1
|
Fitzpatrick A, Iravani M, Mills A, Vicente D, Alaguthurai T, Roxanis I, Turner NC, Haider S, Tutt ANJ, Isacke CM. Genomic profiling and pre-clinical modelling of breast cancer leptomeningeal metastasis reveals acquisition of a lobular-like phenotype. Nat Commun 2023; 14:7408. [PMID: 37973922 PMCID: PMC10654396 DOI: 10.1038/s41467-023-43242-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Breast cancer leptomeningeal metastasis (BCLM), where tumour cells grow along the lining of the brain and spinal cord, is a devastating development for patients. Investigating this metastatic site is hampered by difficulty in accessing tumour material. Here, we utilise cerebrospinal fluid (CSF) cell-free DNA (cfDNA) and CSF disseminated tumour cells (DTCs) to explore the clonal evolution of BCLM and heterogeneity between leptomeningeal and extracranial metastatic sites. Somatic alterations with potential therapeutic actionability were detected in 81% (17/21) of BCLM cases, with 19% detectable in CSF cfDNA only. BCLM was enriched in genomic aberrations in adherens junction and cytoskeletal genes, revealing a lobular-like breast cancer phenotype. CSF DTCs were cultured in 3D to establish BCLM patient-derived organoids, and used for the successful generation of BCLM in vivo models. These data reveal that BCLM possess a unique genomic aberration profile and highlight potential cellular dependencies in this hard-to-treat form of metastatic disease.
Collapse
Affiliation(s)
- Amanda Fitzpatrick
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Marjan Iravani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Adam Mills
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - David Vicente
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Nicholas C Turner
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Breast Cancer Now Research Unit, Guy's Hospital, King's College London, London, UK
- Oncology and Haematology Directorate, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Clare M Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
2
|
Tong L, Wang S, Yang J, Zhang Q, Gu X, Mo T, Luo Y, Zhang C, Zhang J, Liu Y. Combined ARHGEF6 and Tumor Mutational Burden may serve as a potential biomarker for immunotherapy of lung adenocarcinoma. Heliyon 2023; 9:e18501. [PMID: 37600416 PMCID: PMC10432614 DOI: 10.1016/j.heliyon.2023.e18501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
ARHGEF6, a member of the Dbl-related guanylate exchanger (GEF) family, is highly expressed in gastric cancer and glioma. However, scientists still do not know whether it plays a pivotal role in the pathogenesis of lung adenocarcinoma(LUAD). The prognostic significance of ARHGEF6 expression was assessed by TCGA data. This paper focuses on the level of immune infiltration associated with ARHGEF6 and explored the relationship of this gene with the tumor mutational burden (TMB), immune checkpoints, and drug sensitivity. The results showed that the high expression of ARHGEF6 was associated with a good prognosis in LUAD patients, and positively correlated with a variety of immune cells and drugs. Meanwhile, ARHGEF6 was found to be negatively correlated with TMB. In conclusion, the results of this study suggest that ARHGEF6 is a protective gene in LUAD patients. A combination of ARHGEF6 and TMB could be used as a potential biomarker in the screening of immunotherapy regimens, which are provided to patients with LUAD.
Collapse
Affiliation(s)
- Li Tong
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- Dalian Medical University, Dalian, China
| | - Sichu Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- Dalian Medical University, Dalian, China
| | - Juanjuan Yang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qing Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xue Gu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Taoming Mo
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yang Luo
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | | | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Demir Karaman E, Işık Z. Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers. Med Sci (Basel) 2023; 11:44. [PMID: 37489460 PMCID: PMC10366886 DOI: 10.3390/medsci11030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Combining omics data from different layers using integrative methods provides a better understanding of the biology of a complex disease such as cancer. The discovery of biomarkers related to cancer development or prognosis helps to find more effective treatment options. This study integrates multi-omics data of different cancer types with a network-based approach to explore common gene modules among different tumors by running community detection methods on the integrated network. The common modules were evaluated by several biological metrics adapted to cancer. Then, a new prognostic scoring method was developed by weighting mRNA expression, methylation, and mutation status of genes. The survival analysis pointed out statistically significant results for GNG11, CBX2, CDKN3, ARHGEF10, CLN8, SEC61G and PTDSS1 genes. The literature search reveals that the identified biomarkers are associated with the same or different types of cancers. Our method does not only identify known cancer-specific biomarker genes, but also proposes new potential biomarkers. Thus, this study provides a rationale for identifying new gene targets and expanding treatment options across cancer types.
Collapse
Affiliation(s)
- Ezgi Demir Karaman
- Department of Computer Engineering, Institute of Natural and Applied Sciences, Dokuz Eylul University, Izmir 35390, Turkey
| | - Zerrin Işık
- Department of Computer Engineering, Faculty of Engineering, Dokuz Eylul University, Izmir 35390, Turkey
| |
Collapse
|
4
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
5
|
Mohanraj L, Wolf H, Silvey S, Liu J, Toor A, Swift-Scanlan T. DNA Methylation Changes in Autologous Hematopoietic Stem Cell Transplant Patients. Biol Res Nurs 2023; 25:310-325. [PMID: 36321693 PMCID: PMC10236442 DOI: 10.1177/10998004221135628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Blood cancers may be potentially cured with hematopoietic stem cell transplantation (HCT); however, standard pre-assessments for transplant eligibility do not capture all contributing factors for transplant outcomes. Epigenetic biomarkers predict outcomes in various diseases. This pilot study aims to explore epigenetic changes (epigenetic age and differentially methylated genes) in patients before and after autologous HCT, that can serve as potential biomarkers to better predict HCT outcomes. METHODS This study used a prospective longitudinal study design to compare genome wide DNA methylation changes in 36 autologous HCT eligible patients recruited from the Cellular Immunotherapies and Transplant clinic at a designated National Cancer Center. RESULTS Genome-wide DNA methylation, measured by the Illumina Infinium Human Methylation 850K BeadChip, showed a significant difference in DNA methylation patterns post-HCT compared to pre-HCT. Compared to baseline levels of DNA methylation pre-HCT, 3358 CpG sites were hypo-methylated and 3687 were hyper-methylated. Identified differentially methylated positions overlapped with genes involved in hematopoiesis, blood cancers, inflammation and immune responses. Enrichment analyses showed significant alterations in biological processes such as immune response and cell structure organization, however no significant pathways were noted. Though participants had an advanced epigenetic age compared to chronologic age before and after HCT, both epigenetic age and accelerated age decreased post-HCT. CONCLUSION Epigenetic changes, both in epigenetic age and differentially methylated genes were observed in autologous HCT recipients, and should be explored as biomarkers to predict transplant outcomes after autologous HCT in larger, longitudinal studies.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing
Systems, VCU School of Nursing, Richmond, VA, USA
| | - Hope Wolf
- Department of Human and Molecular Genetics, VCU School of Medicine, Richmond, VA, USA
| | - Scott Silvey
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Amir Toor
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| | - Theresa Swift-Scanlan
- Endowed Professor and Director,
Biobehavioral Research Lab, VCU School of Nursing, Richmond, VA, USA
| |
Collapse
|
6
|
Wang R, Li S, Wen W, Zhang J. Multi-Omics Analysis of the Effects of Smoking on Human Tumors. Front Mol Biosci 2021; 8:704910. [PMID: 34796198 PMCID: PMC8592943 DOI: 10.3389/fmolb.2021.704910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Comprehensive studies on cancer patients with different smoking histories, including non-smokers, former smokers, and current smokers, remain elusive. Therefore, we conducted a multi-omics analysis to explore the effect of smoking history on cancer patients. Patients with smoking history were screened from The Cancer Genome Atlas database, and their multi-omics data and clinical information were downloaded. A total of 2,317 patients were included in this study, whereby current smokers presented the worst prognosis, followed by former smokers, while non-smokers showed the best prognosis. More importantly, smoking history was an independent prognosis factor. Patients with different smoking histories exhibited different immune content, and former smokers had the highest immune cells and tumor immune microenvironment. Smokers are under a higher incidence of genomic instability that can be reversed following smoking cessation in some changes. We also noted that smoking reduced the sensitivity of patients to chemotherapeutic drugs, whereas smoking cessation can reverse the situation. Competing endogenous RNA network revealed that mir-193b-3p, mir-301b, mir-205-5p, mir-132-3p, mir-212-3p, mir-1271-5p, and mir-137 may contribute significantly in tobacco-mediated tumor formation. We identified 11 methylation driver genes (including EIF5A2, GBP6, HGD, HS6ST1, ITGA5, NR2F2, PLS1, PPP1R18, PTHLH, SLC6A15, and YEATS2), and methylation modifications of some of these genes have not been reported to be associated with tumors. We constructed a 46-gene model that predicted overall survival with good predictive power. We next drew nomograms of each cancer type. Interestingly, calibration diagrams and concordance indexes are verified that the nomograms were highly accurate for the prognosis of patients. Meanwhile, we found that the 46-gene model has good applicability to the overall survival as well as to disease-specific survival and progression-free intervals. The results of this research provide new and valuable insights for the diagnosis, treatment, and follow-up of cancer patients with different smoking histories.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shanshan Li
- Department of Nursing, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Wen Wen
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jianquan Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
7
|
Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Calkins MM, Burgess JL. Differential DNA Methylation by Hispanic Ethnicity Among Firefighters in the United States. Epigenet Insights 2021; 14:25168657211006159. [PMID: 35036834 PMCID: PMC8756104 DOI: 10.1177/25168657211006159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Firefighters are exposed to a variety of environmental hazards and are at increased risk for multiple cancers. There is evidence that risks differ by ethnicity, yet the biological or environmental differences underlying these differences are not known. DNA methylation is one type of epigenetic regulation that is altered in cancers. In this pilot study, we profiled DNA methylation with the Infinium MethylationEPIC in blood leukocytes from 31 Hispanic white and 163 non-Hispanic white firefighters. We compared DNA methylation (1) at 12 xenobiotic metabolizing genes and (2) at all loci on the array (>740 000), adjusting for confounders. Five of the xenobiotic metabolizing genes were differentially methylated at a raw P-value <.05 when comparing the 2 ethnic groups, yet were not statistically significant at a 5% false discovery rate (q-value <.05). In the epigenome-wide analysis, 76 loci exhibited DNA methylation differences at q < .05. Among these, 3 CpG sites in the promoter region of the biotransformation gene SULT1C2 had lower methylation in Hispanic compared to non-Hispanic firefighters. Other differentially methylated loci included genes that have been implicated in carcinogenesis in published studies (FOXK2, GYLTL1B, ZBTB16, ARHGEF10, and more). In this pilot study, we report differential DNA methylation between Hispanic and non-Hispanic firefighters in xenobiotic metabolism genes and other genes with functions related to cancer. Epigenetic susceptibility by ethnicity merits further study as this may alter risk for cancers linked to toxic exposures.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA,Jaclyn M Goodrich, Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Melissa A Furlong
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alesia M Jung
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Ken Batai
- Department of Urology, University of Arizona, Tucson, AZ, USA
| | - Timothy Jenkins
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Shawn Beitel
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Sally Littau
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA, USA
| | | | - Miriam M Calkins
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Jefferey L Burgess
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| |
Collapse
|
8
|
Gene expression in urinary incontinence and pelvic organ prolapse: a review of literature. Curr Opin Obstet Gynecol 2020; 32:441-448. [DOI: 10.1097/gco.0000000000000661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Rho GTPases in Gynecologic Cancers: In-Depth Analysis toward the Paradigm Change from Reactive to Predictive, Preventive, and Personalized Medical Approach Benefiting the Patient and Healthcare. Cancers (Basel) 2020; 12:cancers12051292. [PMID: 32443784 PMCID: PMC7281750 DOI: 10.3390/cancers12051292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.
Collapse
|
10
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
11
|
Lundbäck V, Kulyté A, Arner P, Strawbridge RJ, Dahlman I. Genome-Wide Association Study of Diabetogenic Adipose Morphology in the GENetics of Adipocyte Lipolysis (GENiAL) Cohort. Cells 2020; 9:cells9051085. [PMID: 32349335 PMCID: PMC7291295 DOI: 10.3390/cells9051085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
An increased adipocyte size relative to the size of fat depots, also denoted hypertrophic adipose morphology, is a strong risk factor for the future development of insulin resistance and type 2 diabetes. The regulation of adipose morphology is poorly understood. We set out to identify genetic loci associated with adipose morphology and functionally evaluate candidate genes for impact on adipocyte development. We performed a genome-wide association study (GWAS) in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort comprising 948 participants who have undergone abdominal subcutaneous adipose biopsy with a determination of average adipose volume and morphology. The GWAS identified 31 genetic loci displaying suggestive association with adipose morphology. Functional evaluation of candidate genes by small interfering RNAs (siRNA)-mediated knockdown in adipose-derived precursor cells identified six genes controlling adipocyte renewal and differentiation, and thus of potential importance for adipose hypertrophy. In conclusion, genetic and functional studies implicate a regulatory role for ATL2, ARHGEF10, CYP1B1, TMEM200A, C17orf51, and L3MBTL3 in adipose morphology by their impact on adipogenesis.
Collapse
Affiliation(s)
- Veroniqa Lundbäck
- Lipid laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, 171-77 Stockholm, Sweden; (V.L.); (A.K.); (P.A.)
| | - Agné Kulyté
- Lipid laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, 171-77 Stockholm, Sweden; (V.L.); (A.K.); (P.A.)
| | - Peter Arner
- Lipid laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, 171-77 Stockholm, Sweden; (V.L.); (A.K.); (P.A.)
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, College of Medicine, Veterinarian and Life Sciences, Glasgow G12-8RZ, UK;
- Department of Medicine Solna, Karolinska Institutet, 171-77 Stockholm, Sweden
- Health Data Research University of Glasgow, College of Medicine, Veterinarian and Life Sciences, Glasgow G12-8RZ, UK
| | - Ingrid Dahlman
- Lipid laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, 171-77 Stockholm, Sweden; (V.L.); (A.K.); (P.A.)
- Correspondence:
| |
Collapse
|
12
|
Matsuda M, Terai K. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. Pathol Int 2020; 70:379-390. [PMID: 32270554 PMCID: PMC7383902 DOI: 10.1111/pin.12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/03/2023]
Abstract
The invention of two‐photon excitation microscopes widens the potential application of intravital microscopy (IVM) to the broad field of experimental pathology. Moreover, the recent development of fluorescent protein‐based, genetically encoded biosensors provides an ideal tool to visualize the cell function in live animals. We start from a brief review of IVM with two‐photon excitation microscopes and genetically encoded biosensors based on the principle of Förster resonance energy transfer (FRET). Then, we describe how IVM using biosensors has revealed the pathogenesis of several disease models.
Collapse
Affiliation(s)
- Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|