1
|
Ma Q, Chen L, Feng K, Guo W, Huang T, Cai YD. Exploring Prognostic Gene Factors in Breast Cancer via Machine Learning. Biochem Genet 2024; 62:5022-5050. [PMID: 38383836 DOI: 10.1007/s10528-024-10712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
Breast cancer remains the most prevalent cancer in women. To date, its underlying molecular mechanisms have not been fully uncovered. The determination of gene factors is important to improve our understanding on breast cancer, which can correlate the specific gene expression and tumor staging. However, the knowledge in this regard is still far from complete. Thus, this study aimed to explore these knowledge gaps by analyzing existing gene expression profile data from 3149 breast cancer samples, where each sample was represented by the expression of 19,644 genes and classified into Nottingham histological grade (NHG) classes (Grade 1, 2, and 3). To this end, a machine learning-based framework was designed. First, the profile data were analyzed by using seven feature ranking algorithms to evaluate the importance of features (genes). Seven feature lists were generated, each of which sorted features in accordance with feature importance evaluated from a special aspect. Then, the incremental feature selection method was applied to each list to determine essential features for classification and building efficient classifiers. Consequently, overlapping genes, such as AURKA, CBX2, and MYBL2, were deemed as potentially related to breast cancer malignancy and prognosis, indicating that such genes were identified to be important by multiple feature ranking algorithms. In addition, the study formulated classification rules to reflect special gene expression patterns for three NHG classes. Some genes and rules were analyzed and supported by recent literature, providing new references for studying breast cancer.
Collapse
Affiliation(s)
- QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Chen M, Zhu H, Li J, Luo D, Zhang J, Liu W, Wang J. Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA. Ann Med 2024; 56:2282184. [PMID: 38738386 PMCID: PMC11095293 DOI: 10.1080/07853890.2023.2282184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/31/2023] [Indexed: 05/14/2024] Open
Abstract
AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.
Collapse
Affiliation(s)
- Menghua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danjing Luo
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaming Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jue Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Ding X, Liang J, Sharko AC, Hilimire TA, Li J, Loskutov J, Mack ZT, Ji H, Schools GP, Cai C, Pugacheva EN, Chen M, Roninson IB, Broude EV. Mediator kinase inhibitors suppress triple-negative breast cancer growth and extend tumor suppression by mTOR and AKT inhibitors. Proc Natl Acad Sci U S A 2024; 121:e2414501121. [PMID: 39541354 PMCID: PMC11588072 DOI: 10.1073/pnas.2414501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancers (TNBC) are treated primarily by chemotherapy and lack clinically validated therapeutic targets. In particular, inhibitors of the PI3K/AKT/mTOR pathway, abnormally activated in many breast cancers, failed to achieve clinical efficacy in TNBC due to the development of adaptive drug resistance, which is largely driven by the transcriptomic plasticity of TNBC. Expression of CDK8/19 Mediator kinases that control transcriptional reprogramming correlates with relapse-free survival and treatment failure in breast cancer patients, including TNBC. We now investigated how CDK8/19 inhibitors affect the growth of TNBC tumors and their response to mTOR and AKT inhibitors. In contrast to the effects of most anticancer drugs, all the tested human TNBC models (including patient-derived xenografts) responded to CDK8/19 inhibitors in vivo even when they did not respond in vitro. Furthermore, CDK8/19 inhibition extended the host survival of established lung metastases in a murine TNBC model, where the primary tumors were not significantly affected. CDK8/19 inhibitors synergized with an mTORC1 inhibitor everolimus and a pan-AKT inhibitor capivasertib in vitro and strongly potentiated these drugs in long-term in vivo studies. Transcriptomic analysis of tumors that responded or became adapted to everolimus revealed that drug adaptation in vivo was associated with major transcriptional changes in both tumor and stromal cells. Combining everolimus with a CDK8/19 inhibitor counteracted many of these changes and induced combination-specific effects on the expression of multiple genes that affect tumor growth. These results warrant the exploration of CDK8/19 Mediator kinase inhibitors as a new type of drugs for TNBC therapy.
Collapse
Affiliation(s)
- Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Jiaxin Liang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Amanda C. Sharko
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Thomas A. Hilimire
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
- Senex Biotechnology, Inc., Columbia, SC29208
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Jürgen Loskutov
- Department of Biochemistry and Molecular Medicine, West Virginia University Cancer Institute, School of Medicine, Morgantown, WV26506
| | - Zachary T. Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Gary P. Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Chao Cai
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Elena N. Pugacheva
- Department of Biochemistry and Molecular Medicine, West Virginia University Cancer Institute, School of Medicine, Morgantown, WV26506
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
- Senex Biotechnology, Inc., Columbia, SC29208
| | - Igor B. Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| | - Eugenia V. Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC29208
| |
Collapse
|
4
|
Bagnyukova T, Egleston BL, Pavlov VA, Serebriiskii IG, Golemis EA, Borghaei H. Synergy of EGFR and AURKA Inhibitors in KRAS-mutated Non-small Cell Lung Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:1227-1239. [PMID: 38639476 PMCID: PMC11078142 DOI: 10.1158/2767-9764.crc-23-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
The most common oncogenic driver mutations for non-small cell lung cancer (NSCLC) activate EGFR or KRAS. Clinical trials exploring treatments for EGFR- or KRAS-mutated (EGFRmut or KRASmut) cancers have focused on small-molecule inhibitors targeting the driver mutations. Typically, these inhibitors perform more effectively based on combination with either chemotherapies, or other targeted therapies. For EGFRmut NSCLC, a combination of inhibitors of EGFR and Aurora-A kinase (AURKA), an oncogene commonly overexpressed in solid tumors, has shown promising activity in clinical trials. Interestingly, a number of recent studies have indicated that EGFR activity supports overall viability of tumors lacking EGFR mutations, and AURKA expression is abundant in KRASmut cell lines. In this study, we have evaluated dual inhibition of EGFR and AURKA in KRASmut NSCLC models. These data demonstrate synergy between the EGFR inhibitor erlotinib and the AURKA inhibitor alisertib in reducing cell viability and clonogenic capacity in vitro, associated with reduced activity of EGFR pathway effectors, accumulation of enhanced aneuploid cell populations, and elevated cell death. Importantly, the erlotinib-alisertib combination also synergistically reduces xenograft growth in vivo. Analysis of signaling pathways demonstrated that the combination of erlotinib and alisertib was more effective than single-agent treatments at reducing activity of EGFR and pathway effectors following either brief or extended administration of the drugs. In sum, this study indicates value of inhibiting EGFR in KRASmut NSCLC, and suggests the specific value of dual inhibition of AURKA and EGFR in these tumors. SIGNIFICANCE The introduction of specific KRAS G12C inhibitors to the clinical practice in lung cancer has opened up opportunities that did not exist before. However, G12C alterations are only a subtype of all KRAS mutations observed. Given the high expression of AURKA in KRASmut NSCLC, our study could point to a potential therapeutic option for this subgroup of patients.
Collapse
Affiliation(s)
- Tetyana Bagnyukova
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Brian L. Egleston
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Valerii A. Pavlov
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Ilya G. Serebriiskii
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Kazan Federal University, Kazan, Russian Federation
| | - Erica A. Golemis
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Hossein Borghaei
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Division of Thoracic Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG. ROS production by mitochondria: function or dysfunction? Oncogene 2024; 43:295-303. [PMID: 38081963 DOI: 10.1038/s41388-023-02907-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 01/31/2024]
Abstract
In eukaryotic cells, ATP generation is generally viewed as the primary function of mitochondria under normoxic conditions. Reactive oxygen species (ROS), in contrast, are regarded as the by-products of respiration, and are widely associated with dysfunction and disease. Important signaling functions have been demonstrated for mitochondrial ROS in recent years. Still, their chemical reactivity and capacity to elicit oxidative damage have reinforced the idea that ROS are the products of dysfunctional mitochondria that accumulate during disease. Several studies support a different model, however, by showing that: (1) limited oxygen availability results in mitochondria prioritizing ROS production over ATP, (2) ROS is an essential adaptive mitochondrial signal triggered by various important stressors, and (3) while mitochondria-independent ATP production can be easily engaged by most cells, there is no known replacement for ROS-driven redox signaling. Based on these observations and other evidence reviewed here, we highlight the role of ROS production as a major mitochondrial function involved in cellular adaptation and stress resistance. As such, we propose a rekindled view of ROS production as a primary mitochondrial function as essential to life as ATP production itself.
Collapse
Affiliation(s)
- Flavio R Palma
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA
| | - Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA
| | - Cezar Kayzuka
- Department of Pharmacology, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Larner School of Medicine, University of Vermont, Burlington, VT, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Yan Y, Wang Z, Liu X, Han S, Li J, Zhang Y, Zhao L. Identification of brain endothelial cell-specific genes and pathways in ischemic stroke by integrated bioinformatical analysis. Brain Circ 2023; 9:228-239. [PMID: 38284111 PMCID: PMC10821689 DOI: 10.4103/bc.bc_40_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a life-threatening condition with limited treatment options; thus, finding the potential key genes for novel therapeutic targets is urgently needed. This study aimed to explore novel candidate genes and pathways of brain microvessel endothelial cells (ECs) in IS by bioinformatics analysis. MATERIALS AND METHODS The gene expression profiles of brain tissues or brain ECs in IS mice were downloaded from the online gene expression omnibus (GEO) to obtain the differentially expressed genes (DEGs) by R software. Functional enrichment analyses were used to cluster the functions and signaling pathways of the DEGs, while DEG-associated protein-protein interaction network was performed to identify hub genes. The target microRNAs and competitive endogenous RNA networks of key hub genes were constructed by Cytoscape. RESULTS Totally 84 DEGs were obtained from 6 brain tissue samples and 4 brain vascular EC samples both from IS mice in the datasets GSE74052 and GSE137482, with significant enrichment in immune responses, such as immune system processes and T-cell activation. Eight hub genes filtered by Cytoscape were validated by two other GEO datasets, wherein key genes of interest were verified by reverse transcription-polymerase chain reaction using an in vitro ischemic model of EC cultures. Our data indicated that AURKA and CENPF might be potential therapeutic target genes for IS, and Malat1/Snhg12/Xist-miR-297b-3p-CENPF, as well as Mir17 hg-miR-34b-3p-CENPF, might be RNA regulatory pathways to control IS progression. CONCLUSIONS Our work identified two brain EC-specific expressed genes in IS, namely, AURKA and CENPF, as potential gene targets for IS treatment. In addition, we presented miR-297b-3p/miR-34b-3p-CENPF as the potential RNA regulatory axes to prevent pathogenesis of IS.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhaohui Wang
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Xiao Liu
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Li Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Moghimi N, Hosseini SA, Dalan AB, Mohammadrezaei D, Goldman A, Kohandel M. Controlled tumor heterogeneity in a co-culture system by 3D bio-printed tumor-on-chip model. Sci Rep 2023; 13:13648. [PMID: 37607994 PMCID: PMC10444838 DOI: 10.1038/s41598-023-40680-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Cancer treatment resistance is a caused by presence of various types of cells and heterogeneity within the tumor. Tumor cell-cell and cell-microenvironment interactions play a significant role in the tumor progression and invasion, which have important implications for diagnosis, and resistance to chemotherapy. In this study, we develop 3D bioprinted in vitro models of the breast cancer tumor microenvironment made of co-cultured cells distributed in a hydrogel matrix with controlled architecture to model tumor heterogeneity. We hypothesize that the tumor could be represented by a cancer cell-laden co-culture hydrogel construct, whereas its microenvironment can be modeled in a microfluidic chip capable of producing a chemical gradient. Breast cancer cells (MCF7 and MDA-MB-231) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded in the alginate-gelatine hydrogels and printed using a multi-cartridge extrusion bioprinter. Our approach allows for precise control over position and arrangements of cells in a co-culture system, enabling the design of various tumor architectures. We created samples with two different types of cells at specific initial locations, where the density of each cell type was carefully controlled. The cells were either randomly mixed or positioned in sequential layers to create cellular heterogeneity. To study cell migration toward chemoattractant, we developed a chemical microenvironment in a chamber with a gradual chemical gradient. As a proof of concept, we studied different migration patterns of MDA-MB-231 cells toward the epithelial growth factor gradient in presence of MCF10A cells in different ratios using this device. Our approach involves the integration of 3D bioprinting and microfluidic devices to create diverse tumor architectures that are representative of those found in various patients. This provides an excellent tool for studying the behavior of cancer cells with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Nafiseh Moghimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Seied Ali Hosseini
- Electrical Engineering Department, University of Waterloo, Waterloo, Canada
| | - Altay Burak Dalan
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | | | - Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| |
Collapse
|
8
|
García-Torralba E, Navarro Manzano E, Luengo-Gil G, De la Morena Barrio P, Chaves Benito A, Pérez-Ramos M, Álvarez-Abril B, Ivars Rubio A, García-Garre E, Ayala de la Peña F, García-Martínez E. A new prognostic model including immune biomarkers, genomic proliferation tumor markers ( AURKA and MYBL2) and clinical-pathological features optimizes prognosis in neoadjuvant breast cancer patients. Front Oncol 2023; 13:1182725. [PMID: 37313470 PMCID: PMC10258327 DOI: 10.3389/fonc.2023.1182725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Background Up to 30% of breast cancer (BC) patients treated with neoadjuvant chemotherapy (NCT) will relapse. Our objective was to analyze the predictive capacity of several markers associated with immune response and cell proliferation combined with clinical parameters. Methods This was a single-center, retrospective cohort study of BC patients treated with NCT (2001-2010), in whom pretreatment biomarkers were analyzed: neutrophil-to-lymphocyte ratio (NLR) in peripheral blood, CD3+ tumor-infiltrating lymphocytes (TILs), and gene expression of AURKA, MYBL2 and MKI67 using qRT-PCR. Results A total of 121 patients were included. Median followup was 12 years. In a univariate analysis, NLR, TILs, AURKA, and MYBL2 showed prognostic value for overall survival. In multivariate analyses, including hormone receptor, HER2 status, and response to NCT, NLR (HR 1.23, 95% CI 1.01-1.75), TILs (HR 0.84, 95% CI 0.73-0.93), AURKA (HR 1.05, 95% CI 1.00-1.11) and MYBL2 (HR 1.19, 95% CI 1.05-1.35) remained as independent predictor variables. Conclusion Consecutive addition of these biomarkers to a regression model progressively increased its discriminatory capacity for survival. Should independent cohort studies validate these findings, management of early BC patients may well be changed.
Collapse
Affiliation(s)
- Esmeralda García-Torralba
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Esther Navarro Manzano
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Gines Luengo-Gil
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Pilar De la Morena Barrio
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | - Miguel Pérez-Ramos
- Department of Pathology, University Hospital Morales Meseguer, Murcia, Spain
| | - Beatriz Álvarez-Abril
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alejandra Ivars Rubio
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Elisa García-Garre
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Francisco Ayala de la Peña
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Elena García-Martínez
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- Medical School, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
9
|
Asteriti IA, Polverino F, Stagni V, Sterbini V, Ascanelli C, Naso FD, Mastrangelo A, Rosa A, Paiardini A, Lindon C, Guarguaglini G. AurkA nuclear localization is promoted by TPX2 and counteracted by protein degradation. Life Sci Alliance 2023; 6:e202201726. [PMID: 36797043 PMCID: PMC9936162 DOI: 10.26508/lsa.202201726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The AurkA kinase is a well-known mitotic regulator, frequently overexpressed in tumors. The microtubule-binding protein TPX2 controls AurkA activity, localization, and stability in mitosis. Non-mitotic roles of AurkA are emerging, and increased nuclear localization in interphase has been correlated with AurkA oncogenic potential. Still, the mechanisms leading to AurkA nuclear accumulation are poorly explored. Here, we investigated these mechanisms under physiological or overexpression conditions. We observed that AurkA nuclear localization is influenced by the cell cycle phase and nuclear export, but not by its kinase activity. Importantly, AURKA overexpression is not sufficient to determine its accumulation in interphase nuclei, which is instead obtained when AURKA and TPX2 are co-overexpressed or, to a higher extent, when proteasome activity is impaired. Expression analyses show that AURKA, TPX2, and the import regulator CSE1L are co-overexpressed in tumors. Finally, using MCF10A mammospheres we show that TPX2 co-overexpression drives protumorigenic processes downstream of nuclear AurkA. We propose that AURKA/TPX2 co-overexpression in cancer represents a key determinant of AurkA nuclear oncogenic functions.
Collapse
Affiliation(s)
- Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Signal Transduction Unit, Rome, Italy
| | - Valentina Sterbini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Anna Mastrangelo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- < Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies "C. Darwin," Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
11
|
Purazo ML, Ice RJ, Shimpi R, Hoenerhoff M, Pugacheva EN. NEDD9 Overexpression Causes Hyperproliferation of Luminal Cells and Cooperates with HER2 Oncogene in Tumor Initiation: A Novel Prognostic Marker in Breast Cancer. Cancers (Basel) 2023; 15:1119. [PMID: 36831460 PMCID: PMC9954084 DOI: 10.3390/cancers15041119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
HER2 overexpression occurs in 10-20% of breast cancer patients. HER2+ tumors are characterized by an increase in Ki67, early relapse, and increased metastasis. Little is known about the factors influencing early stages of HER2- tumorigenesis and diagnostic markers. Previously, it was shown that the deletion of NEDD9 in mouse models of HER2 cancer interferes with tumor growth, but the role of NEDD9 upregulation is currently unexplored. We report that NEDD9 is overexpressed in a significant subset of HER2+ breast cancers and correlates with a limited response to anti-HER2 therapy. To investigate the mechanisms through which NEDD9 influences HER2-dependent tumorigenesis, we generated MMTV-Cre-NEDD9 transgenic mice. The analysis of mammary glands shows extensive ductal epithelium hyperplasia, increased branching, and terminal end bud expansion. The addition of oncogene Erbb2 (neu) leads to the earlier development of early hyperplastic benign lesions (~16 weeks), with a significantly shorter latency than the control mice. Similarly, NEDD9 upregulation in MCF10A-derived acini leads to hyperplasia-like DCIS. This phenotype is associated with activation of ERK1/2 and AURKA kinases, leading to an increased proliferation of luminal cells. These findings indicate that NEDD9 is setting permissive conditions for HER2-induced tumorigenesis, thus identifying this protein as a potential diagnostic marker for early detection.
Collapse
Affiliation(s)
- Marc L. Purazo
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Ryan J. Ice
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Rahul Shimpi
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elena N. Pugacheva
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
12
|
Qiao Z, Xing Y, Zhang Q, Tang Y, Feng R, Pang W. Tamoxifen resistance-related ceRNA network for breast cancer. Front Cell Dev Biol 2022; 10:1023079. [PMID: 36506097 PMCID: PMC9733938 DOI: 10.3389/fcell.2022.1023079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Tamoxifen (TMX) is one of the most widely used drugs to treat breast cancer (BC). However, acquired drug resistance is still a major obstacle to its application, rendering it crucial to explore the mechanisms of TMX resistance in BC. This aims of this study were to identify the mechanisms of TMX resistance and construct ceRNA regulatory networks in breast cancer. Methods: GEO2R was used to screen for differentially expressed mRNAs (DEmRNAs) leading to drug resistance in BC cells. MiRTarbase and miRNet were used to predict miRNAs and lncRNAs upstream, and the competing endogenous RNA (ceRNA) regulatory network of BC cell resistance was constructed by starBase. We used the Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA) to analyze the expression and prognostic differences of genes in the ceRNA network with core axis, and qRT-PCR was used to further verify the above conclusions. Results: We found that 21 DEmRNAs were upregulated and 43 DEmRNA downregulated in drug-resistant BC cells. DEmRNAs were noticeably enriched in pathways relevant to cancer. We then constructed a protein-protein interaction (PPI) network based on the STRING database and defined 10 top-ranked hub genes among the upregulated and downregulated DEmRNAs. The 20 DEmRNAs were predicted to obtain 113 upstream miRNAs and 501 lncRNAs. Among them, 7 mRNAs, 22 lncRNAs, and 11 miRNAs were used to structure the ceRNA regulatory network of drug resistance in BC cells. 4 mRNAs, 4 lncRNAs, and 3 miRNAs were detected by GEPIA and the Kaplan-Meier plotter to be significantly associated with BC expression and prognosis. The differential expression of the genes in BC cells was confirmed by qRT-PCR. Conclusion: The ceRNA regulatory network of TMX-resistant BC was successfully constructed and confirmed. This will provide an important resource for finding therapeutic targets for TMX resistance, where the discovery of candidate conventional mechanisms can aid clinical decision-making. In addition, this resource will help discover the mechanisms behind this type of resistance.
Collapse
Affiliation(s)
- Zipeng Qiao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Yu Xing
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Qingquan Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Yongjun Tang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Ruifa Feng
- The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Ruifa Feng, ; Weiyi Pang,
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China,School of Humanities and Management, Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Ruifa Feng, ; Weiyi Pang,
| |
Collapse
|
13
|
Cacioppo R, Lindon C. Regulating the regulator: a survey of mechanisms from transcription to translation controlling expression of mammalian cell cycle kinase Aurora A. Open Biol 2022; 12:220134. [PMID: 36067794 PMCID: PMC9448500 DOI: 10.1098/rsob.220134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Aurora Kinase A (AURKA) is a positive regulator of mitosis with a strict cell cycle-dependent expression pattern. Recently, novel oncogenic roles of AURKA have been uncovered that are independent of the kinase activity and act within multiple signalling pathways, including cell proliferation, survival and cancer stem cell phenotypes. For this, cellular abundance of AURKA protein is per se crucial and must be tightly fine-tuned. Indeed, AURKA is found overexpressed in different cancers, typically as a result of gene amplification or enhanced transcription. It has however become clear that impaired processing, decay and translation of AURKA mRNA can also offer the basis for altered AURKA levels. Accordingly, the involvement of gene expression mechanisms controlling AURKA expression in human diseases is increasingly recognized and calls for much more research. Here, we explore and create an integrated view of the molecular processes regulating AURKA expression at the level of transcription, post-transcription and translation, intercalating discussion on how impaired regulation underlies disease. Given that targeting AURKA levels might affect more functions compared to inhibiting the kinase activity, deeper understanding of its gene expression may aid the design of alternative and therapeutically more successful ways of suppressing the AURKA oncogene.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
14
|
Aurora Kinases as Therapeutic Targets in Head and Neck Cancer. Cancer J 2022; 28:387-400. [PMID: 36165728 PMCID: PMC9836054 DOI: 10.1097/ppo.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT The Aurora kinases (AURKA and AURKB) have attracted attention as therapeutic targets in head and neck squamous cell carcinomas. Aurora kinases were first defined as regulators of mitosis that localization to the centrosome (AURKA) and centromere (AURKB), governing formation of the mitotic spindle, chromatin condensation, activation of the core mitotic kinase CDK1, alignment of chromosomes at metaphase, and other processes. Subsequently, additional roles for Aurora kinases have been defined in other phases of cell cycle, including regulation of ciliary disassembly and DNA replication. In cancer, elevated expression and activity of Aurora kinases result in enhanced or neomorphic locations and functions that promote aggressive disease, including promotion of MYC expression, oncogenic signaling, stem cell identity, epithelial-mesenchymal transition, and drug resistance. Numerous Aurora-targeted inhibitors have been developed and are being assessed in preclinical and clinical trials, with the goal of improving head and neck squamous cell carcinoma treatment.
Collapse
|