1
|
Zhang X, Li L, Li Y, Dong C, Shi J, Guo X, Sui A. The role of trimethylation on histone H3 lysine 27 (H3K27me3) in temozolomide resistance of glioma. Brain Res 2024; 1846:149252. [PMID: 39326722 DOI: 10.1016/j.brainres.2024.149252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Temozolomide (TMZ) is the first-line chemotherapeutic agent for malignant glioma, but its resistance limited the benefits of the treated patients. In this study, the role and significance of trimethylation of histone H3 lysine 27 (H3K27me3) in TMZ resistance were investigated. Data from twenty advanced glioma patients were collected, and their pathological samples were analyzed for H3K27me3 levels. TMZ sensitivity was compared between glioma cells U87 and TMZ-resistant cells U87TR, with H3K27me3 levels determined in both cells. The effects of H3K27me3 demethylases inhibitor GSK-J4, combined with TMZ, were assessed on the proliferation and migration of U87TR cells. The results indicated that a high level of H3K27me3 predicts longer disease free survival (DFS) and overall survival (OS) in glioma patients receiving TMZ treatment. The H3K27me3 level was lower in U87TR cells compared to U87 cells. GSK-J4 increased the H3K27me3 level in U87TR cells and decreased their resistance to TMZ. In summary, this study identified a novel marker of TMZ resistance in glioma and provided a new strategy to address this challenge. These findings are significant for improving the clinical treatment of glioma in the future.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China; Graduate School, Hebei North University, Zhangjiakou 075132, Hebei, China
| | - Li Li
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Yitong Li
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Changzheng Dong
- Second Department of Neurosurgery, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Jian Shi
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Xiaoqiang Guo
- Department of Sports Human Sciences, Hebei Sport University, Shijiazhuang 050041, Hebei, China.
| | - Aixia Sui
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China.
| |
Collapse
|
2
|
Patruno L, Milite S, Bergamin R, Calonaci N, D’Onofrio A, Anselmi F, Antoniotti M, Graudenzi A, Caravagna G. A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing. PLoS Comput Biol 2023; 19:e1011557. [PMID: 37917660 PMCID: PMC10645363 DOI: 10.1371/journal.pcbi.1011557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023] Open
Abstract
Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic clones. Here we present CONGAS+, a Bayesian model to map single-cell RNA and ATAC profiles onto the latent space of copy number clones. CONGAS+ clusters cells into tumour subclones with similar ploidy, rendering straightforward to compare their expression and chromatin profiles. The framework, implemented on GPU and tested on real and simulated data, scales to analyse seamlessly thousands of cells, demonstrating better performance than single-molecule models, and supporting new multi-omics assays. In prostate cancer, lymphoma and basal cell carcinoma, CONGAS+ successfully identifies complex subclonal architectures while providing a coherent mapping between ATAC and RNA, facilitating the study of genotype-phenotype maps and their connection to genomic instability.
Collapse
Affiliation(s)
- Lucrezia Patruno
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Salvatore Milite
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
- Centre for Computational Biology, Human Technopole, Milan, Italy
| | - Riccardo Bergamin
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Nicola Calonaci
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Alberto D’Onofrio
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Fabio Anselmi
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- B4—Bicocca Bioinformatics Biostatistics and Bioimaging Centre, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- B4—Bicocca Bioinformatics Biostatistics and Bioimaging Centre, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
3
|
Yildiz CB, Kundu T, Gehrmann J, Koesling J, Ravaei A, Wolff P, Kraft F, Maié T, Jakovcevski M, Pensold D, Zimmermann O, Rossetti G, Costa IG, Zimmer-Bensch G. EphrinA5 regulates cell motility by modulating Snhg15/DNA triplex-dependent targeting of DNMT1 to the Ncam1 promoter. Epigenetics Chromatin 2023; 16:42. [PMID: 37880732 PMCID: PMC10601256 DOI: 10.1186/s13072-023-00516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Cell-cell communication is mediated by membrane receptors and their ligands, such as the Eph/ephrin system, orchestrating cell migration during development and in diverse cancer types. Epigenetic mechanisms are key for integrating external "signals", e.g., from neighboring cells, into the transcriptome in health and disease. Previously, we reported ephrinA5 to trigger transcriptional changes of lncRNAs and protein-coding genes in cerebellar granule cells, a cell model for medulloblastoma. LncRNAs represent important adaptors for epigenetic writers through which they regulate gene expression. Here, we investigate a lncRNA-mediated targeting of DNMT1 to specific gene loci by the combined power of in silico modeling of RNA/DNA interactions and wet lab approaches, in the context of the clinically relevant use case of ephrinA5-dependent regulation of cellular motility of cerebellar granule cells. We provide evidence that Snhg15, a cancer-related lncRNA, recruits DNMT1 to the Ncam1 promoter through RNA/DNA triplex structure formation and the interaction with DNMT1. This mediates DNA methylation-dependent silencing of Ncam1, being abolished by ephrinA5 stimulation-triggered reduction of Snhg15 expression. Hence, we here propose a triple helix recognition mechanism, underlying cell motility regulation via lncRNA-targeted DNA methylation in a clinically relevant context.
Collapse
Affiliation(s)
- Can Bora Yildiz
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- Research Training Group 2416 Multi Senses - Multi Scales, RWTH Aachen University, 52074, Aachen, Germany
| | - Tathagata Kundu
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Jannis Koesling
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Amin Ravaei
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Philip Wolff
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Mira Jakovcevski
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Daniel Pensold
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Giulia Rossetti
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Department of Neurology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-9)/Institute of Advanced Simulations (IAS-5), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
- Research Training Group 2416 Multi Senses - Multi Scales, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
4
|
An PG, Wu WJ, Tang YF, Zhang J. Single-cell RNA sequencing reveals the heterogeneity and microenvironment in one adenoid cystic carcinoma sample. Funct Integr Genomics 2023; 23:155. [PMID: 37162576 DOI: 10.1007/s10142-023-01082-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common malignancy of the major salivary glands with a high recurrence rate and poor prognosis. Determining tumor heterogeneity and factors in the microenvironment may provide novel therapeutic targets for ACC. We performed single-cell RNA sequencing of one ACC sample and normal salivary gland tissues from a patient to analyze tumor heterogeneity, immunosuppressive landscape, and intercellular communication networks. The heterogeneity of epithelial cells in ACC tissues was significantly higher compared with that in normal tissues, whereas immune cells were almost absent. We found four malignant cell clusters in ACC and explored their characteristics and function. In tumor tissues, CD8 + cytotoxic T cells and CD4 + T helper cells were significantly decreased, whereas IgA + plasma cells were absent. There were two clusters of macrophages, one representing IL1B macrophages and the other consisted of a cluster of macrophages associated with the epithelial mesenchymal transition (EMT). Both were significantly different from the normal tissue composition. In addition, the communication between epithelial cells and other cells in the tumor tissue was enhanced. MIF-CD74 and APP-CD74 were significantly upregulated. We comprehensively described the heterogeneity of ACC and the tumor microenvironment (TME) from a single cell perspective including cell characteristics, immune cell infiltration, and cell communication. CLINICAL RELEVANCE: This study provided further insights into ACC and may lead to new treatment strategies.
Collapse
Affiliation(s)
- Pu-Gen An
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun South Avenue, Beijing, 100081, People's Republic of China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Wen-Jie Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun South Avenue, Beijing, 100081, People's Republic of China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yu-Fang Tang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun South Avenue, Beijing, 100081, People's Republic of China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Department of Stomatology, Xinqiao Hospital (the Second Affiliated Hospital), Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jie Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun South Avenue, Beijing, 100081, People's Republic of China.
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China.
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
5
|
Liu R, Peng Y, Du W, Wu Y, Zhang W, Hu C, Liu M, Liu X, Wu J, Sun J, Zhao X. BMI1 fine-tunes gene repression and activation to safeguard undifferentiated spermatogonia fate. Front Cell Dev Biol 2023; 11:1146849. [PMID: 37169021 PMCID: PMC10164956 DOI: 10.3389/fcell.2023.1146849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Spermatogenesis is sustained by the homeostasis of self-renewal and differentiation of undifferentiated spermatogonia throughout life, which is regulated by transcriptional and posttranscriptional mechanisms. B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), one of spermatogonial stem cell markers, is a member of Polycomb repressive complex 1 (PRC1) and important to spermatogenesis. However, the mechanistic underpinnings of how BMI1 regulates spermatogonia fate remain elusive. Methods: We knocked down BMI1 by siRNA to investigate the role of BMI1 in undifferentiated spermatogonia. Differentially expressed genes were identified by RNA-seq and used for KEGG pathway analysis. We performed ChIP-seq analysis in wild type and BMI1 knockdown cells to explore the underlying molecular mechanisms exerted by BMI1. BMI1-associated alterations in repressive histone modifications were detected via Western blotting and ChIP-seq. Furthermore, we performed mass spectrometry and Co-immunoprecipitation assays to investigate BMI1 co-factors. Finally, we demonstrated the genomic regions occupied by both BMI1 and its co-factor. Results: BMI1 is required for undifferentiated spermatogonia maintenance by both repressing and activating target genes. BMI1 preserves PI3K-Akt signaling pathway for spermatogonia proliferation. Decrease of BMI1 affects the deposition of repressive histone modifications H2AK119ub1 and H3K27me3. BMI also positively regulates H3K27ac deposited genes which are associated with proliferation. Moreover, we demonstrate that BMI1 interacts with Sal-like 4 (SALL4), the transcription factor critical for spermatogonia function, to co-regulate gene expression. Discussion: Overall, our study reveals that BMI1 safeguards undifferentiated spermatogonia fate through multi-functional roles in regulating gene expression programs of undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Ruiqi Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfei Du
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Zhang
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Congxia Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- Department of Integrative Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| |
Collapse
|
6
|
Jiao Z, Feng X, Cui Y, Wang L, Gan J, Zhao Y, Meng Q. Expression characteristic, immune signature, and prognosis value of EFNA family identified by multi-omics integrative analysis in pan-cancer. BMC Cancer 2022; 22:871. [PMID: 35945523 PMCID: PMC9364540 DOI: 10.1186/s12885-022-09951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background EphrinA (EFNA) are Eph receptor ligands that regulate various disease processes. Nonetheless, the expression characteristics of EFNAs in pan-cancer, their relationship with tumor immune microenvironment, and prognostic value landscape remain unknown. Methods A comprehensive landscape of EFNAs was created using various statistical data extracted from 33 cancers. Subsequently, we identified differential expression, genetic variations, potential function enrichment, tumor immune-related analysis, and drug sensitivity. Further, we investigated the clinical features and diagnostic prognostic value of EFNAs. RT-qPCR, western blot and immunohistochemistry (IHC) were used to validate the expression level and significant clinical value of EFNA5 in lung adenocarcinoma cell lines and tissues. Results EFNAs were highly mutated in various cancers. Genomic and epigenetic alterations of EFNAs were observed in various tumors, where an oncogenic mutation in specific cancer types potentially affected EFNA expression. Moreover, tumor-derived EFNAs were significantly related to the tumor immune microenvironment, suggesting that they are promising therapeutic targets. The majority of EFNA family genes were significantly linked to patient prognosis. Eventually, EFNA5 was an independent prognostic factor in lung adenocarcinoma. Conclusion In summary, EFNAs are crucial in tumor immune regulation, and EFNA5 is a prognostic marker in lung adenocarcinoma. Our findings provide new insights into EFNAs from a bioinformatics standpoint and highlight the significance of EFNAs in cancer diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09951-0.
Collapse
Affiliation(s)
- Zonglin Jiao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiao Feng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuqing Cui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junqing Gan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbin Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
7
|
Badodi S, Pomella N, Lim YM, Brandner S, Morrison G, Pollard SM, Zhang X, Zabet NR, Marino S. Combination of BMI1 and MAPK/ERK inhibitors is effective in medulloblastoma. Neuro Oncol 2022; 24:1273-1285. [PMID: 35213723 PMCID: PMC9340634 DOI: 10.1093/neuonc/noac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epigenetic changes play a key role in the pathogenesis of medulloblastoma (MB), the most common malignant pediatric brain tumor. METHODS We explore the therapeutic potential of BMI1 and MAPK/ERK inhibition in BMI1High;CHD7Low MB cells and in a preclinical xenograft model. RESULTS We identify a synergistic vulnerability of BMI1High;CHD7Low MB cells to a combination treatment with BMI1 and MAPK/ERK inhibitors. Mechanistically, CHD7-dependent binding of BMI1 to MAPK-regulated genes underpins the CHD7-BMI1-MAPK regulatory axis responsible of the antitumour effect of the inhibitors in vitro and in a preclinical mouse model. Increased ERK1 and ERK2 phosphorylation activity is found in BMI1High;CHD7Low G4 MB patients, raising the possibility that they could be amenable to a similar therapy. CONCLUSIONS The molecular dissection of the CHD7-BMI1-MAPK regulatory axis in BMI1High;CHD7Low MB identifies this signature as a proxy to predict MAPK functional activation, which can be effectively drugged in preclinical models, and paves the way for further exploration of combined BMI1 and MAPK targeting in G4 MB patients.
Collapse
Affiliation(s)
- Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yau Mun Lim
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sebastian Brandner
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Gillian Morrison
- Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicolae Radu Zabet
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Bölicke N, Albert M. Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders. Dev Neurobiol 2022; 82:345-363. [PMID: 35384339 DOI: 10.1002/dneu.22876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.
Collapse
Affiliation(s)
- Nora Bölicke
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Zhu B, Li Y, Mao X. A review on the role of different ephrins in glioma. Eur J Pharmacol 2022; 917:174588. [PMID: 34688637 DOI: 10.1016/j.ejphar.2021.174588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
Gliomas, tumors of glial cells, are the most common malignant tumors of the brain. Ephrins are protein ligands that act through tyrosine kinases receptor family, Eph receptors. In glioma, an inverse relationship has been identified between ephrin A1 ligand and EphA2 receptors i.e. there has been a decrease in the expression of ephrin A1 and increase in the expression of EphA2. The forced expression of ephrin A1 decreases the proliferation of glioma by internalizing the EphA2 receptors. The ligand (ephrin A1)-independent effects of EphA2 receptors are oncogenic in nature, while the binding of EphA2 with ephrin A1 decreases the glioma proliferation. An increase in EphA4 may be important in enhancing cellular proliferation and migration of glioblastoma through FGFR-MAPK-Akt signaling pathway, while a decrease in the expression of EphA5 may be crucial in increasing the cellular proliferation and thus, ephrin A5 acts as a tumor suppressor in glioma by negatively regulating the expression of EGFR. The higher expression levels of EphB2 and its ligand, ephrin B1 may decrease the cell adhesion and increase the invasion capacity of glioma through HIF-2α-EphB2-paxillin signalling. There is also a key role of ephrin B2 and EphB2 in promoting migration, invasion and conferring resistance to glioma cell. Ephrin B2 contributes in the pathogenesis of glioma by promoting angiogenesis through VEGF-A. An increase in ephrin B3 may also be important in the increasing tumorigenicity of glioma. The present review describes the role of different ephrins in the pathogenesis of glioma.
Collapse
Affiliation(s)
- Bochi Zhu
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Chang Chun City, Jilin Province, 130041, China.
| | - Yunfeng Li
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Chang Chun City, Jilin Province, 130041, China.
| | - Xijing Mao
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Chang Chun City, Jilin Province, 130041, China.
| |
Collapse
|
10
|
Vinel C, Rosser G, Guglielmi L, Constantinou M, Pomella N, Zhang X, Boot JR, Jones TA, Millner TO, Dumas AA, Rakyan V, Rees J, Thompson JL, Vuononvirta J, Nadkarni S, El Assan T, Aley N, Lin YY, Liu P, Nelander S, Sheer D, Merry CLR, Marelli-Berg F, Brandner S, Marino S. Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma. Nat Commun 2021; 12:6130. [PMID: 34675201 PMCID: PMC8531305 DOI: 10.1038/s41467-021-26297-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms which play an essential role in normal developmental processes, such as self-renewal and fate specification of neural stem cells (NSC) are also responsible for some of the changes in the glioblastoma (GBM) genome. Here we develop a strategy to compare the epigenetic and transcriptional make-up of primary GBM cells (GIC) with patient-matched expanded potential stem cell (EPSC)-derived NSC (iNSC). Using a comparative analysis of the transcriptome of syngeneic GIC/iNSC pairs, we identify a glycosaminoglycan (GAG)-mediated mechanism of recruitment of regulatory T cells (Tregs) in GBM. Integrated analysis of the transcriptome and DNA methylome of GBM cells identifies druggable target genes and patient-specific prediction of drug response in primary GIC cultures, which is validated in 3D and in vivo models. Taken together, we provide a proof of principle that this experimental pipeline has the potential to identify patient-specific disease mechanisms and druggable targets in GBM.
Collapse
Affiliation(s)
- Claire Vinel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Gabriel Rosser
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Myrianni Constantinou
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - James R Boot
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Tania A Jones
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Anaelle A Dumas
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vardhman Rakyan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Jeremy Rees
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
| | - Jamie L Thompson
- Stem Cell Glycobiology Group, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Juho Vuononvirta
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Suchita Nadkarni
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Tedani El Assan
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
| | - Natasha Aley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Yung-Yao Lin
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
- Stem Cell Laboratory, National Bowel Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London, UK
| | - Pentao Liu
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sven Nelander
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Denise Sheer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Federica Marelli-Berg
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK.
| |
Collapse
|
11
|
Freire-Benéitez V, Pomella N, Millner TO, Dumas AA, Niklison-Chirou MV, Maniati E, Wang J, Rajeeve V, Cutillas P, Marino S. Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer 2021; 3:zcab009. [PMID: 34316702 PMCID: PMC8210184 DOI: 10.1093/narcan/zcab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown in vitro and in vivo. Here, we have used protein and chromatin immunoprecipitation followed by mass spectrometry (MS) analysis to elucidate the protein composition of PRC1 in GBM and transcriptional silencing of defining interactors in primary patient-derived GIC lines to assess their functional impact on GBM biology. We identify novel regulatory functions in mRNA splicing and cholesterol transport which could represent novel targetable mechanisms in GBM.
Collapse
Affiliation(s)
- Verónica Freire-Benéitez
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Anaëlle A Dumas
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Pedro Cutillas
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| |
Collapse
|
12
|
Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, Ravaei A, Linde J, Lampert A, Costa IG, Zimmer-Bensch G. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci 2021; 22:1332. [PMID: 33572758 PMCID: PMC7866228 DOI: 10.3390/ijms22031332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.
Collapse
Affiliation(s)
- Daniel Pensold
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Gehrmann
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Georg Pitschelatow
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Asa Walberg
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Kai Braunsteffer
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Reichard
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44100 Ferrara, Italy;
| | - Jenice Linde
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Angelika Lampert
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
- RWTH Aachen Medical Faculty, Institute of Physiology, 52074 Aachen, Germany
| | - Ivan G. Costa
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
13
|
Schweiger MW, Li M, Giovanazzi A, Fleming RL, Tabet EI, Nakano I, Würdinger T, Chiocca EA, Tian T, Tannous BA. Extracellular Vesicles Induce Mesenchymal Transition and Therapeutic Resistance in Glioblastomas through NF-κB/STAT3 Signaling. ADVANCED BIOSYSTEMS 2020; 4:e1900312. [PMID: 32519463 PMCID: PMC7718424 DOI: 10.1002/adbi.201900312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor and despite optimal treatment, long-term survival remains uncommon. GBM can be roughly divided into three different molecular subtypes, each varying in aggressiveness and treatment resistance. Recent evidence shows plasticity between these subtypes in which the proneural (PN) glioma stem-like cells (GSCs) undergo transition into the more aggressive mesenchymal (MES) subtype, leading to therapeutic resistance. Extracellular vesicles (EVs) are membranous structures secreted by nearly every cell and are shown to play a key role in GBM progression by acting as multifunctional signaling complexes. Here, it is shown that EVs derived from MES cells educate PN cells to increase stemness, invasiveness, cell proliferation, migration potential, aggressiveness, and therapeutic resistance by inducing mesenchymal transition through nuclear factor-κB/signal transducer and activator of transcription 3 signaling. The findings could potentially help explore new treatment strategies for GBM and indicate that EVs may also play a role in mesenchymal transition of different tumor types.
Collapse
Affiliation(s)
- Markus W. Schweiger
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Mao Li
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Alberta Giovanazzi
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Renata L. Fleming
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
| | - Elie I. Tabet
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Biomedical Engineering, University of South Dakota, 4800 N. Career Ave, Suite 221, Sioux Falls, SD USA
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Thomas Würdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Tian Tian
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
| |
Collapse
|
14
|
Azam Z, TO ST, Tannous BA. Mesenchymal Transformation: The Rosetta Stone of Glioblastoma Pathogenesis and Therapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002015. [PMID: 33240762 PMCID: PMC7675056 DOI: 10.1002/advs.202002015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Indexed: 05/06/2023]
Abstract
Despite decades of research, glioblastoma (GBM) remains invariably fatal among all forms of cancers. The high level of inter- and intratumoral heterogeneity along with its biological location, the brain, are major barriers against effective treatment. Molecular and single cell analysis identifies different molecular subtypes with varying prognosis, while multiple subtypes can reside in the same tumor. Cellular plasticity among different subtypes in response to therapies or during recurrence adds another hurdle in the treatment of GBM. This phenotypic shift is induced and sustained by activation of several pathways within the tumor itself, or microenvironmental factors. In this review, the dynamic nature of cellular shifts in GBM and how the tumor (immune) microenvironment shapes this process leading to therapeutic resistance, while highlighting emerging tools and approaches to study this dynamic double-edged sword are discussed.
Collapse
Affiliation(s)
- Zulfikar Azam
- Experimental Therapeutics and Molecular Imaging UnitDepartment of NeurologyNeuro‐Oncology DivisionMassachusetts General Hospital and Harvard Medical SchoolBostonMA02129USA
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Shing‐Shun Tony TO
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging UnitDepartment of NeurologyNeuro‐Oncology DivisionMassachusetts General Hospital and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
15
|
Li Y, Tian Z, Tan Y, Lian G, Chen S, Chen S, Li J, Li X, Huang K, Chen Y. Bmi-1-induced miR-27a and miR-155 promote tumor metastasis and chemoresistance by targeting RKIP in gastric cancer. Mol Cancer 2020; 19:109. [PMID: 32580736 PMCID: PMC7315508 DOI: 10.1186/s12943-020-01229-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously reported an inverse relationship between B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and Raf kinase inhibitory protein (RKIP), which is associated with the prognosis of gastric cancer (GC). In this study, we further explored the microRNA (miRNA) regulatory mechanism between Bmi-1 and RKIP. METHODS Microarray analysis was first carried out to identify miRNA profiles that were differentially expressed in cells overexpressing Bmi-1. Then, miRNAs that could regulate RKIP were identified. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to measure the expression of Bmi-1, miR-155, miR-27a and RKIP. RKIP was confirmed as a target of miR-27a and miR-155 through luciferase reporter assays, qRT-PCR and Western blotting. The effects of the Bmi-1/miR-27a/RKIP and Bmi-1/miR-155/RKIP axes on tumor growth, proliferation, migration, invasion, colony-formation ability, metastasis and chemoresistance were investigated both in vitro and in vivo. RESULTS The downregulation of RKIP by Bmi-1 occurred at the protein but not mRNA level. This indicates probable posttranscriptional regulation. miRNA expression profiles of cells with ectopic expression of Bmi-1 were analyzed and compared to those of control cells by microarray analysis. A total of 51 upregulated and 72 downregulated miRNAs were identified. Based on publicly available algorithms, miR-27a and miR-155 were predicted, selected and demonstrated to target RKIP. Bmi-1, miR-27a and miR-155 are elevated in human GC and associated with poor prognosis of GC, while RKIP is expressed at lower levels in GC and correlated with good prognosis. Then, in vitro tests shown that in addition to regulating RKIP expression via miR-27a and miR-155, Bmi-1 was also able to regulate the migration, invasion, proliferation, colony-formation ability and chemosensitivity of GC cells through the same pathway. Finally, the in vivo test showed similar results, whereby the knockdown of the Bmi-1 gene led to the inhibition of tumor growth, metastasis and chemoresistance through miR-27a and miR-155. CONCLUSIONS Bmi-1 was proven to induce the expression of miR-27a and miR-155 and thus promote tumor metastasis and chemoresistance by targeting RKIP in GC. Overall, miR-27a and miR-155 might be promising targets for the screening, diagnosis, prognosis, treatment and disease monitoring of GC.
Collapse
Affiliation(s)
- Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Shangxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Xuanna Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
| |
Collapse
|