1
|
Dong D, Yu X, Xu J, Yu N, Liu Z, Sun Y. Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat 2024; 77:101125. [PMID: 39173439 DOI: 10.1016/j.drup.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
2
|
Dong D, Yu P, Guo X, Liu J, Yang X, Ji G, Li X, Wei J. Eight types of RNA modification regulators define clinical outcome and immune response in gastric cancer. Heliyon 2024; 10:e37076. [PMID: 39309865 PMCID: PMC11415870 DOI: 10.1016/j.heliyon.2024.e37076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background RNA modifications represent a novel category of biological molecule alterations, characterized by three primary classes of proteins: writers, erasers, and readers. Numerous studies indicate that the dysregulation of these RNA modifications is linked to cancer development and may offer new therapeutic avenues for treatment. In our research, we focused on eight specific genes associated with RNA modifications (RMRGs) to comprehensively analyze their distinct functions in gastric cancer (GC). Furthermore, we aimed to elucidate the roles of RMRGs concerning clinicopathological characteristics, tumor microenvironment, and patient prognosis. Methods In this study, we examined the expression and mutations of RMRGs in gastric cancer (GC) using data from TCGA-STAD (The Cancer Genome Atlas; Stomach adenocarcinoma) and the gene expression omnibus (GSE66229). We identified two subtypes of RMRGs and three gene clusters through consensus clustering analysis, assessing their differences in prognosis and immune cell infiltration patterns. Subsequently, we developed an RMRGs score to evaluate GC prognosis and highlight general immune features within the tumor microenvironment (TME). Lastly, we focused on MAMDC2 to validate its expression in GC and explore the effects of a MAMDC2 inhibitor on GC tumor cells. Results We discovered 94 differentially expressed RMRGs common to both the TCGA-STAD and GEO datasets. Notable differences in prognosis and immune cell infiltration were observed between the two RMRGs subtypes and three gene clusters. The RMRGs score emerged as an independent prognostic factor related to the tumor microenvironment (TME) characteristics in gastric cancer (GC). Reducing MAMDC2 levels enhanced cell migration and invasion while decreasing proliferation in vitro. Conclusions In conclusion, this study comprehensively analyzed the role of RMRGs on GC. Our study firstly proposed RMRGs score and demonstrated its potential to be biomarkers for prognosis and immune characteristics. Consequently, RMRGs score is of great clinical significance and can be utilized to develop individualized.
Collapse
Affiliation(s)
| | | | | | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xisheng Yang
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jiangpeng Wei
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Aydinlou ZH, Rajabi A, Emami A, Tayefeh-Gholami S, Teimourian S, Nargesi MM, Banan-Khojasteh SM, Safaralizadeh R. Three possible diagnostic biomarkers for gastric cancer: miR-362-3p, miR-362-5p and miR-363-5p. Biomark Med 2024; 18:567-579. [PMID: 39072355 PMCID: PMC11364078 DOI: 10.1080/17520363.2024.2352419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/22/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: MicroRNAs can be regarded as biomarkers for gastric cancer (GC) diagnosis in the early stages. This study assesses the expression levels of miR-362-3p, miR-362-5p and miR-363-5p as potential biomarkers for GC.Materials & methods: The expression levels of the miRNAs in 90 pairs of GC and adjacent normal tissue samples were analyzed by quantitative real-time reverse transcription PCR (qRT-PCR) and some bioinformatics tools were utilized for analyzing the target genes and possible molecular pathways in which these miRNAs participate.Results & conclusion: There was a significant overexpression of the miRNAs in GC cells and an outstanding correlation between their overexpression with some clinicopathological features of the patients.
Collapse
Affiliation(s)
| | - Ali Rajabi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Ali Emami
- Medical School Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, Québec
| | | | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mirsaed Miri Nargesi
- Department of Pathology & Laboratory Medicine, Auckland City Hospital, Te Whatu Ora Health, New Zealand
| | | | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Hanif SZ, Au CC, Torregroza I, Jannath SY, Fabiha T, Bhinder B, Washburn M, Devost D, Liu S, Bhardwaj P, Evans T, Anand PK, Tarran R, Palikhe S, Elemento O, Dow L, Blenis J, Hébert TE, Brown KA. The Orphan G Protein-Coupled Receptor GPR52 is a Novel Regulator of Breast Cancer Multicellular Organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604482. [PMID: 39091857 PMCID: PMC11291042 DOI: 10.1101/2024.07.22.604482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane-bound receptors and transmit critical signals from the extracellular to the intracellular spaces. Transcriptomic data of resected breast tumors shows that low mRNA expression of the orphan GPCR GPR52 correlates with reduced overall survival in breast cancer patients, leading to the hypothesis that loss of GPR52 supports breast cancer progression. CRISPR-Cas9 was used to knockout GPR52 in human triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, and in the non-cancerous breast epithelial cell line, MCF10A. Loss of GPR52 was found to be associated with increased cell-cell interaction in 2D cultures, altered 3D spheroid morphology, and increased propensity to organize and invade collectively in Matrigel. Furthermore, GPR52 loss was associated with features of EMT in MDA-MB-468 cells. To determine the in vivo impact of GPR52 loss, MDA-MB-468 cells were injected into zebrafish and loss of GPR52 was associated with a greater total cancer area compared to control cells. RNA-sequencing and proteomic analyses of GPR52-null breast cancer cells reveal an increased cAMP signaling signature. Consistently, we found that treatment of wild-type (WT) cells with forskolin, which stimulates production of cAMP, induces some phenotypic changes associated with GPR52 loss, and inhibition of cAMP production rescued some of the GPR52 KO phenotypes. Overall, our results reveal GPR52 loss as a potential mechanism by which breast cancer progression may occur and support the investigation of GPR52 agonism as a therapeutic option in breast cancer.
Collapse
Affiliation(s)
- Sarah Z Hanif
- Weill Cornell Medicine/Rockefeller University/Memorial Sloan-Kettering Cancer Center Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Syeda Y Jannath
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Hunter College, City University of New York, New York, NY, USA
| | - Tabassum Fabiha
- Columbia University Computational & Systems Biology Program, Sloan-Kettering Institute of Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michael Washburn
- Department of Cancer Biology, University of Kansas Medical Center Kansas City KS USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Shuchen Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Pradeep Kumar Anand
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sailesh Palikhe
- Department of Cell Biology and Physiology, University of Kansas Medical Center Kansas City, KS, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lukas Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - John Blenis
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
5
|
Huang S, He L, Zhao Y, Wei Y, Wang Q, Gao Y, Jiang X. TREM1 + tumor-associated macrophages secrete CCL7 to promote hepatocellular carcinoma metastasis. J Cancer Res Clin Oncol 2024; 150:320. [PMID: 38914803 PMCID: PMC11196310 DOI: 10.1007/s00432-024-05831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Tumor-associated macrophages (TAMs) play a critical role in hepatocellular carcinoma (HCC) progression and metastasis. Systematic investigation of the cross-talk between TAMs and HCC may help in searching for the critical target to guard against HCC metastasis. METHODS AND RESULTS Herein, we found that TREM1 highly expressed in HCC tissue by analyzing the data obtain from GEO database. Interestingly, the results indicated that TREM1 was primarily expressed by monocytes. Immune infiltration studies further validated that TREM1 expression was positively related with increased infiltration of macrophages in HCC tissues. In vitro, we observed that TREM1 knockdown significantly abrogated the effect of TAMs in promoting the metastasis and epithelial-mesenchymal transition (EMT) of HCC cells. Additionally, cytokine array detection identified CCL7 as the main responsive cytokine following with TREM1 knockdown in TAMs. CONCLUSION Taken together, our findings strongly suggested that high expression of TREM1 was positively associated with metastasis and poor prognosis of HCC. Furthermore, TAMs expressing TREM1 contribute to EMT-based metastasis through secreting CCL7. These results provide a novel insight into the potential development of targeting the TREM1/CCL7 pathway for preventing metastatic HCC.
Collapse
Affiliation(s)
- Simin Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Longguang He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangdong Guangzhou, 510282, China
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Guangdong Gaozhou, 525000, China
| | - Yufei Zhao
- Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuxuan Wei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiwen Wang
- Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangdong Guangzhou, 510282, China.
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
6
|
Song D, Wang Q, Yan Z, Su M, Zhang H, Shi L, Fan Y, Zhang Q, Yang H, Zhang D, Liu Q. METTL3 promotes the progression of osteosarcoma through the N6-methyladenosine modification of MCAM via IGF2BP1. Biol Direct 2024; 19:44. [PMID: 38849910 PMCID: PMC11157866 DOI: 10.1186/s13062-024-00486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The molecular mechanisms of osteosarcoma (OS) are complex. In this study, we focused on the functions of melanoma cell adhesion molecule (MCAM), methyltransferase 3 (METTL3) and insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) in OS development. METHODS qRT-PCR assay and western blot assay were performed to determine mRNA and protein expression of MCAM, METTL3, IGF2BP1 and YY1. MTT assay and colony formation assay were conducted to assess cell proliferation. Cell apoptosis, invasion and migration were evaluated by flow cytometry analysis, transwell assay and wound-healing assay, respectively. Methylated RNA Immunoprecipitation (MeRIP), dual-luciferase reporter, Co-IP, RIP and ChIP assays were performed to analyze the relationships of MCAM, METTL3, IGF2BP1 and YY1. The functions of METTL3 and MCAM in tumor growth were explored through in vivo experiments. RESULTS MCAM was upregulated in OS, and MCAM overexpression promoted OS cell growth, invasion and migration and inhibited apoptosis. METTL3 and IGF2BP1 were demonstrated to mediate the m6A methylation of MCAM. Functionally, METTL3 or IGF2BP1 silencing inhibited OS cell progression, while MCAM overexpression ameliorated the effects. Transcription factor YY1 promoted the transcription level of METTL3 and regulated METTL3 expression in OS cells. Additionally, METTL3 deficiency suppressed tumor growth in vivo, while MCAM overexpression abated the effect. CONCLUSION YY1/METTL3/IGF2BP1/MCAM axis aggravated OS development, which might provide novel therapy targets for OS.
Collapse
Affiliation(s)
- Dongjian Song
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
- Institute of Molecular Cancer Surgery, Henan Province Engineering Research Center, Zhengzhou University, Zhengzhou, 450052, China.
| | - Qi Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Zechen Yan
- Institute of Molecular Cancer Surgery, Henan Province Engineering Research Center, Zhengzhou University, Zhengzhou, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Meng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hui Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Longyan Shi
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yingzhong Fan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Qian Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Heying Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Qiuliang Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Liu K, Wu CX, Liang H, Wang T, Zhang JY, Wang XT. Analysis of the impact of immunotherapy efficacy and safety in patients with gastric cancer and liver metastasis. World J Gastrointest Surg 2024; 16:700-709. [PMID: 38577087 PMCID: PMC10989337 DOI: 10.4240/wjgs.v16.i3.700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common type of cancer and has the fourth highest death rate among all cancers. There is a lack of studies examining the impact of liver metastases on the effectiveness of immunotherapy in individuals diagnosed with GC. AIM To investigate the influence of liver metastases on the effectiveness and safety of immunotherapy in patients with advanced GC. METHODS This retrospective investigation collected clinical data of patients with advanced stomach cancer who had immunotherapy at our hospital from February 2021 to January 2023. The baseline attributes were compared using either the Chi-square test or the Fisher exact probability method. The chi-square test and Kaplan-Meier survival analysis were employed to assess the therapeutic efficacy and survival duration in GC patients with and without liver metastases. RESULTS The analysis comprised 48 patients diagnosed with advanced GC, who were categorized into two groups: A liver metastasis cohort (n = 20) and a non-liver metastatic cohort (n = 28). Patients with liver metastasis exhibited a more deteriorated physical condition compared to those without liver metastasis. The objective response rates in the cohort with metastasis and the cohort without metastasis were 15.0% and 35.7% (P > 0.05), respectively. Similarly, the disease control rates in these two cohorts were 65.0% and 82.1% (P > 0.05), respectively. The median progression-free survival was 5.0 months in one group and 11.2 months in the other group, with a hazard ratio of 0.40 and a significance level (P) less than 0.05. The median overall survival was 12.0 months in one group and 19.0 months in the other group, with a significance level (P) greater than 0.05. CONCLUSION Immunotherapy is less effective in GC patients with liver metastases compared to those without liver metastasis.
Collapse
Affiliation(s)
- Kai Liu
- Department of Radiation and Oncology, Traditional Chinese Hospital of Lu’an affiliated to Anhui University of Traditional Chinese Medicine, Lu’an 237000, Anhui Province, China
| | - Chun-Xiao Wu
- Department of Gastroenterology, Ehu branch of Xishan People’s Hospital of Wuxi City, Wuxi 214116, Jiangsu Province, China
| | - Hui Liang
- Department of Radiation and Oncology, Traditional Chinese Hospital of Lu’an affiliated to Anhui University of Traditional Chinese Medicine, Lu’an 237000, Anhui Province, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510400, Guangdong Province, China
| | - Ji-Yuan Zhang
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, Changsha 410002, Hunan Province, China
| | - Xiao-Tao Wang
- Department of Traditional Chinese medicine, Ehu branch of Xishan People’s Hospital of Wuxi City, Wuxi 214116, Jiangsu Province, China
| |
Collapse
|
8
|
Jiang J, Wang Y, Sun M, Luo X, Zhang Z, Wang Y, Li S, Hu D, Zhang J, Wu Z, Chen X, Zhang B, Xu X, Wang S, Xu S, Huang W, Xia L. SOX on tumors, a comfort or a constraint? Cell Death Discov 2024; 10:67. [PMID: 38331879 PMCID: PMC10853543 DOI: 10.1038/s41420-024-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
9
|
Pooresmaeil F, Andi S, Hasannejad-Asl B, Takamoli S, Bolhassani A. Engineered exosomes: a promising vehicle in cancer therapy. Ther Deliv 2023; 14:775-794. [PMID: 38116620 DOI: 10.4155/tde-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
During the past few decades, researchers have attempted to discover an effective treatment for cancer. Exosomes are natural nanovesicles released by various cells and play a role in communication between cells. While natural exosomes have high clinical potential, their inherent limitations have prompted researchers to design exosomes with improved therapeutic properties. To achieve this purpose, researchers have undertaken exosome engineering to modify the surface properties or internal composition of exosomes. After these modifications, engineered exosomes can be used as carriers for delivery of chemotherapeutic agents, targeted drug delivery or development of cancer vaccines. The present study provides an overview of exosomes, including their biogenesis, biological functions, isolation techniques, engineering methods, and potential applications in cancer therapy.
Collapse
Affiliation(s)
- Farkhondeh Pooresmaeil
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sahar Andi
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
10
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
11
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
12
|
Rodak O, Mrozowska M, Rusak A, Gomułkiewicz A, Piotrowska A, Olbromski M, Podhorska-Okołów M, Ugorski M, Dzięgiel P. Targeting SOX18 Transcription Factor Activity by Small-Molecule Inhibitor Sm4 in Non-Small Lung Cancer Cell Lines. Int J Mol Sci 2023; 24:11316. [PMID: 37511076 PMCID: PMC10379584 DOI: 10.3390/ijms241411316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The transcription factor SOX18 has been shown to play a crucial role in lung cancer progression and metastasis. In this study, we investigated the effect of Sm4, a SOX18 inhibitor, on cell cycle regulation in non-small cell lung cancer (NSCLC) cell lines LXF-289 and SK-MES-1, as well as normal human lung fibroblast cell line IMR-90. Our results demonstrated that Sm4 treatment induced cytotoxic effects on all three cell lines, with a greater effect observed in NSCLC adenocarcinoma cells. Sm4 treatment led to S-phase cell accumulation and upregulation of p21, a key regulator of the S-to-G2/M phase transition. While no significant changes in SOX7 or SOX17 protein expression were observed, Sm4 treatment resulted in a significant upregulation of SOX17 gene expression. Furthermore, our findings suggest a complex interplay between SOX18 and p21 in the context of lung cancer, with a positive correlation observed between SOX18 expression and p21 nuclear presence in clinical tissue samples obtained from lung cancer patients. These results suggest that Sm4 has the potential to disrupt the cell cycle and target cancer cell growth by modulating SOX18 activity and p21 expression. Further investigation is necessary to fully understand the relationship between SOX18 and p21 in lung cancer and to explore the therapeutic potential of SOX18 inhibition in lung cancer.
Collapse
Affiliation(s)
- Olga Rodak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
13
|
Mirzaei S, Gholami MH, Aghdaei HA, Hashemi M, Parivar K, Karamian A, Zarrabi A, Ashrafizadeh M, Lu J. Exosome-mediated miR-200a delivery into TGF-β-treated AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression. ENVIRONMENTAL RESEARCH 2023; 231:116115. [PMID: 37178752 DOI: 10.1016/j.envres.2023.116115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Exosomes are small extracellular vesicles that can be derived from human cells such as mesenchymal stem cells (MSCs). The size of exosomes is at nano-scale range and owing to their biocompatibility and other characteristics, they have been promising candidates for delivery of bioactive compounds and genetic materials in disease therapy, especially cancer therapy. Gastric cancer (GC) is a leading cause of death among patients and this malignant disease affects gastrointestinal tract that its invasiveness and abnormal migration mediate poor prognosis of patients. Metastasis is an increasing challenge in GC and microRNAs (miRNAs) are potential regulators of metastasis and related molecular pathways, especially epithelial-to-mesenchymal transition (EMT). In the present study, our aim was to explore role of exosomes in miRNA-200a delivery for suppressing EMT-mediated GC metastasis. Exosomes were isolated from MSCs via size exclusion chromatography. The synthetic miRNA-200a mimics were transfected into exosomes via electroporation. AGS cell line exposed to TGF-β for EMT induction and then, these cells cultured with miRNA-200a-loaded exosomes. The transwell assays performed to evaluate GC migration and expression levels of ZEB1, Snail1 and vimentin measured. Exosomes demonstrated loading efficiency of 5.92 ± 4.6%. The TGF-β treatment transformed AGS cells into fibroblast-like cells expressing two stemness markers, CD44 (45.28%) and CD133 (50.79%) and stimulated EMT. Exosomes induced a 14.89-fold increase in miRNA-200a expression in AGS cells. Mechanistically, miRNA-200a enhances E-cadherin levels (P < 0.01), while it decreases expression levels of β-catenin (P < 0.05), vimentin (P < 0.01), ZEB1 (P < 0.0001) and Snail1 (P < 0.01). Leading to EMT inhibition in GC cells. This pre-clinical experiment introduces a new strategy for miRNA-200a delivery that is of importance for preventing migration and invasion of GC cells.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Amin Karamian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485, Istanbul, Turkey
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jianlin Lu
- Department of Geriatrics, The Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
14
|
Feng J, Wang Y, Li B, Yu X, Lei L, Wu J, Zhang X, Chen Q, Zhou Y, Gou J, Li H, Tan Z, Dai Z, Li X, Guan F. Loss of bisecting GlcNAcylation on MCAM of bone marrow stoma determined pro-tumoral niche in MDS/AML. Leukemia 2023; 37:113-121. [PMID: 36335262 DOI: 10.1038/s41375-022-01748-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Bone marrow (BM) stroma plays key roles in supporting hematopoietic stem cell (HSC) growth. Glycosylation contributes to the interactions between HSC and surrounding microenvironment. We observed that bisecting N-acetylglucosamine (GlcNAc) structures, in BM stromal cells were significantly lower for MDS/AML patients than for healthy subjects. Malignant clonal cells delivered exosomal miR-188-5p to recipient stromal cells, where it suppressed bisecting GlcNAc by targeting MGAT3 gene. Proteomic analysis revealed reduced GlcNAc structures and enhanced expression of MCAM, a marker of BM niche. We characterized MCAM as a bisecting GlcNAc-bearing target protein, and identified Asn 56 as bisecting GlcNAc modification site on MCAM. MCAM on stromal cell surface with reduced bisecting GlcNAc bound strongly to CD13 on myeloid cells, activated responding ERK signaling, and thereby promoted myeloid cell growth. Our findings, taken together, suggest a novel mechanism whereby MDS/AML clonal cells generate a self-permissive niche by modifying glycosylation level of stromal cells.
Collapse
Affiliation(s)
- Jingjing Feng
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China
| | - Bingxin Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Xinwen Yu
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Lei Lei
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Jinpeng Wu
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Xin Zhang
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | | | - Yue Zhou
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Junjie Gou
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Hongjiao Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiang Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
15
|
Xu F, Yan J, Peng Z, Liu J, Li Z. Comprehensive analysis of a glycolysis and cholesterol synthesis-related genes signature for predicting prognosis and immune landscape in osteosarcoma. Front Immunol 2022; 13:1096009. [PMID: 36618348 PMCID: PMC9822727 DOI: 10.3389/fimmu.2022.1096009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Glycolysis and cholesterol synthesis are crucial in cancer metabolic reprogramming. The aim of this study was to identify a glycolysis and cholesterol synthesis-related genes (GCSRGs) signature for effective prognostic assessments of osteosarcoma patients. Methods Gene expression data and clinical information were obtained from GSE21257 and TARGET-OS datasets. Consistent clustering method was used to identify the GCSRGs-related subtypes. Univariate Cox regression and LASSO Cox regression analyses were used to construct the GCSRGs signature. The ssGSEA method was used to analyze the differences in immune cells infiltration. The pRRophetic R package was utilized to assess the drug sensitivity of different groups. Western blotting, cell viability assay, scratch assay and Transwell assay were used to perform cytological validation. Results Through bioinformatics analysis, patients diagnosed with osteosarcoma were classified into one of 4 subtypes (quiescent, glycolysis, cholesterol, and mixed subtypes), which differed significantly in terms of prognosis and tumor microenvironment. Weighted gene co-expression network analysis revealed that the modules strongly correlated with glycolysis and cholesterol synthesis were the midnight blue and the yellow modules, respectively. Both univariate and LASSO Cox regression analyses were conducted on screened module genes to identify 5 GCSRGs (RPS28, MCAM, EN1, TRAM2, and VEGFA) constituting a prognostic signature for osteosarcoma patients. The signature was an effective prognostic predictor, independent of clinical characteristics, as verified further via Kaplan-Meier analysis, ROC curve analysis, univariate and multivariate Cox regression analysis. Additionally, GCSRGs signature had strong correlation with drug sensitivity, immune checkpoints and immune cells infiltration. In cytological experiments, we selected TRAM2 as a representative gene to validate the validity of GCSRGs signature, which found that TRAM2 promoted the progression of osteosarcoma cells. Finally, at the pan-cancer level, TRAM2 had been correlated with overall survival, progression free survival, disease specific survival, tumor mutational burden, microsatellite instability, immune checkpoints and immune cells infiltration. Conclusion Therefore, we constructed a GCSRGs signature that efficiently predicted osteosarcoma patient prognosis and guided therapy.
Collapse
Affiliation(s)
- Fangxing Xu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Jinglong Yan,
| | - Zhibin Peng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingsong Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zecheng Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
17
|
Tang X, Liang Y, Sun G, He Q, Hou Z, Jiang X, Gao P, Qu H. Upregulation of CRABP2 by TET1-mediated DNA hydroxymethylation attenuates mitochondrial apoptosis and promotes oxaliplatin resistance in gastric cancer. Cell Death Dis 2022; 13:848. [PMID: 36195596 PMCID: PMC9532395 DOI: 10.1038/s41419-022-05299-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Oxaliplatin is the main chemotherapy drug for gastric cancer (GC), but quite a few patients are resistant to oxaliplatin, which contributes to the poor prognosis of GC patients. There is therefore an urgent need to identify potential targets for reversing chemotherapy resistance in GC patients. In this study, we analyzed the tumor samples of GC patients who received neoadjuvant chemotherapy based on oxaliplatin through quantitative proteomics and identified the potential chemoresistance-related protein cellular retinoic acid binding protein 2 (CRABP2). CRABP2 was significantly upregulated in the tumor tissues of chemoresistant GC patients and was closely related to prognosis. The results of cell function experiments showed that CRABP2 can promote the oxaliplatin resistance of GC cells in vitro. Coimmunoprecipitation and GST pulldown assays showed that CRAPB2 expedited the binding of BAX and PARKIN in GC cells and facilitated the ubiquitination-mediated degradation of BAX. Furthermore, both the in vitro assay and cell-derived xenograft (CDX) in vivo model verified that CRABP2 promoted oxaliplatin resistance by inhibiting BAX-dependent cell apoptosis. Further experiments proved that the abnormally high expression of CRABP2 in oxaliplatin-resistant GC cells was affected by TET1-mediated DNA hydroxymethylation. The patient-derived xenograft (PDX) model suggested that interference with CRABP2 reversed oxaliplatin resistance in GC in vivo. In conclusion, the results of our study show that CRABP2 was a key molecule in oxaliplatin resistance regulation and could be a new target for reversing the chemoresistance of GC.
Collapse
Affiliation(s)
- Xiaolong Tang
- grid.452402.50000 0004 1808 3430Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Yahang Liang
- grid.452402.50000 0004 1808 3430Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Guorui Sun
- grid.452402.50000 0004 1808 3430Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Qingsi He
- grid.452402.50000 0004 1808 3430Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Zhenyu Hou
- grid.452402.50000 0004 1808 3430Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Xingzhi Jiang
- grid.452402.50000 0004 1808 3430Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Peng Gao
- grid.452402.50000 0004 1808 3430Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Hui Qu
- grid.452402.50000 0004 1808 3430Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| |
Collapse
|
18
|
LINC01094/SPI1/CCL7 Axis Promotes Macrophage Accumulation in Lung Adenocarcinoma and Tumor Cell Dissemination. J Immunol Res 2022; 2022:6450721. [PMID: 36118415 PMCID: PMC9481385 DOI: 10.1155/2022/6450721] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Infiltration of tumor-associated macrophages is closely linked to the malignant development of human cancers. This research studies the function of C-C motif chemokine ligand 7 (CCL7) in the macrophage accumulation in lung adenocarcinoma (LUAD) and the underpinning mechanism. Methods The expression profile of CCL7 in LUAD and its correlations with patient's prognosis and macrophage infiltration were predicted via bioinformatics systems. Artificial up- or downregulation of CCL7 was induced in LUAD cells to explore its function in the mobility, EMT of cancer cells, and migration of M2 macrophages. Cancer cells were implanted in NOD/SCID mice to induce xenograft tumors. The CCL7-related transcription factors or factors were predicted by bioinformatic tools, and the molecular interactions were confirmed by immunoprecipitation or luciferase assays. Results CCL7 was highly expressed in LUAD and linked to increased TAM infiltration. Knockdown of CCL7 suppressed the chemotaxis and M2 skewing of macrophages, and it blocked the EMT and mobility of LUAD cells. CCL7 downregulation also suppressed macrophage infiltration in xenograft tumors in mice. Spi-1 proto-oncogene (SPI1) was confirmed as an upstream factor activating CCL7 transcription, and LINC01094 was found to bind to SPI1 to promote its nuclear translocation. Upregulation of SPI1 restored the chemotactic migration and M2 polarization of macrophages in LUAD cells. Conclusion This paper reveals that LINC01094 binds to SPI1 to promote its nuclear translocation, which further activates CCL7 transcription by binding to its promoter, leading to M2 macrophage accumulation and dissemination of tumor cells.
Collapse
|
19
|
Yang H, Jian L, Jin Q, Xia K, Cai-Ru W, Jun S, Chen H, Wei W, Ben-Jing S, Shi-Hong L, Shi-Wei L, Juan W, Wei Z. CCL7 playing a dominant role in recruiting early OCPs to facilitate osteolysis at metastatic site of colorectal cancer. Cell Commun Signal 2022; 20:94. [PMID: 35715847 PMCID: PMC9205124 DOI: 10.1186/s12964-022-00867-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemoattractant is critical to recruitment of osteoclast precursors and stimulates tumor bone metastasis. However, the role of chemoattractant in bone metastasis of colorectal cancer (CRC) is still unclear. METHODS Histochemistry analysis and TRAP staining were utilized to detect the bone resorption and activation of osteoclasts (OCs) after administration of CCL7 neutralizing antibody or CCR1 siRNA. qRT-PCR analysis and ELISA assay were performed to detect the mRNA level and protein level of chemoattractant. BrdU assay and Tunel assay were used to detect the proliferation and apoptosis of osteoclast precursors (OCPs). The migration of OCPs was detected by Transwell assay. Western blots assay was performed to examine the protein levels of pathways regulating the expression of CCL7 or CCR1. RESULTS OCPs-derived CCL7 was significantly upregulated in bone marrow after bone metastasis of CRC. Blockage of CCL7 efficiently prevented bone resorption. Administration of CCL7 promoted the migration of OCPs. Lactate promoted the expression of CCL7 through JNK pathway. In addition, CCR1 was the most important receptor of CCL7. CONCLUSION Our study indicates the essential role of CCL7-CCR1 signaling for recruitment of OCPs in early bone metastasis of CRC. Targeting CCL7 or CCR1 could restore the bone volume, which could be a potential therapeutical target. Video Abstract.
Collapse
Affiliation(s)
- He Yang
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China.,Chengdu Medical College, Rongdu Avenue No. 601, Chengdu, 610000, People's Republic of China
| | - Li Jian
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China.,Chengdu Medical College, Rongdu Avenue No. 601, Chengdu, 610000, People's Republic of China
| | - Qian Jin
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China
| | - Kang Xia
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China.
| | - Wang Cai-Ru
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China
| | - Sheng Jun
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China
| | - Huang Chen
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China
| | - Wang Wei
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China
| | - Song Ben-Jing
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China
| | - Li Shi-Hong
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China
| | - Long Shi-Wei
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China
| | - Wu Juan
- Department of Pharmacy, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China.
| | - Zheng Wei
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000, People's Republic of China. .,Chengdu Medical College, Rongdu Avenue No. 601, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
20
|
Li X, Wang Y, Zhang Y, Liu B. Overexpression of MCAM induced by SMYD2-H3K36me2 in breast cancer stem cell properties. Breast Cancer 2022; 29:854-868. [PMID: 35553018 DOI: 10.1007/s12282-022-01365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Melanoma cell adhesion molecule (MCAM) is highly expressed in various malignancies. However, studies on the effects of MCAM on stemness of cancer stem cells are limited. Here, we aimed to explore the relationship between MCAM and stem cell phenotype in breast cancer (BC). METHODS We analyzed the genes differentially expressed in BC from the oncomine database, followed by TCGA-BRCA database validation. We then used gene set enrichment analysis to analyze the signaling pathways enriched to the relevant genes, followed by loss-of-function experiments to analyze the role of MCAM in the growth of BC cells and the maintenance of stem cell properties. We analyzed the cause for the MCAM overexpression using ChIP-seq and clarified the upstream mechanism by constructing SE-Deleted cells. Finally, the role of SMYD2 in the growth of BC cells and the maintenance of stem cell properties were verified by rescue experiments. RESULTS MCAM was significantly overexpressed in BC, which predicted somber prognosis in patients. Knockdown of MCAM drastically hindered the growth and metastasis of BC cells in vitro and in vivo. Subsequently, the MCAM promoter was observed to have significant H3K36me2 modification and that SMYD2 could significantly promote the expression of MCAM. In addition, further overexpression of SMYD2 in cells with MCAM knockdown increased MCAM expression and promoted the growth as well as stemness of BC cells. CONCLUSION SMYD2 can elevate the expression of MCAM by promoting its H3K36me2 modification, which in turn expedites the growth and stem cell properties of BC cells.
Collapse
Affiliation(s)
- Xiang Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Yuying Wang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Yuanyuan Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning, People's Republic of China
| | - Bin Liu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
The Dysregulation of SOX Family Correlates with DNA Methylation and Immune Microenvironment Characteristics to Predict Prognosis in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2676114. [PMID: 35465267 PMCID: PMC9020970 DOI: 10.1155/2022/2676114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Background Due to the molecular heterogeneity of hepatocellular carcinoma (HCC), majority of patients respond poorly among various of therapy. This study is aimed at conducting a comprehensive analysis about roles of SOX family in HCC for obtaining more therapeutic targets and biomarkers which may bring new ideas for the treatment of HCC. Methods UALCAN, Kaplan Meier plotter, cBioPortal, STRING, WebGestalt, Metascape, TIMER 2.0, DiseaseMeth, MethSurv, HPA, CCLE database, and Cytoscape software were used to comprehensively analyze the bioinformatic data. Results SOX2, SOX4, SOX8, SOX10, SOX11, SOX12, SOX17, and SOX18 were significantly differentially expressed in HCC and normal tissues and were valuable for the grade and survival of HCC patients. In addition, the gene alterations of SOX family happened frequently, and SOX4 and SOX17 had the highest mutation rate. The function of SOX family on HCC may be closely correlated with the regulation of angiogenesis-related signaling pathways. Moreover, SOX4, SOX8, SOX11, SOX12, SOX17, and SOX18 were correlation with 8 types of immune cells (including CD8+ T cell, CD4+ T cell, B cell, Tregs, neutrophil, macrophage, myeloid DC, and NK cell), and we found that most types of immune cells had a positive correlation with SOX family. Notably, CD4+ T cell and macrophage were positively related with all these SOX family. NK cells were negatively related with most SOX family genes. DNA methylation levels in promoter area of SOX2, SOX4, and SOX10 were lower in HCC than normal tissues, while SOX8, SOX11, SOX17, and SOX18 had higher DNA methylation levels than normal tissues. Moreover, higher DNA methylation level of SOX12 and SOX18 demonstrated worse survival rates in patients with HCC. Conclusion SOX family genes could predict the prognosis of HCC. In addition, the regulation of angiogenesis-related signaling pathways may participate in the development of HCC. DNA methylation level and immune microenvironment characteristics (especially CD4+ T cell and macrophage immune cell infiltration) could be a novel insight for predicting prognosis in HCC.
Collapse
|
22
|
Liu X, Liu F, Yu H, Zhang Q, Liu F. Development and Validation of a Prediction Model for Predicting the Prognosis of Postoperative Patients with Hepatocellular Carcinoma. Int J Gen Med 2022; 15:3625-3637. [PMID: 35411181 PMCID: PMC8994662 DOI: 10.2147/ijgm.s351265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoliang Liu
- Department of General Surgery, The Affiliated Hospital of West Anhui Health Vocational College, Lu'an City, Anhui Province, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Feng Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Haifeng Yu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Qiaoqian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Fubao Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
- Correspondence: Fubao Liu, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei City, Anhui Province, People’s Republic of China, Tel +86 135 1566 2646, Email
| |
Collapse
|
23
|
Lv Z, Feng HY, Tao W, Li HZ, Zhang X. CD146 as a Prognostic-Related Biomarker in ccRCC Correlating With Immune Infiltrates. Front Oncol 2021; 11:744107. [PMID: 34956870 PMCID: PMC8692769 DOI: 10.3389/fonc.2021.744107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Backgrounds CD146 is highly expressed in various malignant tumors and associated with the poor prognosis. However, the role of CD146 in clear cell renal cell carcinoma (ccRCC) is still unknown. This study aimed to identify the role of CD146 in ccRCC by integrated bioinformatics analysis. Methods CD146 mRNA expression and methylation data in ccRCC was examined using the TIMER, UALCAN, and MethSurv databases. CD146 expression in paraffin-embedded tissues (140 cancer samples and 140 paracancer tissues) from our cohort were examined by immunohistochemistry assay. The LinkedOmics database was used to study the signaling pathways related to CD146 expression. TIMER and TISIDB were used to analyze the correlations among CD146, CD146-coexpressed genes, tumor-infiltrating immune cells, and immunomodulators. The relationship between CD146 and drug response in renal cancer cell lines was analyzed by the CTRP and CCLE databases. Results The mRNA and protein levels of CD146 were elevated in ccRCC tissues than that in paracancer tissues. The DNA methylation of CD146 in ccRCC tissues were lower than that in normal tissues. Importantly, high CD146 expression was associated with poor prognosis in patients with ccRCC. Furthermore, multivariate Cox regression analysis showed that CD146 was an independent prognostic factor in ccRCC. GO and KEGG pathway analyses indicated the co-expressed genes of CD146 were mainly related to a variety of immune-related pathways, including Th1 and Th2 cell differentiation, Th17 cell differentiation, and leukocyte transendothelial migration. Our data demonstrated that the expression and methylation status of CD146 were strongly correlated with immune infiltration levels, immunomodulators, and chemokines. Further, the sensitivity and resistance of renal cancer cell lines to some drugs were related to CD146 expression. Conclusions Our study highlights the clinical significance of CD146 in ccRCC and provides novel insights into the immune function of CD146 in the tumor microenvironment.
Collapse
Affiliation(s)
- Zheng Lv
- School of Medicine, Nankai University, Tianjin, China.,Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Hua-Yi Feng
- Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People Liberation Army (PLA), Beijing, China
| | - Wang Tao
- Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People Liberation Army (PLA), Beijing, China
| | - Hong-Zhao Li
- Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Xu Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
24
|
Jiang T, Li Z, Zhao D, Hui B, Zheng Z. SOX18 enhances the proliferation and migration of airway smooth muscle cells induced by tumor necrosis factor-α via the regulation of Notch1 signaling. Int Immunopharmacol 2021; 96:107746. [PMID: 34004439 DOI: 10.1016/j.intimp.2021.107746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Childhood asthma is a frequent chronic disease of pediatric populations. The excessive proliferation and migration of airway smooth muscle cells contribute to airway remodeling during asthma pathogenesis. Sex-determining region on the Y chromosome-related high mobility group box 18 (SOX18) has been reported to be over-expressed in asthma. However, whether SOX18 plays a role in modulating the airway remodeling of asthma is not fully understood. The purposes of this work were to assess the potential role of SOX18 in modulating airway remodeling using tumor necrosis factor-α (TNF-α)-stimulated airway smooth muscle cells in vitro. Our results showed that SOX18 expression was increased following TNF-α stimulation in airway smooth muscle cells. The silencing of SOX18 markedly prohibited the proliferation and migration of airway smooth muscle cells induced by TNF-α, whilst the over-expression of SOX18 produced the opposite effects. Further investigation revealed that SOX18 promoted the expression of Notch1, and enhanced the activation of Notch1 signaling in airway smooth muscle cells stimulated by TNF-α. The inhibition of Notch1 markedly diminished SOX18-over-expression-evoked promotion effects on TNF-α-induced proliferation and migration of airway smooth muscle cells. In addition, the reactivation of Notch1 signaling markedly reversed the SOX18-silencing-induced suppressive effect on the TNF-α-induced proliferation and the migration of airway smooth muscle cells. In summary, the findings of this work demonstrate that SOX18 regulates the proliferation and migration of airway smooth muscle cells induced by TNF-α via the modulation of Notch1 signaling. This study indicates a potential role for SOX18 in promoting airway remodeling during asthma pathogenesis.
Collapse
Affiliation(s)
- Te Jiang
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China
| | - Zhankui Li
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China.
| | - Di Zhao
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China
| | - Bengang Hui
- Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Zhiyuan Zheng
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
25
|
Zhang ET, Hannibal RL, Badillo Rivera KM, Song JHT, McGowan K, Zhu X, Meinhardt G, Knöfler M, Pollheimer J, Urban AE, Folkins AK, Lyell DJ, Baker JC. PRG2 and AQPEP are misexpressed in fetal membranes in placenta previa and percreta†. Biol Reprod 2021; 105:244-257. [PMID: 33982062 DOI: 10.1093/biolre/ioab068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
The obstetrical conditions placenta accreta spectrum (PAS) and placenta previa are a significant source of pregnancy-associated morbidity and mortality, yet the specific molecular and cellular underpinnings of these conditions are not known. In this study, we identified misregulated gene expression patterns in tissues from placenta previa and percreta (the most extreme form of PAS) compared with control cases. By comparing this gene set with existing placental single-cell and bulk RNA-Seq datasets, we show that the upregulated genes predominantly mark extravillous trophoblasts. We performed immunofluorescence on several candidate molecules and found that PRG2 and AQPEP protein levels are upregulated in both the fetal membranes and the placental disk in both conditions. While this increased AQPEP expression remains restricted to trophoblasts, PRG2 is mislocalized and is found throughout the fetal membranes. Using a larger patient cohort with a diverse set of gestationally aged-matched controls, we validated PRG2 as a marker for both previa and PAS and AQPEP as a marker for only previa in the fetal membranes. Our findings suggest that the extraembryonic tissues surrounding the conceptus, including both the fetal membranes and the placental disk, harbor a signature of previa and PAS that is characteristic of EVTs and that may reflect increased trophoblast invasiveness.
Collapse
Affiliation(s)
- Elisa T Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta L Hannibal
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Janet H T Song
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly McGowan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaowei Zhu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Alexander E Urban
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ann K Folkins
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deirdre J Lyell
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
The role of SOX family transcription factors in gastric cancer. Int J Biol Macromol 2021; 180:608-624. [PMID: 33662423 DOI: 10.1016/j.ijbiomac.2021.02.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is a leading cause of death worldwide. GC is the third-most common cause of cancer-related death after lung and colorectal cancer. It is also the fifth-most commonly diagnosed cancer. Accumulating evidence has revealed the role of signaling networks in GC progression. Identification of these molecular pathways can provide new insight into therapeutic approaches for GC. Several molecular factors involved in GC can play both onco-suppressor and oncogene roles. Sex-determining region Y (Sry)-box-containing (SOX) family members are transcription factors with a well-known role in cancer. SOX proteins can bind to DNA to regulate cellular pathways via a highly conserved domain known as high mobility group (HMG). In the present review, the roles of SOX proteins in the progression and/or inhibition of GC are discussed. The dual role of SOX proteins as tumor-promoting and tumor-suppressing factors is highlighted. SOX members can affect upstream mediators (microRNAs, long non-coding RNAs and NF-κB) and down-stream mediators (FAK, HIF-1α, CDX2 and PTEN) in GC. The possible role of anti-tumor compounds to target SOX pathway members in GC therapy is described. Moreover, SOX proteins may be used as diagnostic or prognostic biomarkers in GC.
Collapse
|