver J. Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA23507
| | - Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA23507
| | - Nitai Mukhopadhyay
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Biostatistics, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Asit Kr. Paul
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Internal Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Bryce Hatfield
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Michael M. Levit
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA23238
| | - Esha Madan
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA23238
| | - Rajan Gogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA92093
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| |
Collapse
|
2
|
Pradhan AK, Modi J, Maji S, Kumar A, Bhoopathi P, Mannangatti P, Guo C, Afosah DK, Mochel MC, Mukhopadhyay ND, Kirkwood JM, Wang XY, Desai UR, Sarkar D, Emdad L, Das SK, Fisher PB. Dual Targeting of the PDZ1 and PDZ2 Domains of MDA-9/Syntenin Inhibits Melanoma Metastasis. Mol Cancer Ther 2023; 22:1115-1127. [PMID: 37721536 DOI: 10.1158/1535-7163.mct-22-0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 09/19/2023]
Abstract
Genome-wide gene expression analysis and animal modeling indicate that melanoma differentiation associated gene-9 (mda-9, Syntenin, Syndecan binding protein, referred to as MDA-9/Syntenin) positively regulates melanoma metastasis. The MDA-9/Syntenin protein contains two tandem PDZ domains serving as a nexus for interactions with multiple proteins that initiate transcription of metastasis-associated genes. Although targeting either PDZ domain abrogates signaling and prometastatic phenotypes, the integrity of both domains is critical for full biological function. Fragment-based drug discovery and NMR identified PDZ1i, an inhibitor of the PDZ1 domain that effectively blocks cancer invasion in vitro and in vivo in multiple experimental animal models. To maximize disruption of MDA-9/Syntenin signaling, an inhibitor has now been developed that simultaneously binds and blocks activity of both PDZ domains. PDZ1i was joined to the second PDZ binding peptide (TNYYFV) with a PEG linker, resulting in PDZ1i/2i (IVMT-Rx-3) that engages both PDZ domains of MDA-9/Syntenin. IVMT-Rx-3 blocks MDA-9/Syntenin interaction with Src, reduces NF-κB activation, and inhibits MMP-2/MMP-9 expression, culminating in repression of melanoma metastasis. The in vivo antimetastatic properties of IVMT-Rx-3 are enhanced when combined with an immune-checkpoint inhibitor. Collectively, our results support the feasibility of engineering MDA-9 dual-PDZ inhibitors with enhanced antimetastatic activities and applications of IVMT-Rx-3 for developing novel therapeutic strategies effectively targeting melanoma and in principle, a broad spectrum of human cancers that also overexpress MDA-9/Syntenin.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Jinkal Modi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Daniel K Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Mark C Mochel
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - John M Kirkwood
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
3
|
Liu J, Bai W, Zhou T, Xie Y, Yang B, Sun J, Wang Y, Li X, Hou X, Liu Z, Fu D, Yan J, Jiang W, Zhao K, Zhou B, Yuan S, Guo Y, Wang H, Chang A, Gao S, Shi L, Huang C, Yang S, Hao J. SDCBP promotes pancreatic cancer progression by preventing YAP1 from β-TrCP-mediated proteasomal degradation. Gut 2023; 72:1722-1737. [PMID: 36828627 DOI: 10.1136/gutjnl-2022-327492] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/05/2023] [Indexed: 02/26/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumour with limited treatment options. Here, we identified syndecan binding protein (SDCBP), also known as syntenin1, as a novel targetable factor in promoting PDAC tumour progression. We also explored a therapeutic strategy for suppressing SDCBP expression. DESIGN We used samples from patients with PDAC, human organoid models, LSL-KrasG12D/+mice, LSL-Trp53R172H/+ and Pdx1-Cre (KPC) mouse models, and PDX mouse models. Immunostaining, colony formation assay, ethynyl-2-deoxyuridine incorporation assay, real-time cell analysis, cell apoptosis assay, automated cell tracking, invadopodia detection and gelatin degradation assays, coimmunoprecipitation, and pull-down assays were performed in this study. RESULTS The median overall survival and recurrence-free survival rates in the high-SDCBP group were significantly shorter than those in the low-SDCBP group. In vitro and in vivo studies have demonstrated that SDCBP promotes PDAC proliferation and metastasis. Mechanically, SDCBP inhibits CK1δ/ε-mediated YAP-S384/S387 phosphorylation, which further suppresses β-TrCP-mediated YAP1 ubiquitination and proteasome degradation by directly interacting with YAP1. SDCBP interacts with the TAD domain of YAP1, mainly through its PDZ1 domain. Preclinical KPC mouse cohorts demonstrated that zinc pyrithione (ZnPT) suppresses PDAC tumour progression by suppressing SDCBP. CONCLUSIONS SDCBP promotes the proliferation and metastasis of PDAC by preventing YAP1 from β-TrCP-mediated proteasomal degradation. Therefore, ZnPT could be a promising therapeutic strategy to inhibit PDAC progression by suppressing SDCBP.
Collapse
Affiliation(s)
- Jing Liu
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Weiwei Bai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tianxing Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bo Yang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jingyan Sun
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xueyang Li
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xupeng Hou
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ziyun Liu
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Danqi Fu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingrui Yan
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kaili Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bodong Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shuai Yuan
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Chongbiao Huang
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
4
|
Corallo D, Dalla Vecchia M, Lazic D, Taschner-Mandl S, Biffi A, Aveic S. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma. Biochem Pharmacol 2023; 215:115696. [PMID: 37481138 DOI: 10.1016/j.bcp.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Marco Dalla Vecchia
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health Department, University of Padova, 35121 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy.
| |
Collapse
|
5
|
Lee KM, Seo EC, Lee JH, Kim HJ, Hwangbo C. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int J Mol Sci 2023; 24:ijms24119418. [PMID: 37298370 DOI: 10.3390/ijms24119418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.
Collapse
Affiliation(s)
- Kwang-Min Lee
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Chan Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon 24414, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
7
|
Tang H, Wang L, Li S, Wei X, Lv M, Zhong F, Liu Y, Liu J, Fu B, Zhu Q, Wang D, Liu J, Ruan K, Gao J, Xu W. Inhibitors against Two PDZ Domains of MDA-9 Suppressed Migration of Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24043431. [PMID: 36834839 PMCID: PMC9964117 DOI: 10.3390/ijms24043431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma differentiation-associated gene 9 (MDA-9) is a small adaptor protein with tandem PDZ domains that promotes tumor progression and metastasis in various human cancers. However, it is difficult to develop drug-like small molecules with high affinity due to the narrow groove of the PDZ domains of MDA-9. Herein, we identified four novel hits targeting the PDZ1 and PDZ2 domains of MDA-9, namely PI1A, PI1B, PI2A, and PI2B, using a protein-observed nuclear magnetic resonance (NMR) fragment screening method. We also solved the crystal structure of the MDA-9 PDZ1 domain in complex with PI1B and characterized the binding poses of PDZ1-PI1A and PDZ2-PI2A, guided by transferred paramagnetic relaxation enhancement. The protein-ligand interaction modes were then cross-validated by the mutagenesis of the MDA-9 PDZ domains. Competitive fluorescence polarization experiments demonstrated that PI1A and PI2A blocked the binding of natural substrates to the PDZ1 and PDZ2 domains, respectively. Furthermore, these inhibitors exhibited low cellular toxicity, but suppressed the migration of MDA-MB-231 breast carcinoma cells, which recapitulated the phenotype of MDA-9 knockdown. Our work has paved the way for the development of potent inhibitors using structure-guided fragment ligation in the future.
Collapse
Affiliation(s)
- Heng Tang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lei Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shuju Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoli Wei
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mengqi Lv
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fumei Zhong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yaqian Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bangguo Fu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Dan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiajia Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ke Ruan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jia Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (J.G.); (W.X.)
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (J.G.); (W.X.)
| |
Collapse
|
8
|
Horwacik I. The Extracellular Matrix and Neuroblastoma Cell Communication-A Complex Interplay and Its Therapeutic Implications. Cells 2022; 11:cells11193172. [PMID: 36231134 PMCID: PMC9564247 DOI: 10.3390/cells11193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
Collapse
Affiliation(s)
- Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Ning L, Shim J, Tomov ML, Liu R, Mehta R, Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, Mahmoudi M, Goldsmith KC, Serpooshan V. A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumor-Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200244. [PMID: 35644929 PMCID: PMC9376856 DOI: 10.1002/advs.202200244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Indexed: 05/04/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in children resulting in substantial morbidity and mortality. A deeper understanding of the NB tumor microenvironment (TME) remains an area of active research but there is a lack of reliable and biomimetic experimental models. This study utilizes a 3D bioprinting approach, in combination with NB spheroids, to create an in vitro vascular model of NB for exploring the tumor function within an endothelialized microenvironment. A gelatin methacryloyl (gelMA) bioink is used to create multi-channel cubic tumor analogues with high printing fidelity and mechanical tunability. Human-derived NB spheroids and human umbilical vein endothelial cells (HUVECs) are incorporated into the biomanufactured gelMA and cocultured under static versus dynamic conditions, demonstrating high levels of survival and growth. Quantification of NB-EC integration and tumor cell migration suggested an increased aggressive behavior of NB when cultured in bioprinted endothelialized models, when cocultured with HUVECs, and also as a result of dynamic culture. This model also allowed for the assessment of metabolic, cytokine, and gene expression profiles of NB spheroids under varying TME conditions. These results establish a high throughput research enabling platform to study the TME-mediated cellular-molecular mechanisms of tumor growth, aggression, and response to therapy.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Jenny Shim
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Rui Liu
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Riya Mehta
- Department of BiologyEmory UniversityAtlantaGA30322USA
| | - Andrew Mingee
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Chunhui Xu
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Kelly C. Goldsmith
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
10
|
Huaier Inhibits Gastric Cancer Growth and Hepatic Metastasis by Reducing Syntenin Expression and STAT3 Phosphorylation. JOURNAL OF ONCOLOGY 2022; 2022:6065516. [PMID: 35756080 PMCID: PMC9217535 DOI: 10.1155/2022/6065516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Abstract
Gastric cancer (GC) is a common malignant tumor worldwide and poses a serious threat to human health. As a traditional Chinese medicine, Huaier (Trametes robiniophila Murr.) has been used in the clinical treatment of GC. However, the mechanism underlying the anticancer effect of Huaier remains poorly understood. In this study, we used in vivo imaging technology to determine the anticancer effect of the Huaier n-butanol extract (HBE) on orthotopic and hepatic metastasis of GC mouse models. We found that HBE suppressed tumor growth and metastasis without causing apparent host toxicity. Proteomic analysis of GC cells before and after HBE intervention revealed syntenin to be one of the most significantly downregulated proteins after HBE intervention. We further demonstrated that HBE suppressed the growth and metastasis of GC by reducing the expression of syntenin and the phosphorylation of STAT3 at Y705 and reversing the epithelial-mesenchymal transition (EMT). In addition, we confirmed that syntenin was highly expressed in GC tissue and correlated with metastasis and poor prognosis. In conclusion, our results suggest that Huaier, a clinically used anticancer drug, may inhibit the growth and liver metastasis of GC by inhibiting the syntenin/STAT3 signaling pathway and reversing EMT.
Collapse
|
11
|
Dev A, Sardoiwala MN, Sharma A, MohanBhai SJ, Karmakar S, Choudhury SR. Nanoacetylated N-(4-Hydroxyphenyl) Retinamide Modulates Histone Acetylation–Methylation Epigenetic Disparity to Restrict Epithelial–Mesenchymal Transition in Neuroblastoma. ACS Med Chem Lett 2022; 13:1109-1117. [DOI: 10.1021/acsmedchemlett.2c00135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Atul Dev
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Angela Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Soni Jignesh MohanBhai
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
12
|
Conversion of a Non-Cancer-Selective Promoter into a Cancer-Selective Promoter. Cancers (Basel) 2022; 14:cancers14061497. [PMID: 35326649 PMCID: PMC8946048 DOI: 10.3390/cancers14061497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The rat progression elevated gene-3 (PEG-3) promoter displays cancer-selective expression, whereas the rat growth arrest and DNA damage inducible gene-34 (GADD34) promoter lacks cancer specificity. PEG-3 and GADD34 minimal promoters display strong sequence homology except for two single point mutations. Since mutations are prevalent in many gene promoters resulting in significant alterations in promoter specificity and activity, we have explored the relevance of these two nucleotide alterations in determining cancer-selective gene expression. We demonstrate that these two point mutations are required to transform a non-cancer-specific promoter (pGADD) into a cancer-selective promoter (pGAPE). Additionally, we found GATA2 transcription factor binding sites in the GAPE-Prom, which regulates pGAPE activity selectively in cancer cells. This newly created pGAPE has all the necessary elements making it an appropriate genetic tool to noninvasively deliver imaging agents to follow tumor growth and progression to metastasis and for generating conditionally replicating adenoviruses that can express and deliver their payload exclusively in cancer. Abstract Progression-elevated gene-3 (PEG-3) and rat growth arrest and DNA damage-inducible gene-34 (GADD34) display significant sequence homology with regulation predominantly transcriptional. The rat full-length (FL) and minimal (min) PEG-3 promoter display cancer-selective expression in rodent and human tumors, allowing for cancer-directed regulation of transgenes, viral replication and in vivo imaging of tumors and metastases in animals, whereas the FL- and min-GADD34-Prom lack cancer specificity. Min-PEG-Prom and min-GADD34-Prom have identical sequences except for two single-point mutation differences (at −260 bp and +159 bp). Engineering double mutations in the min-GADD34-Prom produce the GAPE-Prom. Changing one base pair (+159) or both point mutations in the min-GADD34-Prom, but not the FL-GADD34-Prom, results in cancer-selective transgene expression in diverse cancer cells (including prostate, breast, pancreatic and neuroblastoma) vs. normal counterparts. Additionally, we identified a GATA2 transcription factor binding site, promoting cancer specificity when both min-PEG-Prom mutations are present in the GAPE-Prom. Taken together, introducing specific point mutations in a rat min-GADD34-Prom converts this non-cancer-specific promoter into a cancer-selective promoter, and the addition of GATA2 with existing AP1 and PEA3 transcription factors enhances further cancer-selective activity of the GAPE-Prom. The GAPE-Prom provides a genetic tool to specifically regulate transgene expression in cancer cells.
Collapse
|
13
|
Laut AK, Dorneburg C, Fürstberger A, Barth TFE, Kestler HA, Debatin KM, Beltinger C. CHD5 inhibits metastasis of neuroblastoma. Oncogene 2022; 41:622-633. [PMID: 34789839 PMCID: PMC8799470 DOI: 10.1038/s41388-021-02081-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022]
Abstract
CHD5, a tumor suppressor at 1p36, is frequently lost or silenced in poor prognosis neuroblastoma (NB) and many adult cancers. The role of CHD5 in metastasis is unknown. We confirm that low expression of CHD5 is associated with stage 4 NB. Forced expression of CHD5 in NB cell lines with 1p loss inhibited key aspects of the metastatic cascade in vitro: anchorage-independent growth, migration, and invasion. In vivo, formation of bone marrow and liver metastases developing from intravenously injected NB cells was delayed and decreased by forced CHD5 expression. Genome-wide mRNA sequencing revealed reduction of genes and gene sets associated with metastasis when CHD5 was overexpressed. Known metastasis-suppressing genes preferentially upregulated in CHD5-overexpressing NB cells included PLCL1. In patient NB, low expression of PLCL1was associated with metastatic disease and poor survival. Knockdown of PLCL1 and of p53 in IMR5 NB cells overexpressing CHD5 reversed CHD5-induced inhibition of invasion and migration in vitro. In summary, CHD5 is a metastasis suppressor in NB.
Collapse
Affiliation(s)
- Astrid K Laut
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Carmen Dorneburg
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Axel Fürstberger
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | | | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
14
|
Xu S, Zhang W, Che B, Zhang J, He J, Liu D, Chen P, Mu Y, Chen K, Tang K. Adult adrenal neuroblastoma: A case report. Mol Clin Oncol 2021; 15:225. [PMID: 34548924 PMCID: PMC8447177 DOI: 10.3892/mco.2021.2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022] Open
Abstract
Adrenal neuroblastoma (NB) is very rare in adults. According to the literature, <100 cases have been reported worldwide to date, with >90% of the patients aged <10 years. As the early symptoms of the disease are not obvious, distant metastasis has often already occurred when the patients develop clinical symptoms. This lack of obvious symptoms may lead to misdiagnosis and inadequate treatment. Imaging and laboratory examinations are crucial for the diagnosis of NB, but reaching a definitive diagnosis prior to surgery is challenging, as the final diagnosis ultimately depends on histopathological examination. The aim of the present study was to report the rare case of a 40-year-old woman with adrenal left NB who underwent tumor resection. No tumor recurrence was observed at the 3-month and 1-year postoperative follow-up, but a repeat computed tomography at the 3-year postoperative follow-up indicated metastases; the patient refused further treatment and eventually succumbed to the disease within 1 month. The aim of the present case was to emphasize the importance of individualized therapy and long-term, close follow-up of the patients. The clinical characteristics and treatment of this case of adrenal NB were also summarized and analyzed in order to raise clinical awareness of this rare disease.
Collapse
Affiliation(s)
- Shenghan Xu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wenjun Zhang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bangwei Che
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jinjuan Zhang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jun He
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dongdong Liu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Pan Chen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yi Mu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Kehang Chen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Kaifa Tang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Institute of Medical Science of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
15
|
Gutiérrez-González LH, Rivas-Fuentes S, Guzmán-Beltrán S, Flores-Flores A, Rosas-García J, Santos-Mendoza T. Peptide Targeting of PDZ-Dependent Interactions as Pharmacological Intervention in Immune-Related Diseases. Molecules 2021; 26:molecules26216367. [PMID: 34770776 PMCID: PMC8588348 DOI: 10.3390/molecules26216367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
PDZ (postsynaptic density (PSD95), discs large (Dlg), and zonula occludens (ZO-1)-dependent interactions are widely distributed within different cell types and regulate a variety of cellular processes. To date, some of these interactions have been identified as targets of small molecules or peptides, mainly related to central nervous system disorders and cancer. Recently, the knowledge of PDZ proteins and their interactions has been extended to various cell types of the immune system, suggesting that their targeting by viral pathogens may constitute an immune evasion mechanism that favors viral replication and dissemination. Thus, the pharmacological modulation of these interactions, either with small molecules or peptides, could help in the control of some immune-related diseases. Deeper structural and functional knowledge of this kind of protein–protein interactions, especially in immune cells, will uncover novel pharmacological targets for a diversity of clinical conditions.
Collapse
Affiliation(s)
- Luis H. Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Angélica Flores-Flores
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
| | - Jorge Rosas-García
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados, Mexico City 07360, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
- Correspondence: ; Tel.: +52-55-54871700 (ext. 5243)
| |
Collapse
|
16
|
Mir C, Garcia-Mayea Y, Garcia L, Herrero P, Canela N, Tabernero R, Lorente J, Castellvi J, Allonca E, García-Pedrero J, Rodrigo JP, Carracedo Á, LLeonart ME. SDCBP Modulates Stemness and Chemoresistance in Head and Neck Squamous Cell Carcinoma through Src Activation. Cancers (Basel) 2021; 13:cancers13194952. [PMID: 34638436 PMCID: PMC8508472 DOI: 10.3390/cancers13194952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Drug resistance is the principal limiting factor to achieving good survival rates in patients with cancer. The identification of potential biomarkers for diagnosis and prognostic prediction, as well as the design of new molecular-targeted treatments, will be essential to improving head and neck squamous cell carcinoma (HNSCC) patient outcomes. In this sense, the sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. We conducted a proteomic study involving cisplatin-resistance and CSCs with the aim to unravel the molecular and cellular mechanisms by which tumor cells acquire resistance to chemotherapy. Syntenin-1 (SDCBP) was identified as an important protein involved in the chemoresistance and stemness of HNSCC tumors. Abstract To characterize the mechanisms that govern chemoresistance, we performed a comparative proteomic study analyzing head and neck squamous cell carcinoma (HNSCC) cells: CCL-138 (parental), CCL-138-R (cisplatin-resistant), and cancer stem cells (CSCs). Syntenin-1 (SDCBP) was upregulated in CCL-138-R cells and CSCs over parental cells. SDCBP depletion sensitized biopsy-derived and established HNSCC cell lines to cisplatin (CDDP) and reduced CSC markers, Src activation being the main SDCBP downstream target. In mice, SDCBP-depleted cells formed tumors with decreased mitosis, Ki-67 positivity, and metastasis over controls. Moreover, the fusocellular pattern of CCL-138-R cell-derived tumors reverted to a more epithelial morphology upon SDCBP silencing. Importantly, SDCBP expression was associated with Src activation, poor differentiated tumor grade, advanced tumor stage, and shorter survival rates in a series of 382 HNSCC patients. Our results reveal that SDCBP might be a promising therapeutic target for effectively eliminating CSCs and CDDP resistance.
Collapse
Affiliation(s)
- Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
- Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Laia Garcia
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya–Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (P.H.); (N.C.)
| | - Nuria Canela
- Eurecat, Centre Tecnològic de Catalunya–Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (P.H.); (N.C.)
| | - Rocío Tabernero
- Otorhinolaryngology Department, Hospital Vall d’Hebron (HUVH), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.T.); (J.L.)
| | - Juan Lorente
- Otorhinolaryngology Department, Hospital Vall d’Hebron (HUVH), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.T.); (J.L.)
| | - Josep Castellvi
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
| | - Juana García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Matilde Esther LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4894169
| |
Collapse
|
17
|
Pharmacological inhibition of MDA-9/Syntenin blocks breast cancer metastasis through suppression of IL-1β. Proc Natl Acad Sci U S A 2021; 118:2103180118. [PMID: 34016751 PMCID: PMC8166168 DOI: 10.1073/pnas.2103180118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1β pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.
Collapse
|
18
|
Bhoopathi P, Mannangatti P, Emdad L, Das SK, Fisher PB. The quest to develop an effective therapy for neuroblastoma. J Cell Physiol 2021; 236:7775-7791. [PMID: 33834508 DOI: 10.1002/jcp.30384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Neuroblastoma (NB) is a common solid extracranial tumor developing in pediatric populations. NB can spontaneously regress or grow and metastasize displaying resistance to therapy. This tumor is derived from primitive cells, mainly those of the neural crest, in the sympathetic nervous system and usually develops in the adrenal medulla and paraspinal ganglia. Our understanding of the molecular characteristics of human NBs continues to advance documenting abnormalities at the genome, epigenome, and transcriptome levels. The high-risk tumors have MYCN oncogene amplification, and the MYCN transcriptional regulator encoded by the MYCN oncogene is highly expressed in the neural crest. Studies on the biology of NB has enabled a more precise risk stratification strategy and a concomitant reduction in the required treatment in an expanding number of cases worldwide. However, newer treatment strategies are mandated to improve outcomes in pediatric patients who are at high-risk and display relapse. To improve outcomes and survival rates in such high-risk patients, it is necessary to use a multicomponent therapeutic approach. Accuracy in clinical staging of the disease and assessment of the associated risks based on biological, clinical, surgical, and pathological criteria are of paramount importance for prognosis and to effectively plan therapeutic approaches. This review discusses the staging of NB and the biological and genetic features of the disease and several current therapies including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy for NB.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
19
|
Pradhan AK, Maji S, Das SK, Emdad L, Sarkar D, Fisher PB. MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein. Cancer Metastasis Rev 2021; 39:769-781. [PMID: 32410111 DOI: 10.1007/s10555-020-09886-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor metastasis comprises a series of coordinated events that culminate in dissemination of cancer cells to distant sites within the body representing the greatest challenge impeding effective therapy of cancer and the leading cause of cancer-associated morbidity. Cancer cells exploit multiple genes and pathways to colonize to distant organs. These pathways are integrated and regulated at different levels by cellular- and extracellular-associated factors. Defining the genes and pathways that govern metastasis can provide new targets for therapeutic intervention. Melanoma differentiation associated gene-9 (mda-9) (also known as Syntenin-1 and SDCBP (Syndecan binding protein)) was identified by subtraction hybridization as a novel gene displaying differential temporal expression during differentiation of melanoma. MDA-9/Syntenin is an established Syndecan binding protein that functions as an adaptor protein. Expression of MDA-9/Syntenin is elevated at an RNA and protein level in a wide-range of cancers including melanoma, glioblastoma, neuroblastoma, and prostate, breast and liver cancer. Expression is increased significantly in metastatic cancer cells as compared with non-metastatic cancer cells or normal cells, which make it an attractive target in treating cancer metastasis. In this review, we focus on the role and regulation of mda-9 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA. .,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
20
|
Aravindan N, Herman T, Aravindan S. Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets 2020; 24:899-914. [PMID: 33021426 PMCID: PMC7554151 DOI: 10.1080/14728222.2020.1790528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB. AREAS COVERED Recent studies (2017-2020) pertinent to NB evolution are selectively reviewed to recognize novel and effective therapeutic targets. The prospective and promising therapeutic targets/strategies for HR-NB are categorized into (a) targeting oncogene-like and/or reinforcing tumor suppressor (TS)-like lncRNAs; (b) targeting oncogene-like microRNAs (miRs) and/or mimicking TS-miRs; (c) targets for immunotherapy; (d) targeting epithelial-to-mesenchymal transition and cancer stem cells; (e) novel and beneficial combination approaches; and (f) repurposing drugs and other strategies in development. EXPERT OPINION It is highly unlikely that agents targeting a single candidate or signaling will be beneficial for an HR-NB cure. We must develop efficient drug deliverables for functional targets, which could be integrated and advance clinical therapy. Fittingly, the looming evidence indicated an aggressive evolution of promising novel and integrative targets, development of efficient drugs, and improvised strategies for HR-NB treatment.
Collapse
Affiliation(s)
| | - Terence Herman
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Stephenson Cancer Center, Oklahoma City, USA
| | | |
Collapse
|
21
|
Cangelosi D, Morini M, Zanardi N, Sementa AR, Muselli M, Conte M, Garaventa A, Pfeffer U, Bosco MC, Varesio L, Eva A. Hypoxia Predicts Poor Prognosis in Neuroblastoma Patients and Associates with Biological Mechanisms Involved in Telomerase Activation and Tumor Microenvironment Reprogramming. Cancers (Basel) 2020; 12:E2343. [PMID: 32825087 PMCID: PMC7563184 DOI: 10.3390/cancers12092343] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
The biological and clinical heterogeneity of neuroblastoma (NB) demands novel biomarkers and therapeutic targets in order to drive the most appropriate treatment for each patient. Hypoxia is a condition of low-oxygen tension occurring in poorly vascularized tumor tissues. In this study, we aimed to assess the role of hypoxia in the pathogenesis of NB and at developing a new clinically relevant hypoxia-based predictor of outcome. We analyzed the gene expression profiles of 1882 untreated NB primary tumors collected at diagnosis and belonging to four existing data sets. Analyses took advantage of machine learning methods. We identified NB-hop, a seven-gene hypoxia biomarker, as a predictor of NB patient prognosis, which is able to discriminate between two populations of patients with unfavorable or favorable outcome on a molecular basis. NB-hop retained its prognostic value in a multivariate model adjusted for established risk factors and was able to additionally stratify clinically relevant groups of patients. Tumors with an unfavorable NB-hop expression showed a significant association with telomerase activation and a hypoxic, immunosuppressive, poorly differentiated, and apoptosis-resistant tumor microenvironment. NB-hop defines a new population of NB patients with hypoxic tumors and unfavorable prognosis and it represents a critical factor for the stratification and treatment of NB patients.
Collapse
Affiliation(s)
- Davide Cangelosi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Nicolò Zanardi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Angela Rita Sementa
- Laboratory of Pathology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Marco Muselli
- Institute of Electronics, Computer and Telecommunication Engineering, Italian National Research Council, 16149 Genova, Italy;
| | - Massimo Conte
- Pediatric Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.C.); (A.G.)
| | - Alberto Garaventa
- Pediatric Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.C.); (A.G.)
| | - Ulrich Pfeffer
- Integrated Oncology Therapies Department, Molecular Pathology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Luigi Varesio
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| |
Collapse
|
22
|
Ye M, Xie L, Zhang J, Liu B, Liu X, He J, Ma D, Dong K. Determination of long non-coding RNAs associated with EZH2 in neuroblastoma by RIP-seq, RNA-seq and ChIP-seq. Oncol Lett 2020; 20:1. [PMID: 32774475 PMCID: PMC7405546 DOI: 10.3892/ol.2020.11862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) is the most common type of extracranial solid tumor found in children. Despite several treatment options, patients with advanced stage disease have a poor prognosis. Previous studies have reported that enhancer of zeste homolog 2 (EZH2) and long non-coding RNAs (lncRNAs) have abnormal expression levels in NB and participate in tumorigenesis and NB development. However, the association between EZH2 and lncRNAs remain unclear. In the present study, RNA immunoprecipitation-sequencing (RIP-seq) was used to analyze the lncRNAs binding to EZH2. Following EZH2 knockdown via short hairpin RNA, RNA-seq was performed in shEZH2 and control groups in SH-SY5Y cells. Chromatin IP (ChIP)-seq was used to determine the genes that may be regulated by EZH2. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to identify the signaling pathways involved in NB. The results from RIP-seq identified 94 lncRNAs, including SNHG7, SNHG22, KTN-AS1 and Linc00843. Furthermore, results from RNA-seq demonstrated that, following EZH2 knockdown, 448 genes were up- and 571 genes were downregulated, with 32 lncRNAs up- and 35 downregulated and differentially expressed compared with control groups. Certain lncRNAs, including MALAT1, H19, Linc01021 and SNHG5, were differentially expressed in EZH2-knockdown group compared with the control group. ChIP-seq identified EZH2 located in the promoter region of 138 lncRNAs including CASC16, CASC15, LINC00694 and TBX5-AS1. In summary, the present study demonstrated that certain lncRNAs directly bound EZH2 and regulated EZH2 expression levels. A number of these lncRNAs that are associated with EZH2 may participate in NB tumorigenesis.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Lulu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Xiangqi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Jiajun He
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| |
Collapse
|
23
|
Das SK, Maji S, Wechman SL, Bhoopathi P, Pradhan AK, Talukdar S, Sarkar D, Landry J, Guo C, Wang XY, Cavenee WK, Emdad L, Fisher PB. MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155:104695. [PMID: 32061839 PMCID: PMC7551653 DOI: 10.1016/j.phrs.2020.104695] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Joseph Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, CA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
24
|
Labbozzetta M, Notarbartolo M, Poma P. Can NF-κB Be Considered a Valid Drug Target in Neoplastic Diseases? Our Point of View. Int J Mol Sci 2020; 21:ijms21093070. [PMID: 32349210 PMCID: PMC7246796 DOI: 10.3390/ijms21093070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR), of the innate and acquired types, is one of major problems in treating tumor diseases with a good chance of success. In this review, we examine the key role of nuclear factor-kappa B (NF-κB) to induce MDR in three tumor models characterized precisely by innate or acquired MDR, in particular triple negative breast cancer (TNBC), hepatocellular carcinoma (HCC), and acute myeloid leukemia (AML). We also present different pharmacological approaches that our group have employed to reduce the expression/activation of this transcriptional factor and thus to restore chemo-sensitivity. Finally, we examine the latest scientific evidence found by other groups, the most significant clinical trials regarding NF-κB, and new perspectives on the possibility to consider this transcriptional factor a valid drug target in neoplastic diseases.
Collapse
|