1
|
Ratter-Rieck JM, Zepina A, Niersmann C, Röhrig K, Riols F, Haid M, Lintelmann J, Hauck SM, Roden M, Weigert C, Herder C. Omentin Increases Glucose Uptake, but Not Insulin Sensitivity in Human Myotubes Dependent on Extracellular Lactotransferrin. Obes Facts 2024:1-9. [PMID: 39527934 DOI: 10.1159/000541915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Omentin (intelectin-1) is an adipokine produced by the stromal vascular fraction of visceral adipose tissue and has been positively associated with insulin sensitivity. The underlying mechanism of action, however, is largely unknown. It has been described that omentin may increase insulin sensitivity and glucose uptake of adipocytes, but effects on other insulin-sensitive tissues such as skeletal muscle are unexplored. We therefore investigated effects of omentin on insulin sensitivity and metabolism of primary human myotubes. METHODS Primary human myotubes were treated with 0.5 or 2 µg/mL omentin and subsequently protein detection, glucose uptake assay, lactate assay, and lipidomics analysis were performed. RESULTS Omentin did not affect skeletal muscle insulin signaling, as assessed by basal and insulin-stimulated phosphorylation of IRS1 and AKT. Omentin increased basal, but not insulin-stimulated glucose uptake. While increased glycolytic activity was confirmed by elevated lactate release after omentin treatment, effects on cellular lipid composition were limited to an increase in total triacylglycerol concentration. Increased glucose uptake by omentin was counteracted by addition of extracellular lactotransferrin, which can bind to omentin. CONCLUSIONS Overall, increased basal glucose uptake in skeletal muscle cells suggests differential effects of omentin on insulin-sensitive tissues. Moreover, an involvement of lactotransferrin in omentin's mechanism of action may partially explain contradictory results of epidemiological studies on the role of omentin in different diseases.
Collapse
Affiliation(s)
- Jacqueline M Ratter-Rieck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Alexandra Zepina
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Corinna Niersmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Karin Röhrig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jutta Lintelmann
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Cora Weigert
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Partner Tübingen, Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Pu K, Gao J, Feng Y, Hu J, Tang S, Yang G, Xu C. Comprehensive evaluation of immunological attributes and immunotherapy responses of positive T cell function regulators in colorectal cancer. BMC Gastroenterol 2024; 24:339. [PMID: 39354362 PMCID: PMC11443709 DOI: 10.1186/s12876-024-03409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Positive regulators of T-cell function (PTFRs), integral to T-cell proliferation and activation, have been identified as potential prognostic markers in colorectal cancer (CRC). Despite this, their role within the tumor microenvironment (TME) and their response to immunotherapy are not yet fully understood. METHODS This study delved into PTFR-related CRC subtypes by analyzing four independent transcriptome datasets, emphasizing the most significant prognostic PTFRs. We identified differentially expressed genes (DEGs) between two subtypes and developed a PTFR risk model using LASSO and Cox regression methods. The model's associations with survival time, clinical features, TME characteristics, tumor mutation profiles, microsatellite instability (MSI), cancer stem cell (CSC) index, and responses to chemotherapy, targeted therapy, and immunotherapy were subsequently explored. RESULTS The PTFR risk model demonstrated a strong predictive capacity for CRC. It facilitated the estimation of immune cell composition, HLA expression levels, immune checkpoint expression, mutation burden, CSC index features, and the effectiveness of immunotherapy. CONCLUSIONS This study enhances our understanding of the role of PTFRs in CRC progression and introduces an innovative assessment framework for CRC immunotherapy. This framework improves the prediction of treatment outcomes and aids in the customization of therapeutic strategies.
Collapse
Affiliation(s)
- Ke Pu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Jingyuan Gao
- Department of Immunology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yang Feng
- Department of Neurosurgery, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Jian Hu
- Department of Thoracic and Cardiovascular Surgery, Dazhou Second People's Hospital, Integrated TCM & Western Medicine Hospital, Dazhou, 635000, China
| | - Shunli Tang
- Department of Pathology, Dazhou Second People's Hospital, Integrated TCM & Western Medicine Hospital, Dazhou, 635000, China
| | - Guodong Yang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Liu W, Kuang T, Liu L, Deng W. The role of innate immune cells in the colorectal cancer tumor microenvironment and advances in anti-tumor therapy research. Front Immunol 2024; 15:1407449. [PMID: 39100676 PMCID: PMC11294098 DOI: 10.3389/fimmu.2024.1407449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Innate immune cells in the colorectal cancer microenvironment mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow-derived suppressor cells. They play a pivotal role in tumor initiation and progression through the secretion of diverse cytokines, chemokines, and other factors that govern these processes. Colorectal cancer is a common malignancy of the gastrointestinal tract, and understanding the role of innate immune cells in the microenvironment of CRC may help to improve therapeutic approaches to CRC and increase the good prognosis. In this review, we comprehensively explore the pivotal role of innate immune cells in the initiation and progression of colorectal cancer (CRC), alongside an extensive evaluation of the current landscape of innate immune cell-based immunotherapies, thereby offering valuable insights for future research strategies and clinical trials.
Collapse
Affiliation(s)
| | | | | | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Wu N, Chen J, Lin T, Zhong Z, Li M, Yu Y, Guo J, Yu W. Identification of AP002498.1 and LINC01871 as prognostic biomarkers and therapeutic targets for distant metastasis of colorectal adenocarcinoma. Cancer Med 2024; 13:e6823. [PMID: 38083905 PMCID: PMC10807603 DOI: 10.1002/cam4.6823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Increasing evidence suggests that lncRNA (Long non-coding RNA, lncRNA)-mediated ceRNA (competing endogenous RNA, ceRNA) networks are involved in the occurrence and progression of colorectal cancer (CRC). However, the roles of the lncRNA-miRNA-mRNA ceRNA network in distant metastasis of CRC are still unclear. METHODS In this study, we constructed a specific ceRNA network to identify potential biomarkers and therapeutic targets for distant metastasis of CRC. Specifically, RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to screen for differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) related to metastasis. After validation and selection by qRT-PCR and univariate and multivariate analysis of the metastasis- and prognosis-related lncRNAs, the regulated microRNAs (miRNAs) and coexpressed mRNAs were used to construct a ceRNA network for distant metastasis of CRC. RESULTS Two key distant metastasis-related DElncRNAs, AP002498.1 and LINC01871, were identified by univariate and multivariate analysis in combination with analyses of clinical data and expression levels. Furthermore, lncRNA-associated ceRNA subnetworks were constructed from the predicted miRNAs and 13 coexpressed DEmRNAs (SERPINA1, ITLN1, REG4, L1TD1, IGFALS, MUC5B, CIITA, CXCL9, CXCL10, GBP4, GNLY, IDO1, and NOS2). The AP002498.1- and LINC01871-associated ceRNA subnetworks regulated the expression of the target genes SERPINA1 and MUC5B and GNLY, respectively, through the associated miRNAs. CONCLUSION The DElncRNA AP002498.1 and the LINC01871/miR-4644 and miR-185-5p/GNLY axes were identified as being closely associated with distant metastasis and could represent independent prognostic biomarkers or therapeutic targets in colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Jingyi Chen
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Zhaohui Zhong
- Department of General SurgeryPeking University People's HospitalBeijingChina
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Yimeng Yu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Jingzhu Guo
- Department of PediatricPeking University People's HospitalBeijingChina
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| |
Collapse
|
6
|
Tao M, Yan W, Chen C, Tang M, Zhao X, Feng Q, Fei X, Fu Y. Omentin-1 ameliorates experimental inflammatory bowel disease via Nrf2 activation and redox regulation. Life Sci 2023; 328:121847. [PMID: 37295714 DOI: 10.1016/j.lfs.2023.121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
AIMS Omentin-1 production is decreased in patients with IBD. However, the specific role of Omentin-1 in IBD has not been fully elucidated. This study aimed to investigate the expression and role of Omentin-1 in IBD and the potential mechanisms. MAIN METHODS We collected human serum and colon biopsy samples at the Wuhan Union Hospital. Omentin-1 recombinant protein was injected intraperitoneally in a DSS-induced experimental IBD mouse model. Omentin-1 levels were measured in IBD patients, colitis mice, and LPS-induced HT-29 cells. Omentin-1 and/or a Nrf2 specific inhibitor (ML385) were administered to DSS mice and LPS-induced HT-29 cells. The effects of Omentin-1 on inflammation, intestinal barrier function, Nrf2 pathway, oxidative stress, and NF-κB signaling were detected in vivo and in vitro. KEY FINDINGS Serum Omentin-1 levels were significantly reduced in UC and CD patients compared with controls (173.7 (IQR, 120.1-221.2) ng/ml, 80.8 (43.8-151.8) ng/ml, and 270.7 (220.7-306.5) ng/ml, respectively). The levels of Omentin-1 were also significantly lower in colitis mice and LPS-induced HT-29 cells. Omentin-1 treatment effectively ameliorated inflammation and impaired intestinal barrier, decreased ROS and MDA levels, and increased GSH and SOD production in the DSS-induced colitis mice and LPS-induced HT-29 cells. Mechanically, Omentin-1 repaired the intestinal barrier by activating Nrf2, then improving oxidative stress and inhibiting NF-κB signaling. Furthermore, the interaction between Omentin-1 and Nrf2 was identified. SIGNIFICANCE Omentin-1 activates the Nrf2 pathway to regulate redox balance, ultimately protecting intestinal barrier function and reducing intestinal inflammation. In general, Omentin-1 can be used as a promising therapeutic target for IBD.
Collapse
Affiliation(s)
- Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfan Tang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Feng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshang Fei
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat Commun 2023; 14:1438. [PMID: 36922516 PMCID: PMC10017705 DOI: 10.1038/s41467-023-36983-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
Collapse
|
8
|
Wang P, Li T, Niu C, Sun S, Liu D. ROS-activated MAPK/ERK pathway regulates crosstalk between Nrf2 and Hif-1α to promote IL-17D expression protecting the intestinal epithelial barrier under hyperoxia. Int Immunopharmacol 2023; 116:109763. [PMID: 36736221 DOI: 10.1016/j.intimp.2023.109763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) damage to the intestinal barrier is a side effect of prolonged hyperoxia therapy in neonates, which impairs growth and development of the intestine and promotes intestinal diseases. However, the research on clinical prevention and treatment is lacking. Therefore, we investigated the molecular mechanisms of the neonate intestinal response against hyperoxia-derived ROS to find targets for intestinal barrier damage prevention. Human intestinal epithelial cells were incubated under hyperoxia (85% oxygen) to build an in vitro model. ROS and the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway were inhibited to detect the MAPK/ERK pathway, nuclear factor erythroid factor 2-related factor 2 (Nrf2), hypoxia-inducible factor-1α (Hif-1α), and interleukin-17D (IL-17D) expression. Nrf2 was inhibited to detect Hif-1α and IL-17D expression. Hif-1α was inhibited to detect Nrf2, IL-17D, and tight junction proteins expression and apoptosis. Cells were treated with human recombinant IL-17D to detect TNF-α, IL-1β, IL-10, and tight junction proteins expression. ROS, Nrf2, Hif-1α, and IL-17D were upregulated and the MAPK/ERK pathway was activated under hyperoxia. But ROS inhibition downregulated the MAPK/ERK pathway, Nrf2, Hif-1α, and IL-17D. MAPK/ERK pathway inhibition downregulated Nrf2, Hif-1α, and IL-17D. Nrf2 inhibition downregulated Hif-1α and IL-17D. Hif-1α inhibition downregulated Nrf2, IL-17D, tight junction proteins, and exacerbated apoptosis. The recombinant IL-17D downregulated TNF-α, IL-1β, but upregulated IL-10 and tight junction proteins. We concluded that Hyperoxia-generated ROS activated the MAPK/ERK pathway to regulate Nrf2, Hif-1α, and IL-17D expression. Nrf2 and Hif-1α were interdependent and promoted IL-17D. Importantly, Hif-1α and IL-17D expression protected the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Pingchuan Wang
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Tianming Li
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Changping Niu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Siyu Sun
- ShengJing Hospital of China Medical University, Department of Gastroenterology, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Dongyan Liu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China.
| |
Collapse
|
9
|
Ya G, Ren W, Qin R, He J, Zhao S. Role of myeloid-derived suppressor cells in the formation of pre-metastatic niche. Front Oncol 2022; 12:975261. [PMID: 36237333 PMCID: PMC9552826 DOI: 10.3389/fonc.2022.975261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is a complex process, which depends on the interaction between tumor cells and host organs. Driven by the primary tumor, the host organ will establish an environment suitable for the growth of tumor cells before their arrival, which is called the pre-metastasis niche. The formation of pre-metastasis niche requires the participation of a variety of cells, in which myeloid-derived suppressor cells play a very important role. They reach the host organ before the tumor cells, and promote the establishment of the pre-metastasis niche by influencing immunosuppression, vascular leakage, extracellular matrix remodeling, angiogenesis and so on. In this article, we introduced the formation of the pre-metastasis niche and discussed the important role of myeloid-derived suppressor cells. In addition, this paper also emphasized the targeting of myeloid-derived suppressor cells as a therapeutic strategy to inhibit the formation of pre-metastasis niche, which provided a research idea for curbing tumor metastasis.
Collapse
Affiliation(s)
- Guoqi Ya
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Weihong Ren,
| | - Rui Qin
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
10
|
Dai W, Xiang W, Han L, Yuan Z, Wang R, Ma Y, Yang Y, Cai S, Xu Y, Mo S, Li Q, Cai G. PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:848-867. [PMID: 35904817 PMCID: PMC9456702 DOI: 10.1002/cac2.12341] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Abnormal expression of protein tyrosine phosphatases (PTPs) has been reported to be a crucial cause of cancer. As a member of PTPs, protein tyrosine phosphatase receptor type O (PTPRO) has been revealed to play tumor suppressive roles in several cancers, while its roles in colorectal cancer (CRC) remains to be elucidated. Hence, we aimed to explore the roles and mechanisms of PTPRO in CRC initiation and progression. METHODS The influences of PTPRO on the growth and liver metastasis of CRC cells and the expression patterns of different lipid metabolism enzymes were evaluated in vitro and in vivo. Molecular and biological experiments were conducted to uncover the underpinning mechanisms of dysregulated de novo lipogenesis and fatty acid β-oxidation. RESULTS PTPRO expression was notably downregulated in CRC liver metastasis compared to the primary cancer, and such a downregulation was associated with poor prognosis of patients with CRC. PTPRO silencing significantly promoted cell growth and liver metastasis. Compared with PTPRO wild-type mice, PTPRO-knockout mice developed more tumors and harbored larger tumor loads under treatment with azoxymethane and dextran sulfate sodium. Gene set enrichment analysis revealed that PTPRO downregulation was significantly associated with the fatty acid metabolism pathways. Blockage of fatty acid synthesis abrogated the effects of PTPRO silencing on cell growth and liver metastasis. Further experiments indicated that PTPRO silencing induced the activation of the AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling axis, thus promoting de novo lipogenesis by enhancing the expression of sterol regulatory element-binding protein 1 (SREBP1) and its target lipogenic enzyme acetyl-CoA carboxylase alpha (ACC1) by activating the AKT/mTOR signaling pathway. Furthermore, PTPRO attenuation decreased the fatty acid oxidation rate by repressing the expression of peroxisome proliferator-activated receptor alpha (PPARα) and its downstream enzyme peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) via activating the p38/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. CONCLUSIONS PTPRO could suppress CRC development and metastasis via modulating the AKT/mTOR/SREBP1/ACC1 and MAPK/PPARα/ACOX1 pathways and reprogramming lipid metabolism.
Collapse
Affiliation(s)
- Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Wenqiang Xiang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Lingyu Han
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zixu Yuan
- Department of Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 528406, P. R. China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
11
|
Chen Z, Zhang X, Xing Z, Lv S, Huang L, Liu J, Ye S, Li X, Chen M, Zuo S, Tao Y, He Y. OLFM4 deficiency delays the progression of colitis to colorectal cancer by abrogating PMN-MDSCs recruitment. Oncogene 2022; 41:3131-3150. [PMID: 35487976 DOI: 10.1038/s41388-022-02324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022]
Abstract
Chronic inflammatory bowel disease (IBD) is strongly associated with the development of colitis-associated tumorigenesis (CAT). Despite recent advances in the understanding of polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) responses in cancer, the mechanisms of these cells during this process remain largely uncharacterized. Here, we discovered a glycoprotein, olfactomedin-4 (OLFM4), was highly expressed in PMN-MDSCs from colitis to colorectal cancer (CRC), and its expression level and PMN-MDSC population positively correlated with the progression of IBD to CRC. Moreover, mice lacking OLFM4 in myeloid cells showed poor recruitment of PMN-MDSCs, impaired intestinal homeostasis, and delayed development from IBD to CRC, and increased response to anti-PD1 therapy. The main mechanism of OLFM4-mediated PMN-MDSC activity involved the NF-κB/PTGS2 pathway, through the binding of LGALS3, a galactoside-binding protein expressed on PMN-MDSCs. Our results showed that the OLFM4/NF-κB/PTGS2 pathway promoted PMN-MDSC recruitment, which played an essential role in the maintenance of intestinal homeostasis, but showed resistance to anti-PD1 therapy in CRC.
Collapse
Affiliation(s)
- Ziyang Chen
- Department of Neurosurgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaijun Lv
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Linxuan Huang
- Dongguan Institute of Clinical Cancer Research, Department of Medical Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Jingping Liu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Shubiao Ye
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingxu Tao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Neurosurgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China. .,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three Classes of Antioxidant Defense Systems and the Development of Postmenopausal Osteoporosis. Front Physiol 2022; 13:840293. [PMID: 35309045 PMCID: PMC8927967 DOI: 10.3389/fphys.2022.840293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a common bone imbalance disease that threatens the health of postmenopausal women. Estrogen deficiency accelerates the aging of women. Oxidative stress damage is regarded as the main pathogenesis of postmenopausal osteoporosis. The accumulation of reactive oxygen species in the bone microenvironment plays a role in osteoblast and osteoclast apoptosis. Improving the oxidative state is essential for the prevention and treatment of postmenopausal osteoporosis. There are three classes of antioxidant defense systems in the body to eliminate free radicals and peroxides including antioxidant substances, antioxidant enzymes, and repair enzymes. In our review, we demonstrated the mechanism of antioxidants and their effect on bone metabolism in detail. We concluded that glutathione/oxidized glutathione (GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/HO-1 signaling pathway and that the antioxidant enzyme-mediated mitochondrial apoptosis pathway of osteoblasts was necessary for the development of postmenopausal osteoporosis. Since the current therapeutic effects of targeting bone cells are not significant, improving the systemic peroxidation state and then regulating bone homeostasis will be a new method for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- Yue Zhu,
| |
Collapse
|