1
|
Dong F, Zhou P, Kong F, Cao S, Pan X, Cai S, Chen X, Wang S, Li N, He B, Zhao R, Zhang B, Bie Q. PCDH17 induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Cell Death Dis 2025; 16:36. [PMID: 39837826 PMCID: PMC11750977 DOI: 10.1038/s41419-025-07355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Compromised vascular integrity facilitates the cancer cells extravasation and metastasis. However, the mechanisms leading to a disruption in vascular integrity in colorectal cancer (CRC) remain unclear. In this study, PCDH17 expression was higher in the vascular endothelial cells of colon cancer with distant metastasis, and the rates of PCDH17+ endothelial cells (ECs) was associated with the M stage in clinical pathological characteristics analysis and correlated with a poor survival prognosis. The liver and lung metastatic dissemination of MC-38 was significantly decreased in PCDH17-/-mice. The ubiquitination and degradation of VEGFR2 was prevented by the interaction between PCDH17 and the E3 ubiquitin ligase MARCH5, which causing the separation of internalized VE-cadherin, and increased the vascular permeability and metastasis of CRC. These results highlight the importance of PCDH17 in maintaining vascular integrity, which has emphasis for endothelial barrier function in metastatic cancer. PCDH17 has the potential to be a marker for predicting tumor metastasis as well as a viable treatment target for CRC.
Collapse
Affiliation(s)
- Fengyun Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University, Jinan, Shandong, China
| | - Pinghui Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Feifei Kong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Sijie Cao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiaozao Pan
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Shujing Cai
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xinke Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Na Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Rou Zhao
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China.
| | - Qingli Bie
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
2
|
Wu P, Qin G, Liu J, Zhao Q, Zhao X, Song X, Wang L, Yang S, Zhang Y. Distinct immune signatures for predicting the immunotherapy efficacy of esophageal squamous cell carcinoma or adenocarcinoma. Cancer Immunol Immunother 2025; 74:47. [PMID: 39751958 PMCID: PMC11698706 DOI: 10.1007/s00262-024-03904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are distinct histological subtypes of esophageal cancer. The tumor microenvironment of each subtype significantly influences the efficacy of immunotherapy. However, the characteristics of the tumor microenvironments of both subtypes, as well as their specific impacts on immunotherapy outcomes, still require further elucidation. Through the integration of gene expression profiles from ESCC and EAC obtained from The Cancer Genome Atlas database, alongside tumor tissues derived from Chinese patients, we identified TNFSF10, CXCL10, IL17RB, and CSF2 as pivotal immune molecules with significant prognostic implications. Elevated expression levels of TNFSF10 correlated with adverse outcomes in individuals diagnosed with ESCC. In contrast to patients from other geographical regions, CXCL10, IL17RB, and CSF2 exhibited distinct prognostic implications in Chinese patients with esophageal cancer. The Cox risk scores derived from the molecules TNFSF10 and CXCL10 for ESCC and IL17RB and CSF2 for EAC were used to assess their predictive capacity for immunotherapy efficacy. The results indicate that patients with lower Cox risk scores demonstrated an enhanced response to immunotherapeutic interventions. This study revealed significant disparities in the expression and functionality of immune-related molecules between ESCC and EAC and highlighted the potential of Cox risk scores derived from immune-related molecules to predict the efficacy of immunotherapy in patients. The findings underscore the clinical relevance of these biomarkers and emphasize the necessity for developing ethnic-specific biomarkers to guide personalized immunotherapy strategies between ESCC and EAC.
Collapse
Affiliation(s)
- Peng Wu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shengli Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Center for Translational Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- School of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Chen YI, Tien SC, Ko YL, Chang CC, Hsu MF, Chien HJ, Peng HY, Jeng YM, Tien YW, Chang YT, Chang MC, Hu CM. SEMA7A-mediated juxtacrine stimulation of IGFBP-3 upregulates IL-17RB at pancreatic cancer invasive front. Cancer Gene Ther 2024; 31:1840-1855. [PMID: 39448803 PMCID: PMC11645274 DOI: 10.1038/s41417-024-00849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Tumor invasion is the hallmark of tumor malignancy. The invasive infiltration pattern of tumor cells located at the leading edge is highly correlated with metastasis and unfavorable patient outcomes. However, the regulatory mechanisms governing tumor malignancy at the invasive margin remain unclear. The IL-17B/IL-17RB pathway is known to promote pancreatic cancer invasion and metastasis, yet the specific mechanisms underlying IL-17RB upregulation during invasion are poorly understood. In this study, we unveiled a multistep process for IL-17RB upregulation at the invasive margin, which occurs through direct communication between tumor cells and fibroblasts. Tumor ATP1A1 facilitates plasma membrane expression of SEMA7A, which binds to and induces IGFBP-3 secretion from fibroblasts. The resulting gradient of IGFBP-3 influences the direction and enhances IL-17RB expression to regulate SNAI2 in invasion. These findings highlight the importance of local tumor-fibroblast interactions in promoting cancer cell invasiveness, potentially leading to the development of new therapeutic strategies targeting this communication.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Min-Fen Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung Jen Chien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Peng
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital Hsin-Chu Branch, Hsinchu County, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Baek S, Mairinger FD, Borchert S, Zhao Y, Ratiu D, Mallmann PK, Pilch H, Noh KW. Comparative Analysis of Digital Transcriptomics Between Pre- and Post-Treatment Samples of Patients with Locally Advanced Cervical Cancer: A Preliminary Study. Curr Issues Mol Biol 2024; 46:12075-12087. [PMID: 39590310 PMCID: PMC11592615 DOI: 10.3390/cimb46110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Cervical cancer remains a leading cause of cancer-related deaths in women worldwide, with limited treatment options for advanced stages and therapy-resistant cases. Despite advances in treatment, the variability in the patient response to standard therapies underscores the need for molecular biomarkers to guide personalized treatment strategies. This study aimed to explore the transcriptomic changes associated with the therapeutic response in locally advanced cervical cancer, focusing on 770 immune-related genes. We employed a digital multiplexed gene expression analysis, comparing gene expression profiles between matching pre- and post-treatment samples. The results revealed the significant upregulation of C7 and EGR2 in the post-treatment samples, suggesting that enhanced immune activity is a key factor in therapeutic success. Conversely, IL17RB, S100A7, and SAA1 were upregulated in the pre-treatment samples, potentially indicating resistance mechanisms. Pathway enrichment analysis highlighted that the immune response and apoptosis pathways are crucial to post-treatment changes. These findings suggest that C7, EGR2, and IL17RB may serve as biomarkers for predicting therapeutic outcomes and could inform the development of more effective, individualized treatment strategies for cervical cancer. This study provides new insights into the molecular mechanisms underlying treatment response and resistance.
Collapse
Affiliation(s)
- Sunhwa Baek
- Department of Obstetrics and Gynecology, University Hospital Cologne and Medical Faculty, 50937 Cologne, Germany
| | | | - Sabrina Borchert
- Institute for Pathology, University Hospital Essen, 45147 Essen, Germany; (F.D.M.); (S.B.)
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne and Medical Faculty, 50937 Cologne, Germany;
| | - Dominik Ratiu
- Department of Obstetrics and Gynecology, University Hospital Cologne and Medical Faculty, 50937 Cologne, Germany
| | - Peter Konrad Mallmann
- Department of Obstetrics and Gynecology, University Hospital Cologne and Medical Faculty, 50937 Cologne, Germany
| | - Henryk Pilch
- Department of Obstetrics and Gynecology, University Hospital Cologne and Medical Faculty, 50937 Cologne, Germany
| | - Ka-Won Noh
- Institute for Pathology, University Hospital Cologne and Medical Faculty, 50937 Cologne, Germany
| |
Collapse
|
6
|
Xiao Y, Hu Y, Gao Y, Wang L, Zhang L, Ma Q, Ning Z, Yu L, Li H, Liu J, Wang J, Yang Y, Xiong H, Dong G. IL-17B alleviates the pathogenesis of systemic lupus erythematosus by inhibiting FASN-mediated differentiation of B cells. JCI Insight 2024; 9:e181906. [PMID: 39115936 PMCID: PMC11457847 DOI: 10.1172/jci.insight.181906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
The interleukin 17 (IL-17) family of cytokines has emerged as a critical player in autoimmune disease, including systemic lupus erythematosus (SLE). However, the role of IL-17B, a poorly understood cytokine, in the pathogenesis of SLE is still not known. In this study, we investigated the role of IL-17B in the activation and differentiation of B cells, and the pathogenesis of SLE. Intriguingly, IL-17B deficiency aggravated disease in lupus-prone mice and promoted the activation of B cells and the differentiation of germinal center B cells and plasma cells, while recombinant mouse IL-17B (rmIL-17B) significantly alleviated disease in lupus-prone mice. Mechanistically, rmIL-17B inhibited the activation of the Toll-like receptor and interferon pathways in B cells by downregulating fatty acid synthase-mediated (FASN-mediated) lipid metabolism. Loss of FASN significantly alleviated the disease in lupus-prone mice and inhibited the activation and differentiation of B cells. In addition, B cells had greater FASN expression and lower IL-17RB levels in patients with SLE than in healthy controls. Our study describes the role of IL-17B in regulating B cell activation and differentiation, and alleviating the onset of SLE. These findings will lay a theoretical foundation for further understanding of the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | | | - Qun Ma
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Lu Yu
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Haochen Li
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Jiakun Liu
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Junyu Wang
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Guanjun Dong
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| |
Collapse
|
7
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
8
|
Guo Q, Zhou Y, Xie T, Yuan Y, Li H, Shi W, Zheng L, Li X, Zhang W. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis 2024; 11:101043. [PMID: 38292177 PMCID: PMC10825311 DOI: 10.1016/j.gendis.2023.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huilong Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wanjin Shi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
9
|
Xu P, Liu K, Huang S, Lv J, Yan Z, Ge H, Cheng Q, Chen Z, Ji P, Qian Y, Li B, Xu H, Yang L, Xu Z, Zhang D. N 6-methyladenosine-modified MIB1 promotes stemness properties and peritoneal metastasis of gastric cancer cells by ubiquitinating DDX3X. Gastric Cancer 2024; 27:275-291. [PMID: 38252226 DOI: 10.1007/s10120-023-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Peritoneal metastasis (PM), one of the most typical forms of metastasis in advanced gastric cancer (GC), indicates a poor prognosis. Exploring the potential molecular mechanism of PM is urgently necessary, as it has not been well studied. E3 ubiquitin ligase has been widely established to exert a biological function in various cancers, but its mechanism of action in GC with PM remains unknown. METHODS The effect of MIB1 on PM of GC was confirmed in vitro and in vivo. Co-immunoprecipitation (Co-IP) and mass spectrometry demonstrated the association between MIB1 and DDX3X. Western blot, flow cytometry and immunofluorescence determined that DDX3X was ubiquitylated by MIB1 and promoted stemness. We further confirmed that METTL3 promoted the up-regulation of MIB1 by RNA immunoprecipitation (RIP), luciferase reporter assay and other experiments. RESULTS We observed that the E3 ubiquitin ligase Mind bomb 1 (MIB1) was highly expressed in PMs, and patients with PM with high MIB1 expression showed a worse prognosis than those with low MIB1 expression. Mechanistically, our study demonstrated that the E3 ubiquitin ligase MIB1 promoted epithelial-mesenchymal transition (EMT) progression and stemness in GC cells by degrading DDX3X. In addition, METTL3 mediated m6A modification to stabilize MIB1, which required the m6A reader IGF2BP2. CONCLUSIONS Our study elucidated the specific molecular mechanism by which MIB1 promotes PM of GC, and suggested that targeting the METTL3-MIB1-DDX3X axis may be a promising therapeutic strategy for GC with PM.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengyuan Yan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People's Hospital, Nanjing, 211200, China
| | - Han Ge
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peicheng Ji
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yawei Qian
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
10
|
Abou Shousha S, Osman EM, Baheeg S, Shahine Y. Anti-IL-8 monoclonal antibodies inhibits the autophagic activity and cancer stem cells maintenance within breast cancer tumor microenvironment. Breast Dis 2024; 43:37-49. [PMID: 38552109 PMCID: PMC10977415 DOI: 10.3233/bd-230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
BACKGROUND Breast cancer tumor microenvironment (TME) is a promising target for immunotherapy. Autophagy, and cancer stem cells (CSCs) maintenance are essential processes involved in tumorigenesis, tumor survival, invasion, and treatment resistance. Overexpression of angiogenic chemokine interleukin-8 (IL-8) in breast cancer TME is associated with oncogenic signaling pathways, increased tumor growth, metastasis, and poor prognosis. OBJECTIVE Thus, we aimed to investigate the possible anti-tumor effect of neutralizing antibodies against IL-8 by evaluating its efficacy on autophagic activity and breast CSC maintenance. METHODS IL-8 monoclonal antibody supplemented tumor tissue culture systems from 15 females undergoing mastectomy were used to evaluate the expression of LC3B as a specific biomarker of autophagy and CD44, CD24 as cell surface markers of breast CSCs using immunofluorescence technique. RESULTS Our results revealed that anti-IL-8 mAb significantly decreased the level of LC3B in the cultured tumor tissues compared to its non-significant decrease in the normal breast tissues.Anti-IL-8 mAb also significantly decreased the CD44 expression in either breast tumors or normal cultured tissues. While it caused a non-significant decrease in CD24 expression in cultured breast tumor tissue and a significant decrease in its expression in the corresponding normal ones. CONCLUSIONS Anti-IL-8 monoclonal antibody exhibits promising immunotherapeutic properties through targeting both autophagy and CSCs maintenance within breast cancer TME.
Collapse
Affiliation(s)
- Seham Abou Shousha
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eman M. Osman
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Suzan Baheeg
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Yasmine Shahine
- Faculty of Pharmacy, Department of Microbiology & Immunology, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
11
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
12
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
13
|
Xu Y, Huang C, Liu J, Xu Y, Yang H. Circulating IL-17 reduces the risk of cisplatin-induced hearing loss in children: a bidirectional two-sample Mendelian randomization study. Sci Rep 2023; 13:18957. [PMID: 37919361 PMCID: PMC10622445 DOI: 10.1038/s41598-023-46299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Studies have reported that cytokines and their related signaling pathways play a role in inner ear diseases. In clinical practice, approximately 50% of pediatric cancer patients experience irreversible hearing loss after cisplatin treatment. However, currently, there is a lack of systematic research on the causal relationship between circulating cytokines and cisplatin-induced hearing loss in children. Genetic variant data for 41 circulating cytokines were obtained from a meta-analysis of genome-wide association studies (GWAS) among 8293 individuals of Finnish descent. The GWAS data for Cisplatin-induced hearing loss in children were derived from a multicenter cohort of European pediatric cancer patients and survivors (N = 390), including both cases with hearing loss after cisplatin chemotherapy and controls without hearing loss. Multiple methods were employed for bidirectional Mendelian randomization (MR) estimation. Bonferroni correction was applied to adjust the original P-values, followed by a series of sensitivity analyses. In the directional Mendelian randomization (MR) analysis, it was found that IL-17 was significantly associated with a reduced risk of Cisplatin-induced hearing loss in children (OR: 0.18, CI: 0.06-0.48, P < 0.001, FDR = 0.041). In the reverse MR analysis, there were some nominal causal relationships of Cisplatin-induced hearing loss in children with certain cytokines [M-CSF: (OR: 1.04, CI: 1.01-1.08, P = 0.010, FDR = 0.41); IL-2RA: (OR: 1.03, CI: 1.00-1.05, P = 0.044, FDR = 0.447); MIP-1β: (OR: 1.02, CI: 1.00-1.04, P = 0.041, FDR = 0.447)]. leave-one-out analysis demonstrated that only M-CSF exhibited stability. These findings reveal a causal relationship between IL-17 and cisplatin-induced hearing loss in children. Further research is needed to determine the potential protective mechanisms of IL-17 in cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Ying Xu
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Caijuan Huang
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jingjing Liu
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yaying Xu
- Department of Endocrinology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haiping Yang
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
14
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immunotherapy in gastric cancer. Clin Exp Med 2023; 23:3189-3204. [PMID: 37322134 DOI: 10.1007/s10238-023-01104-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaqing Xu
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Jiaxing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenxing Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Chenlu Feng
- Department of Cancer Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenfang Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Meng He
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China.
| |
Collapse
|
16
|
Li D, Peng X, He G, Liu J, Li X, Lin W, Fang J, Li X, Yang S, Yang L, Li H. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell Death Dis 2023; 14:409. [PMID: 37422448 PMCID: PMC10329683 DOI: 10.1038/s41419-023-05929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cancer stem cells(CSCs) play a key role in regulating tumorigenesis, progression, as well as recurrence, and possess typical metabolic characteristics. Autophagy is a catabolic process that can aid cells to survive under stressful conditions such as nutrient deficiency and hypoxia. Although the role of autophagy in cancer cells has been extensively studied, CSCs possess unique stemness, and their potential relationship with autophagy has not been fully analyzed. This study summarizes the possible role of autophagy in the renewal, proliferation, differentiation, survival, metastasis, invasion, and treatment resistance of CSCs. It has been found that autophagy can contribute to the maintenance of CSC stemness, facilitate the tumor cells adapt to changes in the microenvironment, and promote tumor survival, whereas in some other cases autophagy acts as an important process involved in the deprivation of CSC stemness thus leading to tumor death. Mitophagy, which has emerged as another popular research area in recent years, has a great scope when explored together with stem cells. In this study, we have aimed to elaborate on the mechanism of action of autophagy in regulating the functions of CSCs to provide deeper insights for future cancer treatment.
Collapse
Affiliation(s)
- Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
17
|
Guo X, Sun Z, Chen H, Ling J, Zhao H, Chang A, Zhuo X. SERPINE1 as an Independent Prognostic Marker and Therapeutic Target for Nicotine-Related Oral Carcinoma. Clin Exp Otorhinolaryngol 2023; 16:75-86. [PMID: 36510682 PMCID: PMC9985984 DOI: 10.21053/ceo.2022.01480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Nicotine is an ingredient of tobacco, and exposure to nicotine increases the risks of various cancers, including oral cancer. Previous studies have focused on the addictive properties of nicotine, but its carcinogenic mechanism has rarely been studied. We aimed to explore the key genes in the process through which nicotine promotes the occurrence and development of oral cancer via data mining and experimental verification. METHODS This study involved three parts. First, key genes related to nicotine-related oral cancer were screened through data mining; second, the expression and clinical significance of a key gene in oral cancer tissues were verified by bioinformatics. Finally, the expression and clinical significance of the key gene in oral cancer were histologically investigated, and the effects of its expression on cell proliferation, invasion, and drug resistance were cytologically assessed. RESULTS SERPINE1 was identified as the key gene, which was upregulated in nicotine-treated oral cells and may be an independent prognostic factor for oral cancer. SERPINE1 was enriched in various pathways, such as the tumor necrosis factor and apelin pathways, and was related to the infiltration of macrophages, CD4+T cells, and CD8+T cells. Overexpression of SERPINE1 was associated with N staging and may be involved in hypoxia, angiogenesis, and metastasis. Knockdown of SERPINE1 in oral cancer cells resulted in weakened cell proliferation and invasion ability and increased sensitivity to bleomycin and docetaxel. CONCLUSION This study revealed SERPINE1 as a key gene for nicotine-related oral cancer, indicating that SERPINE1 may be a novel prognostic indicator and therapeutic target for oral carcinoma.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhen Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huarong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Zhu M, Li S, Cao X, Rashid K, Liu T. The STAT family: Key transcription factors mediating crosstalk between cancer stem cells and tumor immune microenvironment. Semin Cancer Biol 2023; 88:18-31. [PMID: 36410636 DOI: 10.1016/j.semcancer.2022.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins compose a family of transcription factors critical for cancer stem cells (CSCs), and they are involved in maintaining stemness properties, enhancing cell proliferation, and promoting metastasis. Recent studies suggest that STAT proteins engage in reciprocal communication between CSCs and infiltrate immune cell populations in the tumor microenvironment (TME). Emerging evidence has substantiated the influence of immune cells, including macrophages, myeloid-derived suppressor cells, and T cells, on CSC survival through the regulation of STAT signaling. Conversely, dysregulation of STATs in CSCs or immune cells contributes to the establishment of an immunosuppressive TME. Thus, STAT proteins are promising therapeutic targets for cancer treatment, especially when used in combination with immunotherapy. From this perspective, we discuss the complex roles of STATs in CSCs and highlight their functions in the crosstalk between CSCs and the immune microenvironment. Finally, cutting-edge clinical trial progress with STAT signaling inhibitors is summarized.
Collapse
Affiliation(s)
- Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Khalid Rashid
- Department of Cancer Biology, Faculty of Medicine, University of Cincinnati, OH, USA.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Kang JH, Park S, Rho J, Hong EJ, Cho YE, Won YS, Kwon HJ. IL-17A promotes Helicobacter pylori-induced gastric carcinogenesis via interactions with IL-17RC. Gastric Cancer 2023; 26:82-94. [PMID: 36125689 PMCID: PMC9813207 DOI: 10.1007/s10120-022-01342-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy worldwide, with a major attribution to Helicobacter pylori. Interleukin (IL)-17A has been reported to be up-regulated in serum and tumor of GC patients, but the precise mechanisms underlying its involvement in gastric tumorigenesis are yet to be established. Here, we investigated the roles of IL-17A in the pathogenesis of H. pylori-induced GC. METHODS GC was induced in IL-17A knockout (KO) and wild-type (WT) mice via N-methyl-N-nitrosourea (MNU) treatment and H. pylori infection. At 50 weeks after treatment, gastric tissues were examined by histopathology, immunohistochemistry, and immunoblot analyses. In vitro experiments on the human GC cell lines were additionally performed to elucidate the underlying mechanisms. RESULTS Deletion of IL-17A suppressed MNU and H. pylori-induced gastric tumor development accompanied by a decrease in gastric epithelial cell growth, oxidative stress, and expression of gastric epithelial stem cells markers. In AGS cells, recombinant human IL-17A (rhIL-17A) inhibited apoptosis and G1/S phase transition arrest while promoting reactive oxygen species production, sphere formation ability of cancer stem cells (CSC), and expression of stemness-related genes. In addition, rhIL-17A induced expression of IL-17RC, leading to NF-κB activation and increased NADPH oxidase 1 (NOX1) levels. Inhibition of NOX1 with GKT136901 attenuated rhIL-17A-mediated elevation of GC cell growth, ROS generation, and CSC stemness. Clinically, IL-17RC expressions were significantly upregulated in human GC compared with normal gastric tissues. CONCLUSION Our results suggest that IL-17A promotes gastric carcinogenesis, in part, by regulating IL-17RC/NF-κB/NOX1 pathway, supporting its potential as a target in human GC therapy.
Collapse
Affiliation(s)
- Jee Hyun Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Suyoung Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jinhyung Rho
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| |
Collapse
|
20
|
Wei Q, Hao X, Lau BWM, Wang S, Li Y. Baicalin regulates stem cells as a creative point in the treatment of climacteric syndrome. Front Pharmacol 2022; 13:986436. [DOI: 10.3389/fphar.2022.986436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Graphical AbstractThis review summarizes the regulatory role of Baicalin on the diverse behaviors of distinct stem cell populations and emphasizes the potential applications of Baicalin and stem cell therapy in climacteric syndrome.
Collapse
|
21
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
22
|
Mahgoub E, Taneera J, Sulaiman N, Saber-Ayad M. The role of autophagy in colorectal cancer: Impact on pathogenesis and implications in therapy. Front Med (Lausanne) 2022; 9:959348. [PMID: 36160153 PMCID: PMC9490268 DOI: 10.3389/fmed.2022.959348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is considered as a global major cause of cancer death. Surgical resection is the main line of treatment; however, chemo-, radiotherapy and other adjuvant agents are crucial to achieve good outcomes. The tumor microenvironment (TME) is a well-recognized key player in CRC progression, yet the processes linking the cancer cells to its TME are not fully delineated. Autophagy is one of such processes, with a controversial role in the pathogenesis of CRC, with its intricate links to many pathological factors and processes. Autophagy may apparently play conflicting roles in carcinogenesis, but the precise mechanisms determining the overall direction of the process seem to depend on the context. Additionally, it has been established that autophagy has a remarkable effect on the endothelial cells in the TME, the key substrate for angiogenesis that supports tumor metastasis. Favorable response to immunotherapy occurs only in a specific subpopulation of CRC patients, namely the microsatellite instability-high (MSI-H). In view of such limitations of immunotherapy in CRC, modulation of autophagy represents a potential adjuvant strategy to enhance the effect of those relatively safe agents on wider CRC molecular subtypes. In this review, we discussed the molecular control of autophagy in CRC and how autophagy affects different processes and mechanisms that shape the TME. We explored how autophagy contributes to CRC initiation and progression, and how it interacts with tumor immunity, hypoxia, and oxidative stress. The crosstalk between autophagy and the TME in CRC was extensively dissected. Finally, we reported the clinical efforts and challenges in combining autophagy modulators with various cancer-targeted agents to improve CRC patients’ survival and restrain cancer growth.
Collapse
Affiliation(s)
- Eglal Mahgoub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Giza, Egypt
- *Correspondence: Maha Saber-Ayad,
| |
Collapse
|
23
|
Le Minh G, Reginato MJ. Role of O-GlcNAcylation on cancer stem cells: Connecting nutrient sensing to cell plasticity. Adv Cancer Res 2022; 157:195-228. [PMID: 36725109 PMCID: PMC9895886 DOI: 10.1016/bs.acr.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor growth and metastasis can be promoted by a small sub-population of cancer cells, termed cancer stem-like cells (CSCs). While CSCs possess capability in self-renewing and differentiating, the hierarchy of CSCs during tumor growth is highly plastic. This plasticity in CSCs fate and function can be regulated by signals from the tumor microenvironment. One emerging pathway in CSCs that connects the alteration in microenvironment and signaling network in cancer cells is the hexosamine biosynthetic pathway (HBP). The final product of HBP, UDP-N-acetylglucosamine (UDP-GlcNAc), is utilized for glycosylating of membrane and secreted proteins, but also nuclear and cytoplasmic proteins by the post-translational modification O-GlcNAcylation. O-GlcNAcylation and its enzyme, O-GlcNAc transferase (OGT), are upregulated in nearly all cancers and been linked to regulate many cancer cell phenotypes. Recent studies have begun to connect OGT and O-GlcNAcylation to regulation of CSCs. In this review, we will discuss the emerging role of OGT and O-GlcNAcylation in regulating fate and plasticity of CSCs, as well as the potential in targeting OGT/O-GlcNAcylation in CSCs.
Collapse
Affiliation(s)
- Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States; Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
24
|
Bie Q, Zhai R, Chen Y, Li Y, Xie N, Wang B, Yuan P, Zhou X, Cong H, Chang X, Xiong H, Zhang B. Sox9 Is Crucial for Mesenchymal Stem Cells to Enhance Cutaneous Wound Healing. Int J Stem Cells 2021; 14:465-474. [PMID: 34456192 PMCID: PMC8611311 DOI: 10.15283/ijsc21078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Human umbilical cord mesenchymal stem cells (HUC-MSCs) are promising candidates for cell-based therapy in regenerative medicine or other diseases due to their superior characteristics, including higher proliferation, faster self-renewal ability, lower immunogenicity, a noninvasive harvest procedure, easy expansion in vitro, and ethical access, compared with stem cells from other sources. METHODS AND RESULTS In the present study, we knocked down the expression of SOX9 in HUC-MSCs by lentivirus interference and found that knockdown of SOX9 inhibited the proliferation and migration of HUC-MSCs and influenced the expression of cytokines (IL-6 and IL-8), growth factors (GM-CSF and VEGF) and stemness-related genes (OCT4 and SALL4). In addition, the repair effect of skin with burn injury in rats treated with HUC-MSCs transfected with sh-control was better than that rats treated with HUC-MSCs transfected with shSOX9 or PBS, and the accessory structures of the skin, including hair follicles and glands, were greater than those in the other groups. We found that knockdown of the expression of SOX9 obviously inhibited the expression of Ki67, CK14 and CK18. CONCLUSIONS In conclusion, this study will provide a guide for modifying HUC-MSCs by bioengineering technology in the future.
Collapse
Affiliation(s)
- Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Ruixia Zhai
- Department of Obstetric, Affiliated Hospital of Jining
Medical University, Jining Medical University, Jining,
China
| | - Yanrong Chen
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Yingao Li
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Na Xie
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Baoyi Wang
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Poyun Yuan
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Xinjie Zhou
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Haiyan Cong
- Department of Central Lab, Weihai Municipal Hospital,
Cheeloo College of Medicine, Weihai, China
| | - Xin Chang
- Department of Central Lab, Weihai Municipal Hospital,
Cheeloo College of Medicine, Weihai, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining
Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| |
Collapse
|
25
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
26
|
Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol 2021; 85:196-208. [PMID: 34500075 DOI: 10.1016/j.semcancer.2021.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
27
|
Chen S, Wang W, Tan HY, Lu Y, Li Z, Qu Y, Wang N, Wang D. Role of Autophagy in the Maintenance of Stemness in Adult Stem Cells: A Disease-Relevant Mechanism of Action. Front Cell Dev Biol 2021; 9:715200. [PMID: 34414192 PMCID: PMC8369482 DOI: 10.3389/fcell.2021.715200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an intracellular scavenging mechanism induced to eliminate damaged, denatured, or senescent macromolecular substances and organelles in the body. The regulation of autophagy plays essential roles in the processes of cellular homeostasis and senescence. Dysregulated autophagy is a common feature of several human diseases, including cancers and neurodegenerative disorders. The initiation and development of these disorders have been shown to be associated with the maintenance of disease-specific stem cell compartments. In this review, we summarize recent advances in our understanding of the role of autophagy in the maintenance of stemness. Specifically, we focus on the intersection between autophagy and adult stem cells in the initiation and progression of specific diseases. Accordingly, this review highlights the role of autophagy in stemness maintenance from the perspective of disease-associated mechanisms, which may be fundamental to our understanding of the pathogeneses of human diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Wenqi Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiping Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|