1
|
Pebam M, Khatun S, Ali MS, Srivastava A, Rengan AK. Self-assembled IR dye/mitoxantrone loaded Porphysomes nanosystem for enhanced combinatorial chemo-photothermal cancer therapy. Colloids Surf B Biointerfaces 2024; 241:113985. [PMID: 38838443 DOI: 10.1016/j.colsurfb.2024.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Chemo-photothermal therapy (PTT) is an emerging non-invasive cancer treatment modality. Light-responsive porphysomes (DPP IR Mtx @Lipo NPs) nanosystems ablate breast cancer cells upon oxidative stress and hyperthermia. The unique self-assembled porphysomes were formed spherical shape in the size range of 150 ± 30 nm formed by the co-assembly of porphyrins along with IR 775 and chemotherapeutic drug, Mitoxantrone (Mtx), forming a camouflaged nanosystem (DPP IR Mtx @Lipo NPs, porphysomes). The advent of the prepared porphysomes aids in proper tuning of NIR absorbance improving singlet oxygen species generation among other anticancer drugs. The eminent release of DPP and adjuvant chemo-drug, Mitoxantrone from the self-assembled porphysomes is triggered by IR 775, a NIR photosensitizer upon laser irradiation. These multifunctional DPP IR Mtx @Lipo NPs have an efficient photothermal conversion efficiency of 65.8% as well as bioimaging properties. In-vitro studies in 2D and 3D models showed a significant cell death of 4T1 cells via the apoptotic pathway when irradiated with NIR laser, causing minimal damage to nearby healthy cells. DPP IR Mtx @Lipo NPs exhibited commingled PDT/PTT interdependent via NIR laser exposure, leading to mitochondrial disruption. Interestingly, the transient transfection using p53-GFP in cancer cells followed by DPP IR Mtx @Lipo NPs treatment causes rapid cell death. The activation of p53-dependent apoptosis pathways was vividly expressed, evidenced by the upregulation of Bax and increased pattern of Caspase-3 cleavage. This effect was pronounced upon transfection and induction with DPP IR Mtx @Lipo NPs, particularly in comparison to non-transfected malignant breast cancer 4T1 cells.
Collapse
Affiliation(s)
- Monika Pebam
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aditya Srivastava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India.
| |
Collapse
|
2
|
Chomczyk M, Gazzola L, Dash S, Firmanty P, George BS, Mohanty V, Abbas HA, Baran N. Impact of p53-associated acute myeloid leukemia hallmarks on metabolism and the immune environment. Front Pharmacol 2024; 15:1409210. [PMID: 39161899 PMCID: PMC11330794 DOI: 10.3389/fphar.2024.1409210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Acute myeloid leukemia (AML), an aggressive malignancy of hematopoietic stem cells, is characterized by the blockade of cell differentiation, uncontrolled proliferation, and cell expansion that impairs healthy hematopoiesis and results in pancytopenia and susceptibility to infections. Several genetic and chromosomal aberrations play a role in AML and influence patient outcomes. TP53 is a key tumor suppressor gene involved in a variety of cell features, such as cell-cycle regulation, genome stability, proliferation, differentiation, stem-cell homeostasis, apoptosis, metabolism, senescence, and the repair of DNA damage in response to cellular stress. In AML, TP53 alterations occur in 5%-12% of de novo AML cases. These mutations form an important molecular subgroup, and patients with these mutations have the worst prognosis and shortest overall survival among patients with AML, even when treated with aggressive chemotherapy and allogeneic stem cell transplant. The frequency of TP53-mutations increases in relapsed and recurrent AML and is associated with chemoresistance. Progress in AML genetics and biology has brought the novel therapies, however, the clinical benefit of these agents for patients whose disease is driven by TP53 mutations remains largely unexplored. This review focuses on the molecular characteristics of TP53-mutated disease; the impact of TP53 on selected hallmarks of leukemia, particularly metabolic rewiring and immune evasion, the clinical importance of TP53 mutations; and the current progress in the development of preclinical and clinical therapeutic strategies to treat TP53-mutated disease.
Collapse
Affiliation(s)
- Monika Chomczyk
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Luca Gazzola
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Shubhankar Dash
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Firmanty
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Binsah S. George
- Department of Hematology-oncology, The University of Texas Health Sciences, Houston, TX, United States
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Ranjbar-Niavol F, Rezaei N, Zhao Y, Mirzaei H, Hassan M, Vosough M. P53/NANOG balance; the leading switch between poorly to well differentiated status in liver cancer cells. Front Oncol 2024; 14:1377761. [PMID: 38846985 PMCID: PMC11153735 DOI: 10.3389/fonc.2024.1377761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
Enforcing a well-differentiated state on cells requires tumor suppressor p53 activation as a key player in apoptosis induction and well differentiation. In addition, recent investigations showed a significant correlation between poorly differentiated status and higher expression of NANOG. Inducing the expression of NANOG and decreasing p53 level switch the status of liver cancer cells from well differentiated to poorly status. In this review, we highlighted p53 and NANOG cross-talk in hepatocellular carcinoma (HCC) which is regulated through mitophagy and makes it a novel molecular target to attenuate cancerous phenotype in the management of this tumor.
Collapse
Affiliation(s)
- Fazeleh Ranjbar-Niavol
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ying Zhao
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| |
Collapse
|
5
|
Zhang J, Wei J, Sun R, Sheng H, Yin K, Pan Y, Jimenez R, Chen S, Cui XL, Zou Z, Yue Z, Emch MJ, Hawse JR, Wang L, He HH, Xia S, Han B, He C, Huang H. A lncRNA from the FTO locus acts as a suppressor of the m 6A writer complex and p53 tumor suppression signaling. Mol Cell 2023; 83:2692-2708.e7. [PMID: 37478845 PMCID: PMC10427207 DOI: 10.1016/j.molcel.2023.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/23/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.
Collapse
Affiliation(s)
- Jianong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China.
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Rui Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Haoyue Sheng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kai Yin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhiying Yue
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Michael J Emch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Liguo Wang
- Department of Computation Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
6
|
Liu J, Zhang C, Xu D, Zhang T, Chang CY, Wang J, Liu J, Zhang L, Haffty BG, Zong WX, Hu W, Feng Z. The ubiquitin ligase TRIM21 regulates mutant p53 accumulation and gain of function in cancer. J Clin Invest 2023; 133:164354. [PMID: 36749630 PMCID: PMC10014102 DOI: 10.1172/jci164354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in human cancers. Mutant p53 (mutp53) proteins often accumulate to very high levels in human cancers to promote cancer progression through the gain-of-function (GOF) mechanism. Currently, the mechanism underlying mutp53 accumulation and GOF is incompletely understood. Here, we identified TRIM21 as a critical E3 ubiquitin ligase of mutp53 by screening for specific mutp53-interacting proteins. TRIM21 directly interacted with mutp53 but not WT p53, resulting in ubiquitination and degradation of mutp53 to suppress mutp53 GOF in tumorigenesis. TRIM21 deficiency in cancer cells promoted mutp53 accumulation and GOF in tumorigenesis. Compared with p53R172H knockin mice, which displayed mutp53 accumulation specifically in tumors but not normal tissues, TRIM21 deletion in p53R172H knockin mice resulted in mutp53 accumulation in normal tissues, an earlier tumor onset, and a shortened life span of mice. Furthermore, TRIM21 was frequently downregulated in some human cancers, including colorectal and breast cancers, and low TRIM21 expression was associated with poor prognosis in patients with cancers carrying mutp53. Our results revealed a critical mechanism underlying mutp53 accumulation in cancers and also uncovered an important tumor-suppressive function of TRIM21 and its mechanism in cancers carrying mutp53.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Tianliang Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jie Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey, USA
| | - Bruce G. Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Athikkavil FM, Aiswarya SU, Johny R, Sudhesh M, Nisthul AA, Lankalapalli RS, Anto RJ, Bava SV. A potent bioactive fraction against colon cancer from Plectranthus vettiveroides. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:227-239. [PMID: 37205312 PMCID: PMC10185442 DOI: 10.37349/etat.2023.00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 05/21/2023] Open
Abstract
Aim This study was designed to investigate the anticancer efficacy of the organic leaf extracts of the plant, Plectranthus vettiveroides (P. vettiveroides), and to analyze the molecular mechanism of the anticancer activity. Methods The leaf extracts were prepared by polarity-graded serial extraction of the dried leaf powder. The cytotoxic effect of the extracts was analyzed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The most active ethyl acetate extract was subjected to bioactivity-guided fractionation by column chromatography, which yielded a cytotoxic fraction designated as the P. vettiveroides fraction (PVF). The anticancer property of PVF was confirmed further by clonogenic assay. The mechanism of PVF-induced cell death was analyzed by flow cytometry and fluorescence microscopy. Additionally, the effects of PVF on apoptotic and cell survival pathways were analyzed using western immunoblot analysis. Results A bioactive fraction PVF, was isolated from the ethyl acetate leaf extract. PVF showed significant anticancer activity against colon cancer cells, whilst normal cells were comparatively less affected. PVF induced strong apoptotic stimuli in colorectal carcinoma cell line HCT116, involving both extrinsic and intrinsic pathways. Investigation into the molecular mechanism of anticancer activity of PVF in HCT116 cells revealed that the fraction activates the pro-apoptotic pathway via tumor suppressor protein 53 (p53) and inhibits the anti-apoptotic pathway by regulating phosphatidylinositol 3-kinase (PI3K) signaling. Conclusions The findings of this study demonstrate, with mechanism-based evidence, the chemotherapeutic potential of a bioactive fraction PVF, derived from the leaves of the medicinal plant P. vettiveroides against colon cancer.
Collapse
Affiliation(s)
- Faisal M. Athikkavil
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
| | - Sreekumar U. Aiswarya
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Remya Johny
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
| | - Meghna Sudhesh
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
| | - Amrutha A. Nisthul
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
| | - Ravi S. Lankalapalli
- Chemical Sciences and Technology Division, Council for Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruby J. Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Ruby J. Anto, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| | - Smitha V. Bava
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
- Correspondence: Smitha V. Bava, Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India.
| |
Collapse
|
8
|
Affiliation(s)
- Emanuela Guerra
- Emanuela Guerra, PhD, Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy, Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; and Saverio Alberti, MD, PhD, Unit of Medical Genetics, Department of Biomedical Sciences-BIOMORF, University of Messina, Messina, Italy
| | - Saverio Alberti
- Emanuela Guerra, PhD, Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy, Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; and Saverio Alberti, MD, PhD, Unit of Medical Genetics, Department of Biomedical Sciences-BIOMORF, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Paz MM, Ferretti GDS, Martins-Dinis MMC, Ferreira BIS, Faier-Pereira A, Barnoud T, Moreira OC, Silva JL, Cordeiro Y, Rangel LP. PRIMA-1 inhibits Y220C p53 amyloid aggregation and synergizes with cisplatin in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1165132. [PMID: 37101558 PMCID: PMC10123287 DOI: 10.3389/fmolb.2023.1165132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Although many therapeutic options are available, several factors, including the presence of p53 mutations, impact tumor development and therapeutic resistance. TP53 is the second most frequently mutated gene in HCC, comprising more than 30% of cases. Mutations in p53 result in the formation of amyloid aggregates that promote tumor progression. The use of PRIMA-1, a small molecule capable of restoring p53, is a therapeutic strategy to pharmacologically target the amyloid state mutant p53. In this study, we characterize an HCC mutant p53 model for the study of p53 amyloid aggregation in HCC cell lines, from in silico analysis of p53 mutants to a 3D-cell culture model and demonstrate the unprecedented inhibition of Y220C mutant p53 aggregation by PRIMA-1. In addition, our data show beneficial effects of PRIMA-1 in several "gain of function" properties of mutant-p53 cancer cells, including migration, adhesion, proliferation, and drug resistance. We also demonstrate that the combination of PRIMA-1 and cisplatin is a promising approach for HCC therapy. Taken together, our data support the premise that targeting the amyloid-state of mutant p53 may be an attractive therapeutic approach for HCC, and highlight PRIMA-1 as a new candidate for combination therapy with cisplatin.
Collapse
Affiliation(s)
- Mariana M. Paz
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giulia D. S. Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Mafalda M. C. Martins-Dinis
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz I. S. Ferreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Amanda Faier-Pereira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Otacilio C. Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luciana P. Rangel,
| |
Collapse
|
10
|
Kung CP, Barnoud T, Yao CH, Murphy ME. Editorial: Double-edged swords: Important factors connecting metabolic disorders and cancer development - from basic research to translational applications. Front Endocrinol (Lausanne) 2023; 14:1168700. [PMID: 36936168 PMCID: PMC10019277 DOI: 10.3389/fendo.2023.1168700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Affiliation(s)
- Che-Pei Kung
- Division of Molecular Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
- *Correspondence: Che-Pei Kung,
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
11
|
Context-Dependent Function of Long Noncoding RNA PURPL in Transcriptome Regulation during p53 Activation. Mol Cell Biol 2022; 42:e0028922. [PMID: 36342127 PMCID: PMC9753727 DOI: 10.1128/mcb.00289-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPL is a p53-induced lncRNA that suppresses basal p53 levels. Here, we investigated PURPL upon p53 activation in liver cancer cells, where it is expressed at significantly higher levels than other cell types. Using isoform sequencing, we discovered novel PURPL transcripts that have a retained intron and/or previously unannotated exons. To determine PURPL function upon p53 activation, we performed transcriptome sequencing (RNA-Seq) after depleting PURPL using CRISPR interference (CRISPRi), followed by Nutlin treatment to induce p53. Strikingly, although loss of PURPL in untreated cells altered the expression of only 7 genes, loss of PURPL resulted in altered expression of ~800 genes upon p53 activation, revealing a context-dependent function of PURPL. Pathway analysis suggested that PURPL is important for fine-tuning the expression of specific genes required for mitosis. Consistent with these results, we observed a significant decrease in the percentage of mitotic cells upon PURPL depletion. Collectively, these data identify novel transcripts from the PURPL locus and suggest that PURPL delicately moderates the expression of mitotic genes in the context of p53 activation to control cell cycle arrest.
Collapse
|
12
|
Shu S, Li Z, Liu L, Ying X, Zhang Y, Wang T, Zhou X, Jiang P, Lv W. HPV16 E6-Activated OCT4 Promotes Cervical Cancer Progression by Suppressing p53 Expression via Co-Repressor NCOR1. Front Oncol 2022; 12:900856. [PMID: 35875100 PMCID: PMC9302044 DOI: 10.3389/fonc.2022.900856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human papillomaviruses (HPV), mainly HPV16 and HPV18, of high-risk classification are involved in cervical cancer carcinogenesis and progression. Octamer-binding transcription factor 4 (OCT4) is a key transcription factor that is increased in various cancer types. Cervical cancer patients with higher levels of OCT4 had worse survival rates. However, the definite mechanisms underlying its function in the development of cervical cancer still remain to be explicated. Here, our study demonstrated that OCT4 expression was slightly increased in cervical cancer tissues than in precancerous ones. However, OCT4 was significantly upregulated in HPV16-positive tissues, in contrast to the expression profiling for p53. Moreover, knockdown of HPV16 E6 in SiHa cells suppressed the expression of OCT4 with impaired activities of cell proliferation, migration, and invasion, while it recovered the expression of p53. Overexpression of OCT4 and p53 exerted opposite roles on cell proliferation, migration, invasion, and colony formation of cervical cancer cells. More importantly, the enforced expression of OCT4 augmented p53-inhibited cell migration, invasion, and colony formation in human cervical cancer by promoting EMT. Finally, we identified that OCT4 could bind to the p53 promoter region to repress p53 expression by recruiting co-repressor NCOR1 using luciferase, ChIP, and co-IP experiments. We further illustrated that OCT4 not only increased the lung metastasis of cervical cancer but also effectively reversed p53-inhibited lung metastasis. In conclusion, our results suggested that HPV16 E6 activated the expression of OCT4 and subsequently crippled the transcription of p53 via co-repressor NCOR1, which contributed to cervical cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiguo Lv
- *Correspondence: Weiguo Lv, ; Peiyue Jiang,
| |
Collapse
|
13
|
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene 2022; 41:3039-3050. [PMID: 35487975 PMCID: PMC9149126 DOI: 10.1038/s41388-022-02331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Although it is well established that p53-mediated tumor suppression mainly acts through its ability in transcriptional regulation, the molecular mechanisms of this regulation are not completely understood. Among a number of regulatory modes, acetylation of p53 attracts great interests. p53 was one of the first non-histone proteins found to be functionally regulated by acetylation and deacetylation, and subsequent work has established that reversible acetylation is a general mechanism for regulation of non-histone proteins. Unlike other types of post-translational modifications occurred during stress responses, the role of p53 acetylation has been recently validated in vivo by using the knockin mice with both acetylation-defective and acetylation-mimicking p53 mutants. Here, we review the role of acetylation in p53-mediated activities, with a focus on which specific acetylation sites are critical for p53-dependent transcription regulation during tumor suppression and how acetylation of p53 recruits specific “readers” to execute its promoter-specific regulation of different targets. We also discuss the role of p53 acetylation in differentially regulating its classic activities in cell cycle arrest, senescence and apoptosis as well as newly identified unconventional functions such as cell metabolism and ferroptosis.
Collapse
|
14
|
Cross-talk between mutant p53 and p62/SQSTM1 augments cancer cell migration by promoting the degradation of cell adhesion proteins. Proc Natl Acad Sci U S A 2022; 119:e2119644119. [PMID: 35439056 PMCID: PMC9173583 DOI: 10.1073/pnas.2119644119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Missense mutations in the TP53 gene, encoding the p53 tumor suppressor, are very frequent in human cancer. Some of those mutations, particularly the more common (“hotspot”) ones, not only abrogate p53’s tumor suppressor activities but also endow the mutant protein with oncogenic gain of function (GOF). We report that p53R273H, the most common p53 mutant in pancreatic cancer, interacts with the SQSTM1/p62 protein to accelerate the degradation of cell adhesion proteins. This enables pancreatic cancer cells to detach from the epithelial sheet and engage in individualized cell migration, probably augmenting metastatic spread. By providing insights into mechanisms that underpin mutant p53 GOF, this study may suggest ways to interfere with the progression of cancers bearing particular p53 mutants. Missense mutations in the p53 tumor suppressor abound in human cancer. Common (“hotspot”) mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53. To elucidate transcription-independent effects of mutp53, we characterized the protein interactome of the p53R273H mutant in cells derived from pancreatic ductal adenocarcinoma (PDAC), where p53R273H is the most frequent p53 mutant. We now report that p53R273H, but not the p53R175H hotspot mutant, interacts with SQSTM1/p62 and promotes cancer cell migration and invasion in a p62-dependent manner. Mechanistically, the p53R273H-p62 axis drives the proteasomal degradation of several cell junction–associated proteins, including the gap junction protein Connexin 43, facilitating scattered cell migration. Concordantly, down-regulation of Connexin 43 augments PDAC cell migration, while its forced overexpression blunts the promigratory effect of the p53R273H-p62 axis. These findings define a mechanism of mutp53 GOF.
Collapse
|
15
|
Transcriptome Analysis of Pterygium and Pinguecula Reveals Evidence of Genomic Instability Associated with Chronic Inflammation. Int J Mol Sci 2021; 22:ijms222112090. [PMID: 34769520 PMCID: PMC8584501 DOI: 10.3390/ijms222112090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Solar damage due to ultraviolet radiation (UVR) is implicated in the development of two proliferative lesions of the ocular surface: pterygium and pinguecula. Pterygium and pinguecula specimens were collected, along with adjacent healthy conjunctiva specimens. RNA was extracted and sequenced. Pairwise comparisons were made of differentially expressed genes (DEGs). Computational methods were used for analysis. Transcripts from 18,630 genes were identified. Comparison of two subgroups of pterygium specimens uncovered evidence of genomic instability associated with inflammation and the immune response; these changes were also observed in pinguecula, but to a lesser extent. Among the top DEGs were four genes encoding tumor suppressors that were downregulated in pterygium: C10orf90, RARRES1, DMBT1 and SCGB3A1; C10orf90 and RARRES1 were also downregulated in pinguecula. Ingenuity Pathway Analysis overwhelmingly linked DEGs to cancer for both lesions; however, both lesions are clearly still benign, as evidenced by the expression of other genes indicating their well-differentiated and non-invasive character. Pathways for epithelial cell proliferation were identified that distinguish the two lesions, as well as genes encoding specific pathway components. Upregulated DEGs common to both lesions, including KRT9 and TRPV3, provide a further insight into pathophysiology. Our findings suggest that pterygium and pinguecula, while benign lesions, are both on the pathological pathway towards neoplastic transformation.
Collapse
|
16
|
Takatsuka H, Shibata A, Umeda M. Genome Maintenance Mechanisms at the Chromatin Level. Int J Mol Sci 2021; 22:ijms221910384. [PMID: 34638727 PMCID: PMC8508675 DOI: 10.3390/ijms221910384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure “chromatin”. Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), 3-39-22, Showa-Machi, Maebashi 371-8511, Japan;
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Correspondence:
| |
Collapse
|
17
|
Paduano F, Fabiani F, Colao E, Trapasso F, Perrotti N, Barbieri V, Baudi F, Iuliano R. Case Report: Identification of a Novel Pathogenic Germline TP53 Variant in a Family With Li-Fraumeni Syndrome. Front Genet 2021; 12:734809. [PMID: 34539758 PMCID: PMC8440986 DOI: 10.3389/fgene.2021.734809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
Li–Fraumeni syndrome (LFS) is an inherited autosomal dominant disease characterized by a predisposition to many cancers. Germline pathogenic variants in TP53 are primarily responsible for LFS. By performing a targeted sequencing panel in a proband with liver carcinoma having a deceased son affected by osteosarcoma, we found the novel heterozygous frameshift variant c.645del (p.Ser215Argfs*32) in the TP53 gene. This variant co-segregated with typical LFS cancers in the family pedigree, consistent with the pathogenicity of this novel and previously undescribed TP53 variant.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy.,Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy.,Tecnologica Research Institute and Marrelli Health, Biomedical Section, Stem Cells and Medical Genetics Units, Crotone, Italy
| | - Fernanda Fabiani
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy.,Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy.,Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Vito Barbieri
- Medical Oncology Unit, Mater Domini Hospital, Catanzaro, Italy
| | - Francesco Baudi
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy.,Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
18
|
Lang YD, Jou YS. PSPC1 is a new contextual determinant of aberrant subcellular translocation of oncogenes in tumor progression. J Biomed Sci 2021; 28:57. [PMID: 34340703 PMCID: PMC8327449 DOI: 10.1186/s12929-021-00753-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of nucleocytoplasmic shuttling is commonly observed in cancers and emerging as a cancer hallmark for the development of anticancer therapeutic strategies. Despite its severe adverse effects, selinexor, a selective first-in-class inhibitor of the common nuclear export receptor XPO1, was developed to target nucleocytoplasmic protein shuttling and received accelerated FDA approval in 2019 in combination with dexamethasone as a fifth-line therapeutic option for adults with relapsed refractory multiple myeloma (RRMM). To explore innovative targets in nucleocytoplasmic shuttling, we propose that the aberrant contextual determinants of nucleocytoplasmic shuttling, such as PSPC1 (Paraspeckle component 1), TGIF1 (TGF-β Induced Factor Homeobox 1), NPM1 (Nucleophosmin), Mortalin and EBP50, that modulate shuttling (or cargo) proteins with opposite tumorigenic functions in different subcellular locations could be theranostic targets for developing anticancer strategies. For instance, PSPC1 was recently shown to be the contextual determinant of the TGF-β prometastatic switch and PTK6/β-catenin reciprocal oncogenic nucleocytoplasmic shuttling during hepatocellular carcinoma (HCC) progression. The innovative nucleocytoplasmic shuttling inhibitor PSPC1 C-terminal 131 polypeptide (PSPC1-CT131), which was developed to target both the shuttling determinant PSPC1 and the shuttling protein PTK6, maintained their tumor-suppressive characteristics and exhibited synergistic effects on tumor suppression in HCC cells and mouse models. In summary, targeting the contextual determinants of nucleocytoplasmic shuttling with cargo proteins having opposite tumorigenic functions in different subcellular locations could be an innovative strategy for developing new therapeutic biomarkers and agents to improve cancer therapy.
Collapse
Affiliation(s)
- Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|