1
|
Deng Z, Liu L, Xie G, Zheng Z, Li J, Tan W, Deng Y, Zhang J, Liang M, Wu Y, Zhou Z, Li Y, Chen Y, Huang Y, Su H, Wu G, Shi X, Cen S, Liao Y, Liu Y, Zou F, Chen X. Hsp90α promotes lipogenesis by stabilizing FASN and promoting FASN transcription via LXRα in hepatocellular carcinoma. J Lipid Res 2024:100721. [PMID: 39645039 DOI: 10.1016/j.jlr.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Excessive lipid accumulation promotes the occurrence and progression of hepatocellular carcinoma (HCC), accompanied by high levels of fatty acid synthetase (FASN) and more active lipogenesis. Heat shock protein 90 (Hsp90) acts as a chaperone to maintain the stability and activity of the client proteins. Studies have revealed that Hsp90 regulates the lipid metabolism of HCC, but the effect of Hsp90 on FASN still remains unknown. This study aims to discover the mechanism of Hsp90 inhibition on lipid accumulation and investigate the different effects of Hsp90 N-terminal domain inhibitor STA9090 and C-terminal domain inhibitor novobiocin (NB) on FASN protein stability and transcription pathway in HCC. We found that HCC cells tended to store lipids, which could be disrupted by Hsp90 inhibitors in vivo and in vitro. High levels of Hsp90α and FASN in tumor tissue had correlation with poor prognosis of HCC patients and Hsp90α interacted with FASN to maintain its protein stability. Furthermore, N-terminal domain of Hsp90α was essential for process of sterol regulatory element binding protein 1 (SREBP1) to activate FASN transcription and Hsp90α prevented proteasomal degradation of liver X receptor α (LXRα) to upregulate FASN transcription via LXRα/SREBP1 axis. Our data reveals that Hsp90α promotes lipid accumulation by increasing the protein stability and FASN mRNA transcription, and can be alleviated by Hsp90 inhibitors, which provides a theoretical basis for Hsp90-targeted therapy on lipid metabolism in HCC.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lixia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guantai Xie
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenming Zheng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jieyou Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenchong Tan
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yaotang Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jinxin Zhang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manfeng Liang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yingxia Wu
- Department of Hygiene Inspection and Quarantine Science, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou 510515, China
| | - Zhifeng Zhou
- Department of Hygiene Inspection and Quarantine Science, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou 510515, China
| | - Yan Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yukui Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yaling Huang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hairou Su
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guibing Wu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiongjie Shi
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shengpei Cen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yandan Liao
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yilin Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xuemei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
3
|
Yang G, Xiang J, Yang X, Liu X, Li Y, Li L, Kang L, Liang Z, Yang S. Nuclear translocation of SIRT4 mediates deacetylation of U2AF2 to modulate renal fibrosis through alternative splicing-mediated upregulation of CCN2. eLife 2024; 13:RP98524. [PMID: 39495216 PMCID: PMC11534337 DOI: 10.7554/elife.98524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
TGF-β stimulates CCN2 expression which in turn amplifies TGF-β signaling. This process promotes extracellular matrix production and accelerates the pathological progression of fibrotic diseases. Alternative splicing plays an important role in multiple disease development, while U2 small nuclear RNA auxiliary factor 2 (U2AF2) is an essential factor in the early steps of pre-mRNA splicing. However, the molecular mechanism underlying abnormal CCN2 expression upon TGF-β stimulation remains unclear. This study elucidates that SIRT4 acts as a master regulator for CCN2 expression in response to TGF-β by modulating U2AF2-mediated alternative splicing. Analyses of renal biopsy specimens from patients with CKD and mouse fibrotic kidney tissues revealed marked nuclear accumulation of SIRT4. The tubulointerstitial fibrosis was alleviated by global deletion or tubular epithelial cell (TEC)-specific knockout of Sirt4, and aggravated by adeno-associated virus-mediated SIRT4 overexpression in TECs. Furthermore, SIRT4 was found to translocate from the mitochondria to the cytoplasm through the BAX/BAK pore under TGF-β stimulation. In the cytoplasm, TGF-β activated the ERK pathway and induced the phosphorylation of SIRT4 at Ser36, which further promoted its interaction with importin α1 and subsequent nuclear translocation. In the nucleus, SIRT4 was found to deacetylate U2AF2 at K413, facilitating the splicing of CCN2 pre-mRNA to promote CCN2 protein expression. Importantly, exosomes containing anti-SIRT4 antibodies were found to effectively mitigate the UUO-induced kidney fibrosis in mice. Collectively, these findings indicated that SIRT4 plays a role in kidney fibrosis by regulating CCN2 expression via the pre-mRNA splicing.
Collapse
Affiliation(s)
- Guangyan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
| | - Xiaoxiao Yang
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of TechnologyHefeiChina
| | - Xiaomai Liu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
| | - Yanchun Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
| | - Lixing Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
| | - Lin Kang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
| | - Shu Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)GuangdongChina
| |
Collapse
|
4
|
Wang Q, Du T, Zhang Z, Zhang Q, Zhang J, Li W, Jiang JD, Chen X, Hu HY. Target fishing and mechanistic insights of the natural anticancer drug candidate chlorogenic acid. Acta Pharm Sin B 2024; 14:4431-4442. [PMID: 39525590 PMCID: PMC11544177 DOI: 10.1016/j.apsb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 11/16/2024] Open
Abstract
Chlorogenic acid (CGA) is a natural product that effectively inhibits tumor growth, demonstrated in many preclinical models, and phase II clinical trials for patients with glioma. However, its direct proteomic targets and anticancer molecular mechanisms remain unknown. Herein, we developed a novel bi-functional photo-affinity probe PAL/CGA and discovered mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) was one of the main target proteins of CGA by using affinity-based protein profiling (AfBPP) chemical proteomic approach. We performed in-depth studies on ACAT1/CGA interactions via multiple assays including SPR, ITC, and cryo-EM. Importantly, we demonstrated that CGA impaired cancer cell proliferation by inhibiting the phosphorylation of tetrameric ACAT1 on Y407 residue through a novel mode of action in vitro and in vivo. Our study highlights the use of AfBPP platforms in uncovering unique druggable modalities accessed by natural products. And identifying the molecular target of CGA sheds light on the future clinical application of CGA for cancer therapy.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jie Zhang
- Sichuan Jiuzhang Biological Science and Technology Co., Ltd., Chengdu 610041, China
| | - Wenbin Li
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Shi J, Yang R, Jiang X, Zhu K, Liu Z. Detection of the Fatty Acid Metabolism-Linked Genes in Lung Adenocarcinoma as Biomarkers for Clinical Prognosis and Immunotherapeutic Targets. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70013. [PMID: 39323079 PMCID: PMC11424681 DOI: 10.1111/crj.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Lung cancer, on a global scale, leads to the most common cases of cancer mortalities. Novel therapeutic approaches are urgently needed to disrupt this lethal disease. The rapid development of tumor immunology combining breakthroughs involving fatty acid metabolism brings possibilities. Directing fatty acid metabolism is supposed to help discover potential prognostic biomarkers and treatment targets for lung cancer. METHODS Through searching the GSE140797 dataset, we identified genes related to fatty acid metabolism as well as fatty acid metabolism-related differentially expressed genes (DEGs). We applied various methods to ascertain the independent prognostic value of the DEGs. The methods we utilized entail prognostic analysis, differential expression analysis, as well as univariate and multivariate Cox regression analyses. The lasso Cox regression model was utilized in examining how DEGs correlate with the immune score, immune checkpoint, ferroptosis, methylation, and OCLR score. The expression levels of ACAT1 and ACSL3 in tissues derived from normal lung and lung adenocarcinoma (LUAD) tissues were compared by qRT-PCR. RESULTS In this study, ACSL3 and ACAT1 were identified as fatty acid metabolism-related genes utilizing independent prognostic value and as a result, the risk prognostic model was built using these factors. qRT-PCR results implied that ACSL3 and ACAT1 expressions were upregulated and downregulated, correspondingly in tumor tissues. Additional evaluations suggested that ACSL3 and ACAT1 were affirmed to be remarkably correlated with the immune score, methylation, immune checkpoint, OCLR score, and ferroptosis. CONCLUSIONS ACSL3 and ACAT1 were effective prognostic biomarkers and potential immunotherapeutic targets in LUAD.
Collapse
Affiliation(s)
- Jingwei Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Rusong Yang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinyi Jiang
- Department of Cardiovascular and Thoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kangle Zhu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Deng B, Zhen J, Xiang Z, Li X, Tan C, Chen Y, He P, Ma J, Dong W. Unveiling and Validating the Role of Fatty Acid Metabolism in Ulcerative Colitis. J Inflamm Res 2024; 17:6345-6362. [PMID: 39291081 PMCID: PMC11407323 DOI: 10.2147/jir.s479011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ulcerative colitis (UC) is a debilitating intestinal disorder that imposes a significant burden on those affected. Fatty acid metabolism plays a pivotal role in regulating immune cell function and maintaining internal homeostasis. This study investigates the biological and clinical significance of fatty acid metabolism within the context of UC. Methods Gene expression profiles from patients with UC and healthy controls were retrieved, enabling the identification of differentially expressed genes (DEGs) specific to UC. These DEGs were then intersected with genes related to fatty acid metabolism, resulting in the identification of differentially expressed fatty acid metabolism-related genes (FAM-DEGs). Machine learning was employed to pinpoint key feature genes from the FAM-DEGs, which were subsequently used to construct a predictive UC model and to uncover molecular subtypes associated with fatty acid metabolism in UC. An animal model of UC was established using 3% dextran sulfate sodium (DSS) administration. Western blot analysis confirmed the expression levels of genes in intestinal tissues. Results The machine learning analysis identified three pivotal genes-ACAT1, ACOX2, and HADHB-culminating in a highly predictive nomogram. Consensus cluster analysis further categorized 637 UC samples into two distinct subgroups. The molecular subtypes related to fatty acid metabolism in UC exhibited significant differences in gene expression, biological activities, and enrichment pathways. Immune infiltration analysis highlighted elevated expression of two genes (excluding HADHB) in subtype 1, which corresponded with a marked increase in immune cell infiltration within this subtype. Western blot analysis demonstrated that ACAT1, ACOX2, and HADHB expression levels in the DSS group were significantly reduced, paralleling those observed in the normal group. Conclusion This study highlights the critical role of specific fatty acid metabolism-related genes in UC, emphasizing their potential as targets for therapeutic intervention and shedding light on the underlying mechanisms of UC progression.
Collapse
Affiliation(s)
- Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, People's Republic of China
| | - Junhai Zhen
- Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zixuan Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, People's Republic of China
| | - Xiangyun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, People's Republic of China
| | - Cheng Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, People's Republic of China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Zhao X, Liu Y, Li Y, Zhang Y, Yang C, Yao D. MiR-206 Suppresses Triacylglycerol Accumulation via Fatty Acid Elongase 6 in Dairy Cow Mammary Epithelial Cells. Animals (Basel) 2024; 14:2590. [PMID: 39272375 PMCID: PMC11394172 DOI: 10.3390/ani14172590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cow milk possesses high nutritional value due to its rich array of beneficial fatty acids. It is important to understand the mechanisms involved in lipid metabolism in dairy cows. These mechanisms are driven by a complex molecular regulatory network. In addition, there are many regulatory factors involved in the process of fatty acid metabolism, including transcription factors and non-coding RNAs, amongst others. MicroRNAs (miRNAs) can regulate the expression of target genes and modulate various biological processes, including lipid metabolism. Specifically, miR-206 has been reported to impair lipid accumulation in nonruminant hepatocytes. However, the effects and regulatory mechanisms of miR-206 on lipid metabolism in bovine mammary cells remain unclear. In the present study, we investigated the effects of miR-206 on lipid-related genes and TAG accumulation. The direct downstream gene of miR-206 was subsequently determined via a dual-luciferase assay. Finally, the fatty acid content of bovine mammary epithelial cells (BMECs) upon ELOVL6 inhibition was examined. The results revealed that miR-206 overexpression significantly decreased triacylglycerol (TAG) concentration and abundances of the following: acetyl-coenzyme A carboxylase alpha (ACACA); fatty acid synthase (FASN); sterol regulatory element binding transcription factor 1 (SREBF1); diacylglycerol acyltransferase 1 (DGAT1); 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6); lipin 1 (LPIN1); and fatty acid elongase 6 (ELOVL6). Overexpression of miR-206 was also associated with an increase in patatin-like phospholipase domain-containing 2 (PNPLA2), while inhibition of miR-206 promoted milk fat metabolism in vitro. In addition, we found that ELOVL6 is a direct target gene of miR-206 through mutation of the binding site. Furthermore, ELOVL6 intervention significantly decreased the TAG levels and elongation indexes of C16:0 and C16:1n-7 in BMECs. Finally, ELOVL6 siRNA partially alleviated the increased TAG accumulation caused by miR-206 inhibition. In summary, we found that miR-206 inhibits milk fatty acid synthesis and lipid accumulation by targeting ELOVL6 in BMECs. The results presented in this paper may contribute to the development of strategies for enhancing the quality of cow milk and its beneficial fatty acids, from the perspective of miRNA-mRNA networks.
Collapse
Affiliation(s)
- Xin Zhao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yu Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yupeng Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuxin Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Chunlei Yang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Dawei Yao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
8
|
Zheng M, Zhang S, Zhou J, Lin M, Liao Y. ACAT1 suppresses clear cell renal cell carcinoma progression by AMPK mediated fatty acid metabolism. Transl Oncol 2024; 47:102043. [PMID: 38909457 PMCID: PMC11254840 DOI: 10.1016/j.tranon.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Renal cell carcinoma (RCC) stands as a prevalent malignancy within urological pathology, exhibiting a noteworthy escalation in its incidence. Despite being a mitochondrial enzyme, the precise role of Acetyl-CoA Acetyltransferase 1 (ACAT1) in RCC remains elusive. In this investigation, we employed bioinformatics methodologies to assess the expression patterns and prognostic significance across various RCC subtypes, encompassing clear cell renal cell carcinoma (ccRCC), papillary cell carcinoma, and chromophobe cell carcinoma. Our findings unveil a close correlation between ACAT1 expression and the prognostic implications specifically within ccRCC. Through both in vitro and in vivo overexpression studies, we delineated the functional and mechanistic facets of ACAT1 in impeding the progression of ccRCC. Our results unequivocally demonstrated that ACAT1 overexpression markedly curtailed proliferation, invasion, and metastasis of ccRCC cells in both in vivo models and cell cultures. Mechanistically, ACAT1's inhibitory effect on the AMPK signaling pathway orchestrated a regulatory role in modulating fatty acid metabolism, thereby effectively restraining the advancement of ccRCC. Collectively, our findings underscore ACAT1 as a pivotal tumor suppressor, instrumental in curtailing the proliferation, migration, and invasion of ccRCC by governing fatty acid metabolism through the AMPK signaling pathway. These insights posit ACAT1 as a potential predictive biomarker and therapeutic target warranting further exploration in RCC management.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Urology, Jingzhou Central hospital affiliated to Yangtze University, 26 Chuyuan Avenue, Jing zhou District, Jingzhou City, 434000, China
| | - Shenghu Zhang
- Department of Urology, Jingzhou Central hospital affiliated to Yangtze University, 26 Chuyuan Avenue, Jing zhou District, Jingzhou City, 434000, China
| | - Jiajie Zhou
- Department of Urology, Jingzhou Central hospital affiliated to Yangtze University, 26 Chuyuan Avenue, Jing zhou District, Jingzhou City, 434000, China
| | - Ming Lin
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060, China
| | - Yixiang Liao
- Department of Urology, Jingzhou Central hospital affiliated to Yangtze University, 26 Chuyuan Avenue, Jing zhou District, Jingzhou City, 434000, China.
| |
Collapse
|
9
|
He W, Li Y, Liu SB, Chang Y, Han S, Han X, Ma Z, Amin HM, Song YH, Zhou J. From mitochondria to tumor suppression: ACAT1's crucial role in gastric cancer. Front Immunol 2024; 15:1449525. [PMID: 39247186 PMCID: PMC11377227 DOI: 10.3389/fimmu.2024.1449525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Acetyl CoA acetyltransferase 1 (ACAT1), a mitochondrial enzyme, is mainly involved in the formation and decomposition of ketones, isoleucine, and fatty acids. Previous clinical studies showed that mutations in the ACAT1 gene lead to ketoacidosis, Notably the role of ACAT1 in human cancer' pathogenesis varies depending on cancer type, and its specific role in gastric cancer remains largely unknown. In the current study, we found that the expression of ACAT1 in primary late-stage gastric cancer tumor tissues was significantly lower than in early-stage tumors. This observation was further confirmed in high-grade gastric cancer cell line MKN45. The expression of CD44 and OCT4 was decreased, while CD24 expression was increased by overexpressing ACAT1 in MKN45 gastric cancer cells. Moreover, the ability of gastric cancer cells to form colonies on soft agar was also reduced by ACAT1 overexpression. Likewise, overexpression of ACAT1 inhibited epithelial mesenchymal transition (EMT) in gastric cancer cells evidenced by increased expression of the epithelial marker E-Cadherin, decreased expression of mesenchymal marker vimentin, and decreased expression levels of SNAI 1/3. In addition, ACAT1 overexpression inhibited cell migration and invasion, improved the response to 5-Fluorouracil (5-FU) and etoposide. In contrast, inhibition of ACAT1 activity promoted the proliferation of gastric cancer cells. The xenotransplantation results in nude mice showed that overexpression of ACAT1 in gastric cancer cells inhibited tumor growth in vivo. In addition, the low expression of ACAT1 in gastric cancer was further validated by searching public databases and conducting bioinformatic analyses. Mechanistically, bioinformatic analysis found that the inhibitory effect of ACAT1 in gastric cancer may be related to the Adipocytokine Signaling Pathway, Ppar Signaling Pathway, Propanoate Metabolism and P53 Signaling Pathway. Correlation analysis indicated ACAT1 mRNA expression was correlated with immune infiltrates. Collectively, our data show that ACAT1 induces pronounced inhibitory effects on gastric cancer initiation and development, which may impact future strategies to treat this aggressive cancer.
Collapse
Affiliation(s)
- Wei He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Yanfang Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Ying Chang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Shiyuan Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Xingyu Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Zixin Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hesham M Amin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Huang HX, Zhong PY, Li P, Peng SJ, Ding XJ, Cai XL, Chen JH, Zhu X, Lu ZH, Tao XY, Liu YY, Chen L. Development and Validation of a Carbohydrate Metabolism-Related Model for Predicting Prognosis and Immune Landscape in Hepatocellular Carcinoma Patients. Curr Med Sci 2024; 44:771-788. [PMID: 39096475 DOI: 10.1007/s11596-024-2886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/30/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE The activities and products of carbohydrate metabolism are involved in key processes of cancer. However, its relationship with hepatocellular carcinoma (HCC) is unclear. METHODS The cancer genome atlas (TCGA)-HCC and ICGC-LIRI-JP datasets were acquired via public databases. Differentially expressed genes (DEGs) between HCC and control samples in the TCGA-HCC dataset were identified and overlapped with 355 carbohydrate metabolism-related genes (CRGs) to obtain differentially expressed CRGs (DE-CRGs). Then, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were applied to identify risk model genes, and HCC samples were divided into high/low-risk groups according to the median risk score. Next, gene set enrichment analysis (GSEA) was performed on the risk model genes. The sensitivity of the risk model to immunotherapy and chemotherapy was also explored. RESULTS A total of 8 risk model genes, namely, G6PD, PFKFB4, ACAT1, ALDH2, ACYP1, OGDHL, ACADS, and TKTL1, were identified. Moreover, the risk score, cancer status, age, and pathologic T stage were strongly associated with the prognosis of HCC patients. Both the stromal score and immune score had significant negative/positive correlations with the risk score, reflecting the important role of the risk model in immunotherapy sensitivity. Furthermore, the stromal and immune scores had significant negative/positive correlations with risk scores, reflecting the important role of the risk model in immunotherapy sensitivity. Eventually, we found that high-/low-risk patients were more sensitive to 102 drugs, suggesting that the risk model exhibited sensitivity to chemotherapy drugs. The results of the experiments in HCC tissue samples validated the expression of the risk model genes. CONCLUSION Through bioinformatic analysis, we constructed a carbohydrate metabolism-related risk model for HCC, contributing to the prognosis prediction and treatment of HCC patients.
Collapse
Affiliation(s)
- Hong-Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Pei-Yuan Zhong
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Ping Li
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Su-Juan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin-Jing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiang-Lian Cai
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jin-Hong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhi-Hui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xing-Yu Tao
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang-Yang Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
11
|
Zhang Y, Xu W, Peng C, Ren S, Zhang C. Intricate effects of post-translational modifications in liver cancer: mechanisms to clinical applications. J Transl Med 2024; 22:651. [PMID: 38997696 PMCID: PMC11245821 DOI: 10.1186/s12967-024-05455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Liver cancer is a significant global health challenge, with hepatocellular carcinoma (HCC) being the most prevalent form, characterized by high incidence and mortality rates. Despite advances in targeted therapies and immunotherapies, the prognosis for advanced liver cancer remains poor. This underscores the urgent need for a deeper understanding of the molecular mechanisms underlying HCC to enable early detection and the development of novel therapeutic strategies. Post-translational modifications (PTMs) are crucial regulatory mechanisms in cellular biology, affecting protein functionality, interactions, and localization. These modifications, including phosphorylation, acetylation, methylation, ubiquitination, and glycosylation, occur after protein synthesis and play vital roles in various cellular processes. Recent advances in proteomics and molecular biology have highlighted the complex networks of PTMs, emphasizing their critical role in maintaining cellular homeostasis and disease pathogenesis. Dysregulation of PTMs has been associated with several malignant cellular processes in HCC, such as altered cell proliferation, migration, immune evasion, and metabolic reprogramming, contributing to tumor growth and metastasis. This review aims to provide a comprehensive understanding of the pathological mechanisms and clinical implications of various PTMs in liver cancer. By exploring the multifaceted interactions of PTMs and their impact on liver cancer progression, we highlight the potential of PTMs as biomarkers and therapeutic targets. The significance of this review lies in its potential to inform the development of novel therapeutic approaches and improve prognostic tools for early intervention in the fight against liver cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Ding Z, Zhang J, Choudhury M. A High-Fat and High-Fructose Diet Exacerbates Liver Dysfunction by Regulating Sirtuins in a Murine Model. Life (Basel) 2024; 14:729. [PMID: 38929712 PMCID: PMC11205069 DOI: 10.3390/life14060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly emerging as the most prevalent chronic liver disease, closely linked to the escalating rates of diabesity. The Western diet's abundance of fat and fructose significantly contributes to MASLD, disrupting hepatic glucose metabolism. We previously demonstrated that a high-fat and high-fructose diet (HFHFD) led to increased body and liver weight compared to the low-fat diet (LFD) group, accompanied by glucose intolerance and liver abnormalities, indicating an intermediate state between fatty liver and liver fibrosis in the HFHFD group. Sirtuins are crucial epigenetic regulators associated with energy homeostasis and play a pivotal role in these hepatic dysregulations. Our investigation revealed that HFHFD significantly decreased Sirt1 and Sirt7 gene and protein expression levels, while other sirtuins remained unchanged. Additionally, glucose 6-phosphatase (G6Pase) gene expression was reduced in the HFHFD group, suggesting a potential pathway contributing to fibrosis progression. Chromatin immunoprecipitation analysis demonstrated a significant increase in histone H3 lysine 18 acetylation within the G6Pase promoter in HFHFD livers, potentially inhibiting G6Pase transcription. In summary, HFHFD may inhibit liver gluconeogenesis, potentially promoting liver fibrosis by regulating Sirt7 expression. This study offers an epigenetic perspective on the detrimental impact of fructose on MASLD progression.
Collapse
Affiliation(s)
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843-1114, USA
| |
Collapse
|
13
|
Kara-Ali GH, Cano L, Dion S, Imerzoukene G, Hamon A, Simoes Eugénio M, Piquet-Pellorce C, Ghukasyan G, Samson M, Le Seyec J, Dimanche-Boitrel MT. Trim21 deficiency in mice increases HCC carcinogenesis in a NASH context and is associated with immune checkpoint upregulation. Int J Cancer 2024; 154:1999-2013. [PMID: 38308587 DOI: 10.1002/ijc.34869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The global pandemic of metabolic diseases has increased the incidence of hepatocellular carcinoma (HCC) in the context of non-alcoholic steatohepatitis (NASH). The downregulation of the E3 ubiquitin ligase TRIM21 has been linked to poor prognosis in different cancers including HCC. In order to investigate the role of TRIM21 in liver cancer progression on NASH, Trim21+/+ and Trim21-/- male mice were injected with streptozotocin at the neonatal stage. The hypoinsulinemic mice were then fed with a high-fat high-cholesterol diet (HFHCD) for 4, 8 or 12 weeks. All mice developed NASH which systematically resulted in HCC progression. Interestingly, compared to the Trim21+/+ control mice, liver damage was worsened in Trim21-/- mice, with more HCC nodules found after 12 weeks on HFHCD. Immune population analysis in the spleen and liver revealed a higher proportion of CD4+PD-1+ and CD8+PD-1+ T cells in Trim21-/- mice. The liver and HCC tumors of Trim21-/- mice also exhibited an increase in the number of PD-L1+ and CD68+ PD-L1+ cells. Thus, TRIM21 limits the emergence of HCC nodules in mice with NASH by potentially restricting the expression of PD-1 in lymphocytes and PD-L1 in tumors.
Collapse
Affiliation(s)
- Ghania Hounana Kara-Ali
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Luis Cano
- INRAE, CHU Pontchaillou, Inserm, UMR 1241 Numecan, Univ. Rennes, Rennes, France
| | - Sarah Dion
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Ghiles Imerzoukene
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Annaig Hamon
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Mélanie Simoes Eugénio
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Claire Piquet-Pellorce
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Gevorg Ghukasyan
- Plateforme d'Histopathologie de Haute Précision (H2P2), Université de Rennes, Rennes, France
| | - Michel Samson
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Jacques Le Seyec
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Marie-Thérèse Dimanche-Boitrel
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| |
Collapse
|
14
|
Yu X, Feng B, Wu J, Li M. A novel anoikis-related gene signature can predict the prognosis of hepatocarcinoma patients. Transl Cancer Res 2024; 13:1834-1847. [PMID: 38737687 PMCID: PMC11082671 DOI: 10.21037/tcr-23-2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 05/14/2024]
Abstract
Background Hepatocellular carcinoma (HCC) is a major health problem with more than 850,000 cases per year worldwide. This cancer is now the third leading cause of cancer-related deaths worldwide, and the number is rising. Cancer cells develop anoikis resistance which is a vital step during cancer progression and metastatic colonization. However, there is not much research that specifically addresses the role of anoikis in HCC, especially in terms of prognosis. Methods This study obtained gene expression data and clinical information from 371 HCC patients through The Cancer Genome Atlas (TCGA) Program and The Gene Expression Omnibus (GEO) databases. A total of 516 anoikis-related genes (ANRGs) were retrieved from GeneCard database and Harmonizome portal. Differential expression analysis identified 219 differentially expressed genes (DEGs), and univariate Cox regression analysis was utilized to select 99 ANRGs associated with the prognosis of HCC patients. A risk scoring model with seven genes was established using the least absolute shrinkage and selection operator (LASSO) regression model, and internal validation of the model was performed. Results The identified 99 ANRGs are closely associated with the prognosis of HCC patients. The risk scoring model based on seven characteristic genes demonstrates excellent predictive performance, further validated by receiver operating characteristic (ROC) curves and Kaplan-Meier survival curves. The study reveals significant differences in immune cell infiltration, gene expression, and survival status among different risk groups. Conclusions The prognosis of HCC patients can be predicted using a unique prognostic model built on ANRGs in HCC.
Collapse
Affiliation(s)
- Xiaohan Yu
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, China
| | - Bo Feng
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, China
| | - Jinge Wu
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, China
| | - Meng Li
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, China
| |
Collapse
|
15
|
Sun T, Xiao X. Targeting ACAT1 in cancer: from threat to treatment. Front Oncol 2024; 14:1395192. [PMID: 38720812 PMCID: PMC11076747 DOI: 10.3389/fonc.2024.1395192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Altered cholesterol metabolism has been identified as a critical feature of cancers. Cholesterol functions as the main component of cell membrane, cholesterol and is required for sustaining membrane integrity and mediating signaling transduction for cell survival. The intracellular level of cholesterol is dynamically regulated. Excessive cholesterol could be converted to less toxic cholesteryl esters by acyl-coenzyme A:cholesterol acyltransferases (ACATs). While ACAT2 has limited value in cancers, ACAT1 has been found to be widely participated in tumor initiation and progression. Moreover, due to the important role of cholesterol metabolism in immune function, ACAT1 is also essential for regulating anti-tumor immunity. ACAT1 inhibition may be exploited as a potential strategy to enhance the anti-tumor immunity and eliminate tumors. Herein, a comprehensive understanding of the role of ACAT1 in tumor development and anti-tumor immunity may provide new insights for anti-tumor strategies.
Collapse
Affiliation(s)
| | - Xuan Xiao
- Department of Thyroid and Breast Surgery, People’s Hospital of China Medical University (Liaoning Provincial People’s Hospital), Shenyang, China
| |
Collapse
|
16
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
17
|
Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15:1377722. [PMID: 38550587 PMCID: PMC10972981 DOI: 10.3389/fimmu.2024.1377722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Liver cancer is the third leading of tumor death, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors (ICIs) are yielding much for sufferers to hope for patients, but only some patients with advanced liver tumor respond. Recent research showed that tumor microenvironment (TME) is critical for the effectiveness of ICIs in advanced liver tumor. Meanwhile, metabolic reprogramming of liver tumor leads to immunosuppression in TME. These suggest that regulating the abnormal metabolism of liver tumor cells and firing up TME to turn "cold tumor" into "hot tumor" are potential strategies to improve the therapeutic effect of ICIs in liver tumor. Previous studies have found that YAP1 is a potential target to improve the efficacy of anti-PD-1 in HCC. Here, we review that YAP1 promotes immunosuppression of TME, mainly due to the overstimulation of cytokines in TME by YAP1. Subsequently, we studied the effects of YAP1 on metabolic reprogramming in liver tumor cells, including glycolysis, gluconeogenesis, lipid metabolism, arachidonic acid metabolism, and amino acid metabolism. Lastly, we summarized the existing drugs targeting YAP1 in the treatment of liver tumor, including some medicines from natural sources, which have the potential to improve the efficacy of ICIs in the treatment of liver tumor. This review contributed to the application of targeted YAP1 for combined therapy with ICIs in liver tumor patients.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Basic Laboratory of Integrated Traditional Chinese and Western, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
18
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
19
|
Wu K, Lin F. Lipid Metabolism as a Potential Target of Liver Cancer. J Hepatocell Carcinoma 2024; 11:327-346. [PMID: 38375401 PMCID: PMC10875169 DOI: 10.2147/jhc.s450423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a severe malignant tumor with a profound impact on overall health, often accompanied by an unfavorable prognosis. Despite some advancements in the diagnosis and treatment of this disease, improving the prognosis of HCC remains a formidable challenge. It is noteworthy that lipid metabolism plays a pivotal role in the onset, development, and progression of tumor cells. Existing research indicates the potential application of targeting lipid metabolism in the treatment of HCC. This review aims to thoroughly explore the alterations in lipid metabolism in HCC, offering a detailed account of the potential advantages associated with innovative therapeutic strategies targeting lipid metabolism. Targeting lipid metabolism holds promise for potentially enhancing the prognosis of HCC.
Collapse
Affiliation(s)
- Kangze Wu
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Feizhuan Lin
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| |
Collapse
|
20
|
Zhao L, Pei R, Ding Y, Su Z, Li D, Zhu S, Xu L, Zhao H, Zhou W. LOXL4 Shuttled by Tumor Cells-derived Extracellular Vesicles Promotes Immune Escape in Hepatocellular Carcinoma by Activating the STAT1/PD-L1 Axis. J Immunother 2024; 47:64-76. [PMID: 38047403 DOI: 10.1097/cji.0000000000000496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/18/2023] [Indexed: 12/05/2023]
Abstract
Emerging evidence has validated that extracellular vesicles (EVs) regulate hepatocellular carcinoma (HCC) progression, while its role in HCC immune escape remains to be elucidated. This study investigates the role of EVs-encapsulated lysyl oxidase like-4 (LOXL4) derived from tumor cells in HCC immune escape. HCC-related microarray data sets GSE36376 and GSE87630 were obtained for differential analysis, followed by identifying the essential genes related to the prognosis of HCC patients. Bone marrow-derived macrophages were treated with EVs derived from mouse Hepa 1-6 cells and cocultured with CD8 + T cells to observe the CD8 + T-cell activity. At last, a mouse HCC orthotopic xenograft model was constructed to verify the effects of HCC cell-derived EVs on the immune escape of HCC cells and tumorigenicity in vivo by delivering LOXL4. It was found that ACAT1, C4BPA, EHHADH, and LOXL4 may be the essential genes related to the prognosis of HCC patients. On the basis of the TIMER database, there was a close correlation between LOXL4 and macrophage infiltration in HCC. Besides, STAT1 was closely related to LOXL4. In vitro experiments demonstrated that LOXL4 could induce programmed death-ligand 1 expression in macrophages and immunosuppression by activating STAT1. In vivo experiments also verified that HCC cell-derived EVs promoted the immune escape of HCC cells and tumorigenicity by delivering LOXL4. LOXL4 was delivered into macrophages via EVs to induce programmed death-ligand 1 by activating STAT1 and inhibiting the killing ability of CD8 + T cells to HCC cells, thus promoting immune escape in HCC.
Collapse
Affiliation(s)
- Le Zhao
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Ruifeng Pei
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Yiren Ding
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Zhan Su
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Deqiang Li
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Shuo Zhu
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Lu Xu
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Hongying Zhao
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Wuyuan Zhou
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| |
Collapse
|
21
|
Xiao Y, Yang Y, Xiong H, Dong G. The implications of FASN in immune cell biology and related diseases. Cell Death Dis 2024; 15:88. [PMID: 38272906 PMCID: PMC10810964 DOI: 10.1038/s41419-024-06463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Fatty acid metabolism, particularly fatty acid synthesis, is a very important cellular physiological process in which nutrients are used for energy storage and biofilm synthesis. As a key enzyme in the fatty acid metabolism, fatty acid synthase (FASN) is receiving increasing attention. Although previous studies on FASN have mainly focused on various malignancies, many studies have recently reported that FASN regulates the survival, differentiation, and function of various immune cells, and subsequently participates in the occurrence and development of immune-related diseases. However, few studies to date systematically summarized the function and molecular mechanisms of FASN in immune cell biology and related diseases. In this review, we discuss the regulatory effect of FASN on immune cells, and the progress in research on the implications of FASN in immune-related diseases. Understanding the function of FASN in immune cell biology and related diseases can offer insights into novel treatment strategies for clinical diseases.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272007, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
22
|
Hao XL, Lv YF, Li DF, Bai FH, Gong J, Pan GQ, Su LX, Wang YL, Fu WL, Liu B, Huang L, Yan D, Tan QL, Liu JY, Guo QN. TC2N inhibits distant metastasis and stemness of breast cancer via blocking fatty acid synthesis. J Transl Med 2024; 22:6. [PMID: 38167440 PMCID: PMC10763294 DOI: 10.1186/s12967-023-04721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Tandem C2 domains, nuclear (TC2N) is a C2 domain-containing protein that belongs to the carboxyl-terminal type (C-type) tandem C2 protein family, and acts as an oncogenic driver in several cancers. Previously, we preliminarily reported that TC2N mediates the PI3K-Akt signaling pathway to inhibit tumor growth of breast cancer (BC) cells. Beyond that, its precise biological functions and detailed molecular mechanisms in BC development and progression are not fully understood. METHODS Tumor tissues of 212 BC patients were subjected to tissue microarray and further assessed the associations of TC2N expression with pathological parameters and FASN expression. The protein levels of TC2N and FASN in cell lines and tumor specimens were monitored by qRT-PCR, WB, immunofluorescence and immunohistochemistry. In vitro cell assays, in vivo nude mice model was used to assess the effect of TC2N ectopic expression on tumor metastasis and stemness of breast cancer cells. The downstream signaling pathway or target molecule of TC2N was mined using a combination of transcriptomics, proteomics and lipidomics, and the underlying mechanism was explored by WB and co-IP assays. RESULTS Here, we found that the expression of TC2N remarkedly silenced in metastatic and poorly differentiated tumors. Function-wide, TC2N strongly inhibits tumor metastasis and stem-like properties of BC via inhibition of fatty acid synthesis. Mechanism-wise, TC2N blocks neddylated PTEN-mediated FASN stabilization by a dual mechanism. The C2B domain is crucial for nuclear localization of TC2N, further consolidating the TRIM21-mediated ubiquitylation and degradation of FASN by competing with neddylated PTEN for binding to FASN in nucleus. On the other hand, cytoplasmic TC2N interacts with import proteins, thereby restraining nuclear import of PTEN to decrease neddylated PTEN level. CONCLUSIONS Altogether, we demonstrate a previously unidentified role and mechanism of TC2N in regulation of lipid metabolism and PTEN neddylation, providing a potential therapeutic target for anti-cancer.
Collapse
Affiliation(s)
- Xiang-Lin Hao
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - De-Feng Li
- Clinical Medical Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Fu-Hai Bai
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Ji Gong
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Lin-Xi Su
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Ya-Li Wang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Wan-Lei Fu
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Dong Yan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Qiu-Lin Tan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
23
|
Li C, Chen F, Lin L, Li J, Zheng Y, Chen Q. CSE triggers ferroptosis via SIRT4-mediated GNPAT deacetylation in the pathogenesis of COPD. Respir Res 2023; 24:301. [PMID: 38041059 PMCID: PMC10691148 DOI: 10.1186/s12931-023-02613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND It is now understood that ferroptosis plays a significant role in the progression of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke extract (CSE). However, the mechanisms underlying this relationship remain largely unclear. METHODS In this study, we established a COPD mouse model through exposure to cigarette smoke particulates, followed by H&E staining, analysis of bronchoalveolar lavage fluid, and immunohistochemistry assay. A549 cells were exposed to increasing concentrations of CSE, with the addition of the ferroptosis activator erastin or the inhibitor Fer-1. Cell viability, LDH (lactate dehydrogenase) release, inflammatory cytokines, total ROS (reactive oxygen species), and lipid ROS were measured using the corresponding assay kits. The acetylation level of GNPAT was determined through immunoprecipitation. We assessed the expression levels of molecules involved in plasmalogen biosynthesis (FAR1, AGPS, and GNPAT), GPX4, and SIRT4 using quantitative real-time PCR, western blot analysis, and immunofluorescence staining. RESULTS CSE-induced lung tissue damage was initially observed, accompanied by oxidative stress, ferroptosis, and increased plasmalogen biosynthesis molecules (FAR1, AGPS, and GNPAT). CSE also induced ferroptosis in A549 cells, resulting in reduced cell viability, GSH, and GPX4 levels, along with increased LDH, ROS, MDA (malondialdehyde) levels, oxidized lipids, and elevated FAR1, AGPS, and GNPAT expression. Knockdown of GNPAT mitigated CSE-induced ferroptosis. Furthermore, we found that CSE regulated the acetylation and protein levels of GNPAT by modulating SIRT4 expression. Importantly, the overexpression of GNPAT countered the inhibitory effects of SIRT4 on ferroptosis. CONCLUSIONS Our study revealed GNPAT could be deacetylated by SIRT4, providing novel insights into the mechanisms underlying the relationship between CSE-induced ferroptosis and COPD.
Collapse
Affiliation(s)
- Congping Li
- Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, 570311, China
| | - Fei Chen
- Department of Laboratory, AffIliated to Shanghai Jiao Tong University School of Medicine Shanghai Children's Medical Center, Hainan Branch, Sanya City, Hainan Province, 572000, China
| | - Liangfen Lin
- Pulmonary and Critical Care Medicine, DingAn People's Hospital, Dingan City, Hainan Province, 571200, China
| | - Jiwei Li
- Pulmonary and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19 Xiuhua Road, Xiuying District, Haikou City, Hainan Province, 570311, China
| | - Yamei Zheng
- Pulmonary and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19 Xiuhua Road, Xiuying District, Haikou City, Hainan Province, 570311, China
| | - Qingyun Chen
- Pulmonary and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19 Xiuhua Road, Xiuying District, Haikou City, Hainan Province, 570311, China.
| |
Collapse
|
24
|
Chan KKS, Au KY, Suen LH, Leung B, Wong CY, Leow WQ, Lim TKH, Ng IOL, Chung CYS, Lo RCL. Sortilin-Driven Cancer Secretome Enhances Tumorigenic Properties of Hepatocellular Carcinoma via de Novo Lipogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2156-2171. [PMID: 37673328 DOI: 10.1016/j.ajpath.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
A growing body of evidence suggests de novo lipogenesis as a key metabolic pathway adopted by cancers to fuel tumorigenic processes. While increased de novo lipogenesis has also been reported in hepatocellular carcinoma (HCC), understanding on molecular mechanisms driving de novo lipogenesis remains limited. In the present study, the functional role of sortilin, a member of the vacuolar protein sorting 10 protein receptor family, in HCC was investigated. Sortilin was overexpressed in HCC and was associated with poorer survival outcome. In functional studies, sortilin-overexpressing cells conferred tumorigenic phenotypes, namely, self-renewal and metastatic potential, of HCC cells via the cancer secretome. Proteomic profiling highlighted fatty acid metabolism as a potential molecular pathway associated with sortilin-driven cancer secretome. This finding was validated by the increased lipid content and expression of fatty acid synthase (FASN) in HCC cells treated with conditioned medium collected from sortilin-overexpressing cells. The enhanced tumorigenic properties endowed by sortilin-driven cancer secretome were partly abrogated by co-administration of FASN inhibitor C75. Further mechanistic dissection suggested protein stabilization by post-translational modification with O-GlcNAcylation as a major mechanism leading to augmented FASN expression. In conclusion, the present study uncovered the role of sortilin in hepatocarcinogenesis via modulation of the cancer secretome and deregulated lipid metabolism.
Collapse
Affiliation(s)
- Kristy Kwan-Shuen Chan
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan-Yung Au
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Long-Hin Suen
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bernice Leung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Yan Wong
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital & Duke-NUS Medical School, Singapore
| | - Tony Kiat-Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital & Duke-NUS Medical School, Singapore
| | - Irene Oi-Lin Ng
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Clive Yik-Sham Chung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Hsu CH, Yu YL. The interconnected roles of TRIM21/Ro52 in systemic lupus erythematosus, primary Sjögren's syndrome, cancers, and cancer metabolism. Cancer Cell Int 2023; 23:289. [PMID: 37993883 PMCID: PMC10664372 DOI: 10.1186/s12935-023-03143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Protein tripartite motif-containing 21 (TRIM21/Ro52), an E3 ubiquitin ligase, is an essential regulator of innate immunity, and its dysregulation is closely associated with the development of autoimmune diseases, predominantly systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS). TRIM21 /Ro52 also features anti-cancer and carcinogenic functions according to different malignancies. The interconnected role of TRIM21/Ro52 in regulating autoimmunity and cell metabolism in autoimmune diseases and malignancies is implicated. In this review, we summarize current findings on how TRIM21/Ro52 affects inflammation and tumorigenesis, and investigate the relationship between TRIM21/Ro52 expression and the formation of lymphoma and breast cancer in SLE and pSS populations.
Collapse
Affiliation(s)
- Chueh-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
- Institute of Translational Medicine and New Drug Development, Taichung, 40402, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
26
|
Yan P, Luo Y, Huang Z, Mou T, Yang H, Peng D, Wu Z. Establishment of a prognostic signature based on fatty acid metabolism genes in HCC associated with hepatitis B. BMC Gastroenterol 2023; 23:390. [PMID: 37957550 PMCID: PMC10644542 DOI: 10.1186/s12876-023-03026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) is one of the most common and deadly cancer and often accompanied by varying degrees of liver damage, leading to the dysfunction of fatty acid metabolism (FAM). This study aimed to investigate the relationship between FAM and HBV-associated HCC and identify FAM biomarkers for predicting the prognosis of HBV-associated HCC. METHODS Gene Set Enrichment Analysis (GSEA) was used to analyze the difference of FAM pathway between paired tumor and adjacent normal tissue samples in 58 HBV-associated HCC patients from the Gene Expression Omnibus (GEO) database. Next, 117 HBV-associated HCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to establish a prognostic signature based on 42 FAM genes. Then, the prognostic signature was validated in an external cohort consisting of 30 HBV-associated HCC patients. Finally, immune infiltration analysis was performed to evaluate the FAM-related immune cells in HBV-associated HCC. RESULTS As a result, FAM pathway was clearly downregulated in tumor tissue of HBV-associated HCC, and survival analysis demonstrated that 12 FAM genes were associated with the prognosis of HBV-associated HCC. Lasso-penalized Cox regression analysis identified and established a five-gene signature (ACADVL, ACAT1, ACSL3, ADH4 and ECI1), which showed effective discrimination and prediction for the prognosis of HBV-associated HCC both in the TCGA cohort and the validation cohort. Immune infiltration analysis showed that the high-risk group, identified by FAM signature, of HBV-associated HCC had a higher ratio of Tregs, which was associated with the prognosis. CONCLUSIONS Collectively, these findings suggest that there is a strong connection between FAM and HBV-associated HCC, indicating a potential therapeutic strategy targeting FAM to block the accumulation of Tregs into the tumor microenvironment of HBV-associated HCC.
Collapse
Affiliation(s)
- Ping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yunhai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Hang Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Dadi Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
27
|
Liu F, Liao Z, Qin L, Zhang Z, Zhang Q, Han S, Zeng W, Zhang H, Liu Y, Song J, Chen W, Zhu H, Liang H, Chen X, Zhang B, Zhang Z. Targeting VPS72 inhibits ACTL6A/MYC axis activity in HCC progression. Hepatology 2023; 78:1384-1401. [PMID: 36631007 PMCID: PMC10581431 DOI: 10.1097/hep.0000000000000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS HCC is a highly heterogeneous disease that is caused largely by genomic copy number variations. Herein, the mechanistic and therapeutically targeted role of vacuolar protein sorting 72 homologue (VPS72), a novel copy number variation cis-driven gained gene identified by genome-wide copy number variation and transcriptome analyses in HCC, is not well understood. APPROACH AND RESULTS First, overexpression of VPS72 enhanced the initiation and progression of HCC in vitro and in vivo . Mechanistically, VPS72 interacted with the oncoproteins MYC and actin-like 6A (ACTL6A) and promoted the formation of the ACTL6A/MYC complex. Furthermore, ACTL6A regulated VPS72 protein stability by weakening the interaction between tripartite motif containing 21 (TRIM21) and VPS72. Thus, the interaction between VPS72 and ACTL6A enhanced the affinity of MYC for its target gene promoters and promoted their transcription, thereby contributing to HCC progression, which was inhibited by adeno-associated virus serotype 8 (AAV8)-mediated short hairpin RNA (shRNA) against VPS72. CONCLUSIONS This study reveals the molecular mechanism of ACTL6A/VPS72/MYC in HCC, providing a theoretical basis and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Qiaofeng Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| |
Collapse
|
28
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
29
|
Zhao Q, Cheng J, Gao A, Wang J, Lu H, Jiang S, Li X, Ni J, Dong W, Lai S, Gong J, Zhu H, Liang Y. Duodenal-Jejunal bypass improves metabolism and re-models extra cellular matrix through modulating ceRNA network. Genomics 2023; 115:110744. [PMID: 37972907 DOI: 10.1016/j.ygeno.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/29/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Bariatric surgery (BS) is an effective approach in treating obesity and ameliorating T2DM with obesity. Our previous studies demonstrated that duodenal-jejunal bypass (DJB) altered long non-coding RNAs (lncRNAs) in the gastrointestinal system, which is associated with modulation of lipid metabolism, and glycemic control through entero-pancreatic axis and gut-brain axis. The adipose non-coding RNA expression profile and the underlying competing endogenous RNA (ceRNA) regulatory network pattern post DJB needs further research and investigation. RESULTS In this study, we compared the lncRNAs, circular RNAs (circRNAs) and messenger RNAs (mRNAs) expression in adipose tissues between the sham group and the DJB group. 2219 differentially expressed mRNAs (DEmRNAs), 722 differential expression of lncRNAs (DElncRNAs) and 425 differential expression of circRNAs (DEcircRNAs) were identified. GO terms and KEGG pathways analysis of the DEmRNAs implied that the dysregulated adipose mRNAs were associated with lipid, amino acid metabolism, insulin resistance, and extra cellular matrix (ECM)-related pathways. Moreover, via analyzing ceRNA regulatory networks of DElncRNAs and DEcircRNAs, 31 hub DE mRNAs, especially Mpp7, 9330159F19Rik, Trhde. Trdn, Sorbs2, were found on these pathways. CONCLUSIONS The role of DJB in adipose tends to remodel ECM and improve the energy metabolism through the ceRNA regulatory network.
Collapse
Affiliation(s)
- Qingnan Zhao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China; Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jiaxin Cheng
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China; Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Aimei Gao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Jianqiao Wang
- School of pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Shan Jiang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaojing Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Jiahao Ni
- Xuhui Health Management and Development Center,50 yongchuan Road, Xuhui, Shanghai 200030, China
| | - Wenmin Dong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Shenjin Lai
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| | - Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| | - Yongjun Liang
- Fudan Zhangjiang Institute, Shanghai 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 201399 Shanghai, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai 201399, China.
| |
Collapse
|
30
|
Zhang J, Zhou Y, Feng J, Xu X, Wu J, Guo C. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: current advances and future directions. Biomed Pharmacother 2023; 167:115538. [PMID: 37729731 DOI: 10.1016/j.biopha.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Tripartite motif (TRIM) family is assigned to RING-finger-containing ligases harboring the largest number of proteins in E3 ubiquitin ligating enzymes. E3 ubiquitin ligases target the specific substrate for proteasomal degradation via the ubiquitin-proteasome system (UPS), which seems to be a more effective and direct strategy for tumor therapy. Recent advances have demonstrated that TRIM genes associate with the occurrence and progression of hepatocellular carcinoma (HCC). TRIMs trigger or inhibit multiple biological activities like proliferation, apoptosis, metastasis, ferroptosis and autophagy in HCC dependent on its highly conserved yet diverse structures. Remarkably, autophagy is another proteolytic pathway for intracellular protein degradation and TRIM proteins may help to delineate the interaction between the two proteolytic systems. In depth research on the precise molecular mechanisms of TRIM family will allow for targeting TRIM in HCC treatment. We also highlight several potential directions warranted further development associated with TRIM family to provide bright insight into its translational values in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, University of Shanghai for Science and Technology, Shanghai 200433, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
31
|
Zhou G, Qin G, Zhang Z, Zhao H, Xue L. Identification of tryptophan metabolism- and immune-related genes signature and prediction of immune infiltration landscape in bladder urothelial carcinoma. Front Immunol 2023; 14:1283792. [PMID: 37954600 PMCID: PMC10637370 DOI: 10.3389/fimmu.2023.1283792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Tryptophan metabolism is indirectly involved in immune tolerance and promotes response to anticancer drugs. However, the mechanisms underlying tryptophan metabolism and immune landscape in bladder urothelial carcinoma (BLCA) are not fully understood. Methods A BLCA dataset containing 406 tumor samples with clinical survival information and 19 normal samples were obtained from the Cancer Genome Atlas database. The validation set, GSE32894, contained 223 BLCA tumor samples with survival information, and the single-cell dataset, GSE135337, included seven BLCA tumor samples; both were obtained from the gene expression omnibus database. Univariate and multivariate Cox regression analyses were conducted to evaluate clinical parameters and risk scores. Immune infiltration and checkpoint analyses were performed to explore the immune landscape of BLCA. Single-cell analysis was conducted to further identify the roles of model genes in BLCA. Finally, NAMPT expression in BLCA and adjacent tissues was detected using RT-qPCR, CCK-8 and Transwell assays were conducted to determine the role of NAMPT in BLCA cells. Results Six crossover genes (TDO2, ACAT1, IDO1, KMO, KYNU, and NAMPT) were identified by overlap analysis of tryptophan metabolism-related genes, immune-related genes, and differentially expressed genes (DEGs). Three biomarkers, NAMPT, IDO1, and ACAT1, were identified using Cox regression analysis. Accordingly, a tryptophan metabolism- and immune-related gene risk model was constructed, and the patients were divided into high- and low-risk groups. There were significant differences in the clinical parameters, prognosis, immune infiltration, and immunotherapy response between the risk groups. RT-qPCR revealed that NAMPT was upregulated in BLCA samples. Knocking down NAMPT significantly inhibited BLCA cell proliferation, migration, and invasion. Discussion In our study, we constructed a tryptophan metabolism- and immune-related gene risk model based on three biomarkers, namely NAMPT, IDO1, and ACAT1, that were significantly associated with the progression and immune landscape of BLCA. The risk model could effectively predict patient prognosis and immunotherapy response and can guide individualized immunotherapy.
Collapse
Affiliation(s)
- Guanwen Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Guoliang Qin
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaocun Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Haifeng Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Xue
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
32
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
33
|
Chen LJ, Xin Y, Yuan MX, Ji CY, Peng YM, Yin Q. CircFOXN2 alleviates glucocorticoid- and tacrolimus-induced dyslipidemia by reducing FASN mRNA stability by binding to PTBP1 during liver transplantation. Am J Physiol Cell Physiol 2023; 325:C796-C806. [PMID: 37575056 DOI: 10.1152/ajpcell.00462.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
We aimed to examine impacts and functional mechanism of circular RNA forkhead box N2 (FOXN2) in tacrolimus (TAC)- and dexamethasone (Dex)-induced lipid metabolism disorders. RNA level and protein contents in TAC, Dex, or combined TAC- plus Dex-treated patients and Huh-7 cells were measured utilizing quantitative real-time (qRT)-PCR and western blotting assays measured the formation of lipid droplet. Total cholesterol (TC) and triglyceride (TG) levels were determined using corresponding commercial kits and Oil red O staining. RNA immunoprecipitation and RNA pull-down verified the binding relationship among circFOXN2, polypyrimidine tract binding protein 1 (PTBP1) and fatty acid synthase (FASN). Male C57BL/6 mice were used to establish a dyslipidemia mouse model to validate the discoveries at the cellular level. Dex treatment significantly promoted TAC-mediated increase of TC and TG in serum samples and Huh-7 cells. Moreover, circFOXN2 was reduced but FASN was elevated in TAC-treated Huh-7 cells, and these expression trends were markedly enhanced by Dex cotreatment. Overexpression of circFOXN2 could reverse the accumulation of TC and TG and the upregulation of FASN and sterol regulatory element binding transcription factor 2 (SREBP2) mediated by Dex and TAC cotreatment. Mechanistically, circFOXN2 reduced FASN mRNA stability by recruiting PTBP1. The protective roles of circFOXN2 overexpression on lipid metabolism disorders were weakened by FASN overexpression. In vivo finding also disclosed that circFOXN2 greatly alleviated the dysregulation of lipid metabolism triggered by TAC plus Dex. CircFOXN2 alleviated the dysregulation of lipid metabolism induced by the combination of TAC and Dex by modulating the PTBP1/FASN axis.NEW & NOTEWORTHY Collectively, our experiments revealed for the first time that circFOXN2 alleviated the Dex- and TAC-induced dysregulation of lipid metabolism by regulating the PTBP1/FASN axis. These findings suggested that circFOXN2 and FASN might be candidate targets for the treatment of Dex- and TAC-induced metabolic disorders.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Yang Xin
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Miao-Xian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Chun-Yi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Yu-Ming Peng
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| |
Collapse
|
34
|
Yang R, Peng W, Shi S, Peng X, Cai Q, Zhao Z, He B, Tu G, Yin W, Chen Y, Zhang Y, Liu F, Wang X, Xiao D, Tao Y. The NLRP11 Protein Bridges the Histone Lysine Acetyltransferase KAT7 to Acetylate Vimentin in the Early Stage of Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300971. [PMID: 37424170 PMCID: PMC10477884 DOI: 10.1002/advs.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Accumulation of vimentin is the core event in epithelial-mesenchymal transition (EMT). Post-translational modifications have been widely reported to play crucial roles in imparting different properties and functions to vimentin. Here, a novel modification of vimentin, acetylated at Lys104 (vimentin-K104Ac) is identified, which is stable in lung adenocarcinoma (LUAD) cells. Mechanistically, NACHT, LRR, and PYD domain-containing protein 11 (NLRP11), a regulator of the inflammatory response, bind to vimentin and promote vimentin-K104Ac expression, which is highly expressed in the early stages of LUAD and frequently appears in vimentin-positive LUAD tissues. In addition, it is observed that an acetyltransferase, lysine acetyltransferase 7 (KAT7), which binds to NLRP11 and vimentin, directly mediates the acetylation of vimentin at Lys104 and that the cytoplasmic localization of KAT7 can be induced by NLRP11. Malignant promotion mediated by transfection with vimentin-K104Q is noticeably greater than that mediated by transfection with vimentin-WT. Further, suppressing the effects of NLRP11 and KAT7 on vimentin noticeably inhibited the malignant behavior of vimentin-positive LUAD in vivo and in vitro. In summary, these findings have established a relationship between inflammation and EMT, which is reflected via KAT7-mediated acetylation of vimentin at Lys104 dependent on NLRP11.
Collapse
Affiliation(s)
- Rui Yang
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Weilin Peng
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Shuai Shi
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Xiong Peng
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Qidong Cai
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Zhenyu Zhao
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Boxue He
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Guangxu Tu
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Wei Yin
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Yichuan Chen
- Department of Cardiovascular SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yuqian Zhang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000China
| | - Fang Liu
- Clinic Nursing Teaching and Research SectionThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Xiang Wang
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Desheng Xiao
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Yongguang Tao
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| |
Collapse
|
35
|
Gong Z, Zhu J, Chen J, Feng F, Zhang H, Zhang Z, Song C, Liang K, Yang S, Fan S, Fang X, Shen S. CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications. Nat Commun 2023; 14:5242. [PMID: 37640697 PMCID: PMC10462713 DOI: 10.1038/s41467-023-40975-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis is a prevalent age-related disease characterized by dysregulation of extracellular matrix metabolism, lipid metabolism, and upregulation of senescence-associated secretory phenotypes. Herein, we clarify that CircRREB1 is highly expressed in secondary generation chondrocytes and its deficiency can alleviate FASN related senescent phenotypes and osteoarthritis progression. CircRREB1 impedes proteasome-mediated degradation of FASN by inhibiting acetylation-mediated ubiquitination. Meanwhile, CircRREB1 induces RanBP2-mediated SUMOylation of FASN and enhances its protein stability. CircRREB1-FASN axis inhibits FGF18 and FGFR3 mediated PI3K-AKT signal transduction, then increased p21 expression. Intra-articular injection of adenovirus-CircRreb1 reverses the protective effects in CircRreb1 deficiency mice. Further therapeutic interventions could have beneficial effects in identifying CircRREB1 as a potential prognostic and therapeutic target for age-related OA.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Fan Feng
- Obstetrics and Gynecology Hospital, Kunpeng Road, Hangzhou, 310016, Zhejiang Province, China
| | - Haitao Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Zheyuan Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Chenxin Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Kaiyu Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shuhui Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
36
|
He H, Sugiyama A, Snyder NW, Teneche MG, Liu X, Maner-Smith KM, Goessling W, Hagen SJ, Ortlund EA, Najafi-Shoushtari SH, Acuña M, Cohen DE. Acyl-CoA thioesterase 12 suppresses YAP-mediated hepatocarcinogenesis by limiting glycerolipid biosynthesis. Cancer Lett 2023; 565:216210. [PMID: 37150501 DOI: 10.1016/j.canlet.2023.216210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Cancer cells use acetate to support the higher demand for energy and lipid biosynthesis during uncontrolled cell proliferation, as well as for acetylation of regulatory proteins. Acyl-CoA thioesterase 12 (Acot12) is the enzyme that hydrolyzes acetyl-CoA to acetate in liver cytosol and is downregulated in hepatocellular carcinoma (HCC). A mechanistic role for Acot12 in hepatocarcinogenesis was assessed in mice in response to treatment with diethylnitrosamine(DEN)/carbon tetrachloride (CCl4) administration or prolonged feeding of a diet that promotes non-alcoholic steatohepatitis (NASH). Relative to controls, Acot12-/- mice exhibited accelerated liver tumor formation that was characterized by the hepatic accumulation of glycerolipids, including lysophosphatidic acid (LPA), and that was associated with reduced Hippo signaling and increased yes-associated protein (YAP)-mediated transcriptional activity. In Acot12-/- mice, restoration of hepatic Acot12 expression inhibited hepatocarcinogenesis and YAP activation, as did knockdown of hepatic YAP expression. Excess LPA produced due to deletion of Acot12 signaled through LPA receptors (LPARs) coupled to Gα12/13 subunits to suppress YAP phosphorylation, thereby promoting its nuclear localization and transcriptional activity. These findings identify a protective role for Acot12 in suppressing hepatocarcinogenesis by limiting biosynthesis of glycerolipids including LPA, which preserves Hippo signaling.
Collapse
Affiliation(s)
- Haiyue He
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Gastroenterology, Xiangya Hospital of Central South University, Hunan, China
| | - Akiko Sugiyama
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19104, USA
| | - Marcos G Teneche
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19104, USA
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Hunan, China
| | - Kristal M Maner-Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wolfram Goessling
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Susan J Hagen
- Division of Surgical Sciences, Department of Surgery, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - S Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10021, USA; Research Department, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Mariana Acuña
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Ran H, Li C, Zhang M, Zhong J, Wang H. Neglected PTM in Animal Adipogenesis: E3-mediated Ubiquitination. Gene 2023:147574. [PMID: 37336271 DOI: 10.1016/j.gene.2023.147574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Ubiquitination is a widespread post-transcriptional modification (PTM) that occurs during protein degradation in eukaryotes and participates in almost all physiological and pathological processes, including animal adipogenesis. Ubiquitination is a cascade reaction regulated by the activating enzyme E1, conjugating enzyme E2, and ligase E3. Several recent studies have reported that E3 ligases play important regulatory roles in adipogenesis. However, as a key influencing factor for the recognition and connection between the substrate and ubiquitin during ubiquitination, its regulatory role in adipogenesis has not received adequate attention. In this review, we summarize the E3s' regulation and modification targets in animal adipogenesis, explain the regulatory mechanisms in lipogenic-related pathways, and further analyze the existing positive results to provide research directions of guiding significance for further studies on the regulatory mechanisms of E3s in animal adipogenesis.
Collapse
Affiliation(s)
- Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chunyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
38
|
Zhang R, Xu Z, Xue G, Feng J, Du B, Gan L, Fan Z, Fu T, Feng Y, Zhao H, Cui J, Yan C, Cui X, Tian Z, Chen J, Yu Z, Yuan J. Combined Methylation and Transcriptome Analysis of Liver Injury of Nonalcoholic Fatty Liver Disease Induced by High Alcohol-Producing Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0532322. [PMID: 37022192 PMCID: PMC10269619 DOI: 10.1128/spectrum.05323-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
It has been known that high alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) is one of causative agents of nonalcoholic fatty liver disease (NAFLD). However, how HiAlc Kpn promotes liver injury remains unclear. Recent findings suggest that DNA methylation might associate with the pathogenesis of NAFLD. Herein, the role of DNA methylation in HiAlc Kpn-induced liver injury was investigated. Murine models of NAFLD were established in C57BL/6N wild-type mice by gavaging HiAlc Kpn for 8 weeks. The liver injury was assessed based on the liver histopathology and biochemical indicators. In addition, DNA methylation in hepatic tissue was assessed by using dot bolt of 5-mC. RNA sequencing analysis and whole-genome bisulfite sequencing (WGBS) analysis were also performed. HiAlc Kpn significantly increased the activity of aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TGs), and glutathione (GSH), while hypomethylation was associated with liver injury in the experimental mice induced by HiAlc Kpn. The GO and KEGG pathway enrichment analysis of the transcriptome revealed that HiAlc Kpn induced fat metabolic disorders and DNA damage. The conjoint analysis of methylome and transcriptome showed that hypomethylation regulated related gene expression in signal pathways of lipid formation and circadian rhythm, including Rorα and Arntl1genes, which may be the dominant cause of NAFLD induced by HiAlc Kpn. Data suggest that DNA hypomethylation might play an important role in liver injury of NAFLD induced by HiAlc Kpn. Which possibly provides a new sight for understanding the mechanisms of NAFLD and selecting the potential therapeutic targets. IMPORTANCE High alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) is one of causative agents of nonalcoholic fatty liver disease (NAFLD) and could induce liver damage. DNA methylation, as a common epigenetic form following contact with an etiologic agent and pathogenesis, can affect chromosome stability and transcription. We conjointly analyzed DNA methylation and transcriptome levels in the established murine models to explore the potential mechanisms for further understanding the role of DNA methylation in the liver damage of HiAlc Kpn-induced NAFLD. The analysis of the DNA methylation landscape contributes to our understanding of the entire disease process, which might be crucial in developing treatment strategies.
Collapse
Affiliation(s)
- Rui Zhang
- Capital Institute of Pediatrics, Beijing, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziying Xu
- Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junxia Feng
- Capital Institute of Pediatrics, Beijing, China
| | - Bing Du
- Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Capital Institute of Pediatrics, Beijing, China
| | - Zheng Fan
- Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Capital Institute of Pediatrics, Beijing, China
| | | | | | - Jinghua Cui
- Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing, China
| | - Xiaohu Cui
- Capital Institute of Pediatrics, Beijing, China
| | - Ziyan Tian
- Capital Institute of Pediatrics, Beijing, China
| | | | - Zihui Yu
- Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Zhang K, Yang C, Zhou X, Liang J, Guo J, Li M, Zhang Y, Shao S, Sun P, Li K, Huang J, Chen F, Liang X, Su D. TRIM21 ameliorates hepatic glucose and lipid metabolic disorders in type 2 diabetes mellitus by ubiquitination of PEPCK1 and FASN. Cell Mol Life Sci 2023; 80:168. [PMID: 37249651 DOI: 10.1007/s00018-023-04820-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Hepatic glucose and lipid metabolism disorders promote the development and progression of type 2 diabetes mellitus (T2DM), yet the underlying mechanisms are not fully understood. Here, we identify tripartite motif-containing protein 21 (TRIM21), a class IV TRIM family member, as a pivotal regulator of hepatic metabolism in T2DM for the first time. Bioinformatic analysis suggests that TRIM21 expression is significantly reduced in T2DM patients. Intriguingly, in a mouse model of obese diabetes, TRIM21 expression is predominantly reduced in the liver rather than in other metabolic organs. It is further demonstrated that hepatic overexpression of TRIM21 significantly ameliorates glucose intolerance, insulin resistance, hepatic steatosis, and dyslipidemia in obese diabetic mice. In contrast, the knockdown of TRIM21 promotes glucose intolerance, insulin resistance, and triglyceride accumulation. Mechanistically, both phosphoenolpyruvate carboxykinase 1 (PEPCK1) and fatty acid synthase (FASN) are the hepatic targets of TRIM21. We revealed that TRIM21 promotes the degradation of PEPCK1 and FASN through a direct protein-protein interaction mediated K48-linked ubiquitination. Notably, overexpression of PEPCK1 and FASN essentially abolished the beneficial effects achieved by TRIM21 overexpression in obese diabetic mice. Overall, our data demonstrate that TRIM21 is a novel regulator of hepatic metabolic disorder, and suggest TRIM21 as a promising therapeutic target for T2DM.
Collapse
Affiliation(s)
- Kaini Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Yang
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jin Liang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Jianjin Guo
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Li
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Zhang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 211800, China
| | - Shulin Shao
- Department of Laboratory, Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, 211800, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Huang
- Department of Geriatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
40
|
Paula Ceballos M, Darío Quiroga A, Palma NF. Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol 2023; 212:115573. [PMID: 37127248 DOI: 10.1016/j.bcp.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer worldwide. Therapeutic strategies are still challenging due to the high relapse rate after surgery and multidrug resistance (MDR). It is essential to better understand the mechanisms for HCC progression and MDR for the development of new therapeutic strategies. Mammalian sirtuins (SIRTs), a family of seven members, are related to tumor progression, MDR and prognosis and were proposed as potential prognostic markers, as well as therapeutic targets for treating cancer. SIRT1 is the most studied member and is overexpressed in HCC, playing an oncogenic role and predicting poor prognosis. Several manuscripts describe the role of SIRTs2-7 in HCC; most of them report an oncogenic role for SIRT2 and -7 and a suppressive role for SIRT3 and -4. The scenario is more confusing for SIRT5 and -6, since information is contradictory and scarce. For SIRT1 many inhibitors are available and they seem to hold therapeutic promise in HCC. For the other members the development of specific modulators has just started. This review is aimed to describe the features of SIRTs1-7 in HCC, and the role they play in the onset and progression of the disease. Also, when possible, we will depict the information related to the SIRTs modulators that have been tested in HCC and their possible implication in MDR. With this, we hope to clarify the role of each member in HCC and to shed some light on the most successful strategies to overcome MDR.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina
| | - Nicolás Francisco Palma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
41
|
Mao T, Qin F, Zhang M, Li J, Li J, Lai M. Elevated serum β-hydroxybutyrate, a circulating ketone metabolite, accelerates colorectal cancer proliferation and metastasis via ACAT1. Oncogene 2023:10.1038/s41388-023-02700-y. [PMID: 37185457 DOI: 10.1038/s41388-023-02700-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Colorectal cancer (CRC) ranks third in incidence and second in mortality worldwide. Metabolic disorders are known to be closely associated with CRC. Functional metabolomics aims to translate metabolomics-derived biomarkers to disease mechanisms. Previous work based on untargeted liquid chromatography identified 30 differential metabolites of CRC. Among them, only β-hydroxybutyrate (BHB) was elevated in CRC. Here, we first confirm the increased level of β-hydroxybutyrate by targeted metabolomic analysis using an independent cohort of 400 serum samples by UPLC-QQQ-MS/MS analysis. Using appropriate cell and animal models, we find that treatment with pathological levels of β-hydroxybutyrate expedites CRC proliferation and metastasis. Out of four major rate-limiting enzymes of ketolysis, only acetyl-coenzyme A acetyltransferase1 (ACAT1) expression is increased in paired human CRC tissues. These findings suggest probable clinical relevance for the functional implications of β-hydroxybutyrate in CRC. We demonstrate that β-hydroxybutyrate may exert its tumorigenic effects via regulation of ACAT1, due to induction of downstream isocitrate dehydrogenase1 (IDH1) acetylation. Genetic silencing of ACAT1 significantly suppresses the progression of CRC and abrogates the effects of β-hydroxybutyrate both in vitro and in vivo. Overall, this study suggests that targeting β-hydroxybutyrate and its major rate-limiting enzyme ACAT1 may provide a new avenue for therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Tianxiao Mao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Fujian Qin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Mengdi Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Jing Li
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 210000, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210000, China
| | - Jiankang Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Maode Lai
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China.
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042); Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Wang J, Xiang Y, Fan M, Fang S, Hua Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers (Basel) 2023; 15:cancers15082385. [PMID: 37190313 DOI: 10.3390/cancers15082385] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the "Warburg effect," play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin-proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuandi Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
43
|
ACAT1-mediated METTL3 acetylation inhibits cell migration and invasion in triple negative breast cancer. Genes Immun 2023; 24:99-107. [PMID: 36890220 DOI: 10.1038/s41435-023-00202-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive disease with poor prognosis. Acetylation modifications affect a great number of biological processes of malignant tumors. The current study aims at revealing the role of acetylation-related mechanism in TNBC progression. Methyltransferase like-3 (METTL3) was found to be downregulated in TNBC cells via quantitative polymerase chain reaction (qPCR) and western blot analyses. Co-Immunoprecipitation (Co-IP) and GST pulldown assays revealed the interaction between acetyl-CoA acetyltransferase 1 (ACAT1) and METTL3. Through further immunoprecipitation (IP) assay, we determined that ACAT1 stabilizes METTL3 protein via inhibiting the degradation of ubiquitin-proteasome. Functionally, ACAT1 inhibits TNBC cell migration and invasion. Moreover, nuclear receptor subfamily 2 group F member 6 (NR2F6) regulates ACAT1 expression at transcriptional level. Finally, we demonstrated that NR2F6/ACAT/METTL3 axis suppresses the migration and invasion of TNBC cells via METTL3. In conclusion, NR2F6 transcriptionally activates ACAT1 and promotes the suppressive effects of ACAT1-mediated METTL3 acetylation on TNBC cell migration and invasion.
Collapse
|
44
|
Shen J, Sun W, Liu J, Li J, Li Y, Gao Y. Metabolism-related signatures is correlated with poor prognosis and immune infiltration in hepatocellular carcinoma via multi-omics analysis and basic experiments. Front Oncol 2023; 13:1130094. [PMID: 36860325 PMCID: PMC9969091 DOI: 10.3389/fonc.2023.1130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Background Metabolism is an ordered series of biological processes that occur in an organism. Altered cellular metabolism is often closely associated with the development of cancer. The aim of this research was to construct a model by multiple metabolism-related molecules to diagnose and assess the prognosis of patients. Method WGCNA analysis was used to screen out differential genes. GO, KEGG are used to explore potential pathways and mechanisms. The lasso regression model was used to filter out the best indicators to construct the model. Single-sample GSEA (ssGSEA) assess immune cells abundance, immune terms in different Metabolism Index (MBI) groups. Human tissues and cells were used to verify the expression of key genes. Result WGCNA clustering grouped genes into 5 modules, of which 90 genes from the MEbrown module were selected for subsequent analysis. GO analysis was found that BP mainly has mitotic nuclear division, while KEGG pathway is enriched to Cell cycle, Cellular senescence. Mutation analysis revealed that the frequency of TP53 mutations was much higher in samples from the high MBI group than in the low MBI group. Immunoassay revealed that patients with higher MBI have higher macrophage and Regulatory T cells (Treg) abundance, while NK cells were lowly expressed in the high MBI group. RT-qPCR and immunohistochemistry (IHC) revealed that the hub genes expression is higher in cancer tissues. The expression in hepatocellular carcinoma cells was also much higher than that in normal hepatocytes. Conclusion In conclusion, a metabolism-related model was constructed that can be used to estimate the prognosis of hepatocellular carcinoma, and the clinical treatment of different hepatocellular carcinoma patients with medications was guided.
Collapse
Affiliation(s)
| | | | | | - Jiali Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | |
Collapse
|
45
|
Wei X, Hu W, Mao K. A methylomics-associated nomogram predicts the overall survival risk of stage III to IV ovarian cancer. Medicine (Baltimore) 2023; 102:e32766. [PMID: 36749233 PMCID: PMC9901957 DOI: 10.1097/md.0000000000032766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
Accumulating studies demonstrated that DNA methylation may be potential prognostic hallmarks of various cancers. However, few studies have focused on the power of DNA methylation for prognostic prediction in patients with stage III to IV ovarian cancer (OC). Therefore, constructing a methylomics-related indicator to predict overall survival (OS) of stage III to IV OC was urgently required. A total of 520 OC patients with 485,577 DNA methylation sites from TCGA database were selected to develop a robust DNA methylation signature. The 520 patients were clustered into a training group (70%, n = 364 samples) and an internal validation group (30%, n = 156). The training group was used for digging a prognostic predictor based on univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO) as well as multivariate Cox regression analysis. The internal and external validation group (ICGC OV-AU project) were used for validating the predictive robustness of the predictor based on receiver operating characteristic (ROC) analysis and Kaplan-Meier survival analysis. We identified a 21-DNA methylation signature-based classifier for stage III-IV OC patients' OS. According to ROC analysis in the internal validation, external validation and entire TCGA set, we proved the high power of the 21-DNA methylation signature for predicting OS (area under the curve [AUC] at 1, 3, 5 years in internal validation set (0.782, 0.739, 0.777, respectively), external validation set (0.828, 0.760, 0.741, respectively), entire TCGA set (0.741, 0.748, 0.781, respectively). Besides, a nomogram was developed via methylation risk score as well as a few clinical variables, and the result showed a high ability of the predictive nomogram. In summary, we used integrated bioinformatics approaches to successfully identified a DNA methylation-associated nomogram, which can predict effectively the OS of patients with stage III to IV OC.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Gynaecology, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Wencheng Hu
- Department of Gynaecology, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Kexi Mao
- Department of Emergency, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| |
Collapse
|
46
|
Lin Q, Jiang Y, Zhou F, Zhang Y. Fatty acid synthase (FASN) inhibits the cervical squamous cell carcinoma (CESC) progression through the Akt/mTOR signaling pathway. Gene 2023; 851:147023. [PMID: 36375657 DOI: 10.1016/j.gene.2022.147023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cervical cancer is a malignant tumor that affects females and remains the cause of the highest morbidity and mortality among women worldwide. Currently, gene-targeted therapy is a novel treatment option for clinicians. Furthermore, fatty acid synthase (FASN) plays a therapeutic role in various cancers. Nonetheless, the mechanism of action of this enzyme in cervical squamous cell carcinoma and cervical duct adenocarcinoma (CESC) has not yet been reported. METHODS RNA (ribonucleic acid) sequencing data and clinical information were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). The expression levels of FASN were obtained from Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Human Protein Atlas (HPA). Univariate and multivariate Cox regression analyses were utilized to assess independent prognostic factors associated with survival. A nomogram and receiver operating characteristic curve (ROC) were employed to evaluate survival and predictive power. In vitro experiments and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) were conducted to identify cell interference efficiency. MTS, monoclonal formation, and EDU assays were used to determine cell viability. Wound healing and invasion assays (transwell assay) were used to evaluate cell migration and invasion. Finally, Hoechst 33342, propidium iodide (PI) staining and Annexin V-FITC staining were used to assess apoptosis and the cell cycle, while western blotting was utilized to determine the protein expression levels. RESULTS FASN was aberrantly expressed in various cancers, including CESC, where it was highly expressed. Kaplan-Meier, univariate, multivariate Cox regression analyses and ROC curve indicated that FASN is a potential key indicator of survival prognosis among CESC patients and demonstrated good predictive ability and efficacy. Complementary in vitro experiments confirmed that FASN is an important target for CESC therapy. CONCLUSION The current study validated the biological and clinical significance of FASN in CESC prognosis, suggesting that FASN knockdown may exert antitumor activity against cervical cancer through the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- QianXia Lin
- Vascular Breast Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China.
| | - Yong'An Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.
| | - Fang Zhou
- Vascular Breast Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China.
| | - YongPing Zhang
- Department of Gynecology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
47
|
Chen X, Yong H, Chen M, Deng C, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. TRIM21 attenuates renal carcinoma lipogenesis and malignancy by regulating SREBF1 protein stability. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:34. [PMID: 36694250 PMCID: PMC9875457 DOI: 10.1186/s13046-022-02583-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of various cancers. Targeting metabolic processes is a very attractive treatment for cancer. Renal cell carcinoma (RCC) is a type of metabolic disease, and the lipidomic profile of RCC is significantly altered compared with that of healthy tissue. However, the molecular mechanism underlying lipid metabolism regulation in RCC is not clear. METHODS The XF long-chain fatty acid oxidative stress test kits were used to assess the dependence on long-chain fatty acids and mitochondrial function after knockdown TRIM21 in RCC cells. The effect of TRIM21 on the lipid content in RCC cells was determined by metabolomics analysis, Oil Red O staining, and cellular Nile red staining. qRT-PCR and western blot were used to explore the relationship between TRIM21 and lipogenesis, and then the key molecule sterol regulatory element binding transcription factor 1 (SREBF1) was identified to interact with TRIM21 by immunoprecipitation, which was also identified in an orthotopic model. Subsequently, the relevance and clinical significance of TRIM21 and SREBF1 were analyzed by The Cancer Genome Atlas (TCGA) database, and 239 tissues were collected from RCC patients. RESULTS TRIM21 silencing attenuated the dependence of RCC cells on fatty acids, and enhanced lipid accumulation in RCC cells. TRIM21 overexpression significantly decreased lipid contents by decreasing the expression of lipogenic enzymes via ubiquitination-mediated degradation of SREBF1. SREBF1 is critical for TRIM21-mediated lipogenesis inhibition in vitro and in vivo. Moreover, TRIM21 expression is negatively correlated with SREBF1 expression, and TRIM21-SREBF1 is a reliable combinational biomarker for RCC prognosis. CONCLUSION The findings from this study reveal a novel pathway through which TRIM21 inhibits the lipid metabolism process of RCC and shed light on the development of targeted metabolic treatment and prognosis diagnosis of RCC.
Collapse
Affiliation(s)
- Xintian Chen
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Hongmei Yong
- grid.417303.20000 0000 9927 0537Department of Oncology, The Second People’s Hospital of Huai’an, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huaian, Jiangsu China
| | - Miaolei Chen
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Chuyin Deng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Pengfei Wang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Sufang Chu
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Minle Li
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Pingfu Hou
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Zhongwei Li
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Jin Bai
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| |
Collapse
|
48
|
Yu X, Tong H, Chen J, Tang C, Wang S, Si Y, Wang S, Tang Z. CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis 2023; 14:20. [PMID: 36635270 PMCID: PMC9837196 DOI: 10.1038/s41419-022-05540-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
The carcinogenic role of FASN by regulating lipid metabolism reprogramming has been well-established in multiple tumors. However, whether mechanisms during intrahepatic cholangiocarcinoma (ICC) progression, such as circRNAs, regulate FASN expression remains unknown. Here we demonstrate a lipid metabolism-related circRNA, circMBOAT2 (hsa_circ_0007334 in circBase), frequently upregulated in ICC tissues, and positively correlated with ICC malignant features. CircMBOAT2 knockdown inhibits the growth and metastasis of ICC cells. Mechanistically, circMBOAT2 combines with PTBP1 and protects PTBP1 from ubiquitin/proteasome-dependent degradation, impairing the function of PTBP1 to transfer FASN mRNA from the nucleus to the cytoplasm. Moreover, circMBOAT2 and FASN have the same effect on fatty acid profile, unsaturated fatty acids instead of saturated fatty acids are primarily regulated and associated with malignant behaviors of ICC cells. The levels of lipid peroxidation and ROS were significantly higher when FASN was knocked down and recovered when circMBOAT2 was overexpressed. Our results identified that circMBOAT2 was upregulated in ICC and promoted progression by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export, which altered lipid metabolic profile and regulated redox homeostasis in ICC, suggesting that circMBOAT2 may serve as an available therapeutic target for ICC with active lipid metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huanjun Tong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jialu Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chenwei Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuqing Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu Si
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
49
|
Ma K, Wu H, Ji L. Construction of HBV gene-related prognostic and diagnostic models for hepatocellular carcinoma. Front Genet 2023; 13:1065644. [PMID: 36685852 PMCID: PMC9845411 DOI: 10.3389/fgene.2022.1065644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a main cause of malignancy-related death all over the world with a poor prognosis. The current research is focused on developing novel prognostic and diagnostic models of Hepatocellular carcinoma from the perspective of hepatitis B virus (HBV)-related genes, and predicting its prognostic characteristics and potential reliable biomarkers for Hepatocellular carcinoma diagnosis. Methods: As per the information related to Hepatocellular carcinoma expression profile and the clinical data in multiple public databases, we utilized limma for assessing the differentially expressed genes (DEGs) in HBV vs non- hepatitis B virus groups, and the gene set was enriched, analyzed and annotated by WebGestaltR package. Then, STRING was employed to investigate the protein interactions. A risk model for evaluating Hepatocellular carcinoma prognosis was built with Lasso Cox regression analysis. The effect patients receiving immunotherapy was predicted using Tumor Immune Dysfunction and Exclusion (TIDE). Additionally, pRRophetic was used to investigate the drug sensitivity. Lastly, the Support Vector Machine (SVM) approach was utilized for building the diagnostic model. Results: The Hepatocellular Carcinoma Molecular Atlas 18 (HCCDB18) data set was utilized for the identification of 1344 HBV-related differentially expressed genes, mainly associated with cell division activities. Five functional modules were established and then we built a prognostic model in accordance with the protein-protein interaction (PPI) network. Five HBV-related genes affecting prognosis were identified for constructing a prognostic model. Then, the samples were assigned into RS-high and -low groups as per their relevant prognostic risk score (RS). High-risk group showed worse prognosis, higher mutation rate of TP53, lower sensitivity to immunotherapy but higher response to chemotherapeutic drugs than low-risk group. Finally, the hepatitis B virus diagnostic model of Hepatocellular carcinoma was established. Conclusion: In conclusion, the prognostic and diagnostic models of hepatitis B virus gene-related Hepatocellular carcinoma were constructed. ABCB6, IPO7, TIMM9, FZD7, and ACAT1, the five HBV-related genes that affect the prognosis, can work as reliable biomarkers for the diagnosis of Hepatocellular carcinoma, giving a new insight for improving the prognosis, diagnosis, and treatment outcomes of HBV-type Hepatocellular carcinoma.
Collapse
Affiliation(s)
- Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District), Guangzhou, China
| | - Hongsheng Wu
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District), Guangzhou, China
| | - Lei Ji
- Department of Hepatobiliary Pancreatic Surgery, Renmin Hospital Hubei University of Medicine, Shiyan, China
| |
Collapse
|
50
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|