1
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
2
|
Cao J, Wu S, Zhao S, Wang L, Wu Y, Song L, Sun C, Liu Y, Liu Z, Zhu R, Liang R, Wang W, Sun Y. USP24 promotes autophagy-dependent ferroptosis in hepatocellular carcinoma by reducing the K48-linked ubiquitination of Beclin1. Commun Biol 2024; 7:1279. [PMID: 39379617 PMCID: PMC11461744 DOI: 10.1038/s42003-024-06999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Ubiquitination is a post-translational modification (PTM), which is critical to maintain cell homeostasis. Ubiquitin-specific protease 24 (USP24) plays roles in various diseases, the mechanisms by which USP24 regulates hepatocellular carcinoma (HCC) remain poorly understood. In this study, USP24 is found to be significantly downregulated in HCC. Knocking down USP24 promotes HCC proliferation and migration, whereas USP24 overexpression inhibits HCC in vitro and in vivo. The endogenous interaction between USP24 and Beclin1 is confirmed. Mechanically, USP24 delays Beclin1 degradation by reducing its K48-linked ubiquitination, the effects of overexpressing USP24 on HCC proliferation can be partially reversed by silencing Beclin1. We find that increased autophagy is accompanied by ferroptosis in USP24 overexpressed HCC cells and USP24 increases the susceptibility of HCC to sorafenib. Collectively, this study highlights the critical role of USP24 in regulating autophagy-dependent ferroptosis by decreasing Beclin1 ubiquitination, suggesting that targeting USP24 may be a strategy for treating HCC.
Collapse
Affiliation(s)
- Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liming Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhipu Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China.
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Zhao J, Hua J, Zhan Y, Chen C, Liu Y, Yang L, Wang H, Wang H, Li J. O-GlcNAcylation stimulates the deubiquitination activity of USP16 and regulates cell cycle progression. J Biol Chem 2024; 300:107150. [PMID: 38462164 PMCID: PMC10998217 DOI: 10.1016/j.jbc.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Histone 2A monoubiquitination (uH2A) underscores a key epigenetic regulation of gene expression. In this report, we show that the deubiquitinase for uH2A, ubiquitin-specific peptidase 16 (USP16), is modified by O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation involves the installation of the O-GlcNAc moiety to Ser/Thr residues. It crosstalks with Ser/Thr phosphorylation, affects protein-protein interaction, alters enzyme activity or protein folding, and changes protein subcellular localization. In our study, we first confirmed that USP16 is glycosylated on Thr203 and Ser214, as reported in a previous chemoenzymatic screen. We then discovered that mutation of the O-GlcNAcylation site Thr203, which is adjacent to deubiquitination-required Cys204, reduces the deubiquitination activity toward H2AK119ub in vitro and in cells, while mutation on Ser214 had the opposite effects. Using USP16 Ser552 phosphorylation-specific antibodies, we demonstrated that O-GlcNAcylation antagonizes cyclin-dependent kinase 1-mediated phosphorylation and promotes USP16 nuclear export. O-GlcNAcylation of USP16 is also required for deubiquitination of Polo-like kinase 1, a mitotic master kinase, and the subsequent chromosome segregation and cytokinesis. In summary, our study revealed that O-GlcNAcylation of USP16 at Thr203 and Ser214 coordinates deubiquitination of uH2A and Polo-like kinase 1, thus ensuring proper cell cycle progression.
Collapse
Affiliation(s)
- Jianxin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Jie Hua
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA; School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Zhan
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Chunxu Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Bioengineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yue Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China.
| |
Collapse
|
4
|
Hou S, Zhao T, Deng B, Li C, Li W, Huang H, Hang Q. USP10 promotes migration and cisplatin resistance in esophageal squamous cell carcinoma cells. Med Oncol 2023; 41:33. [PMID: 38150085 DOI: 10.1007/s12032-023-02272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023]
Abstract
Cisplatin-based chemotherapy is the main treatment option for advanced or metastatic esophageal squamous cell carcinoma (ESCC). However, most ESCC patients develop drug resistance within 2 years after receiving cisplatin chemotherapy. Ubiquitin-specific protease 10 (USP10) is abnormally expressed in a variety of cancers, but the mechanistic roles of USP10 in ESCC are still obscure. Here, the effects of USP10 on the migration and cisplatin resistance of ESCC in vivo and in vitro and the underlying mechanisms have been investigated by bioinformatics analysis, RT-PCR, western blotting, immunoprecipitation, immunohistochemistry, cell migration and MTS cell proliferation assays, deubiquitination assay, and mouse tail vein injection model. USP10 was significantly up-regulated in ESCC tissues compared with adjacent normal tissues in both public databases and clinical samples and was closely associated with overall survival. Subsequent results revealed that USP10 contributed to the migration and cisplatin resistance of ESCC cells, while knocking down USP10 in cisplatin-resistant cells exhibited opposite effects in vitro and in vivo. Further Co-IP experiments showed that integrin β1 and YAP might be targets for USP10 deubiquitination. Moreover, deficiency of USP10 significantly inhibited the migrative and chemo-resistant abilities of ESCC cells, which could be majorly reversed by integrin β1 or YAP reconstitution. Altogether, USP10 was required for migration and cisplatin resistance in ESCC through deubiquinating and stabilizing integrin β1/YAP, highlighting that inhibition of USP10 may be a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Sicong Hou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Tiantian Zhao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Caimin Li
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Wenqian Li
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng, 224006, Jiangsu Province, China
- Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, Jiangsu Province, China
| | - Qinglei Hang
- Department of Laboratory Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Zheng J, Chen C, Guo C, Caba C, Tong Y, Wang H. The Pleiotropic Ubiquitin-Specific Peptidase 16 and Its Many Substrates. Cells 2023; 12:886. [PMID: 36980227 PMCID: PMC10047310 DOI: 10.3390/cells12060886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Ubiquitin-specific peptidase 16 (USP16) is a deubiquitinase that plays a role in the regulation of gene expression, cell cycle progression, and various other functions. It was originally identified as the major deubiquitinase for histone H2A and has since been found to deubiquitinate a range of other substrates, including proteins from both the cytoplasm and nucleus. USP16 is phosphorylated when cells enter mitosis and dephosphorylated during the metaphase/anaphase transition. While much of USP16 is localized in the cytoplasm, separating the enzyme from its substrates is considered an important regulatory mechanism. Some of the functions that USP16 has been linked to include DNA damage repair, immune disease, tumorigenesis, protein synthesis, coronary artery health, and male infertility. The strong connection to immune response and the fact that multiple oncogene products are substrates of USP16 suggests that USP16 may be a potential therapeutic target for the treatment of certain human diseases.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Chunxu Chen
- Department of Bioengineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Li L, Zhou A, Wei Y, Liu F, Li P, Fang R, Ma L, Zhang S, Wang L, Liu J, Richard HT, Chen Y, Wang H, Huang S. Critical role of lncEPAT in coupling dysregulated EGFR pathway and histone H2A deubiquitination during glioblastoma tumorigenesis. SCIENCE ADVANCES 2022; 8:eabn2571. [PMID: 36197973 PMCID: PMC9534510 DOI: 10.1126/sciadv.abn2571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Histone 2A (H2A) monoubiquitination is a fundamental epigenetics mechanism of gene expression, which plays a critical role in regulating cell fate. However, it is unknown if H2A ubiquitination is involved in EGFR-driven tumorigenesis. In the current study, we have characterized a previously unidentified oncogenic lncRNA (lncEPAT) that mediates the integration of the dysregulated EGFR pathway with H2A deubiquitination in tumorigenesis. LncEPAT was induced by the EGFR pathway, and high-level lncEPAT expression positively correlated with the glioma grade and predicted poor survival of glioma patients. Mass spectrometry analyses revealed that lncEPAT specifically interacted with deubiquitinase USP16. LncEPAT inhibited USP16's recruitment to chromatin, thereby blocking USP16-mediated H2A deubiquitination and repressing target gene expression, including CDKN1A and CLUSTERIN. Depletion of lncEPAT promoted USP16-induced cell cycle arrest and cellular senescence, and then repressed GBM cell tumorigenesis. Thus, the EGFR-lncEPAT-ubH2A coupling represents a previously unidentified mechanism for epigenetic gene regulation and senescence resistance during GBM tumorigenesis.
Collapse
Affiliation(s)
- Linlin Li
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanjun Wei
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Feng Liu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peng Li
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Runping Fang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Li Ma
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sicong Zhang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, NY 10065, USA
| | - Longqiang Wang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Hope T. Richard
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yiwen Chen
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Hengbin Wang
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Suyun Huang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Virginia Commonwealth University Institute of Molecular Medicine, Richmond, VA 23298, USA
| |
Collapse
|
7
|
Pogribna M, Word B, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology 2022; 16:409-424. [DOI: 10.1080/17435390.2022.2085206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| |
Collapse
|