1
|
Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel) 2024; 16:1847. [PMID: 38791926 PMCID: PMC11119821 DOI: 10.3390/cancers16101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.
Collapse
Affiliation(s)
| | | | - Angus J. M. Cameron
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; (S.M.A.J.); (J.C.H.)
| |
Collapse
|
2
|
Jiang R, Fritz M, Que SKT. Cutaneous Squamous Cell Carcinoma: An Updated Review. Cancers (Basel) 2024; 16:1800. [PMID: 38791879 PMCID: PMC11119634 DOI: 10.3390/cancers16101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Representing the second most common skin cancer, the incidence and disease burden of cutaneous squamous cell carcinoma (cSCC) continues to increase. Surgical excision of the primary site effectively cures the majority of cSCC cases. However, an aggressive subset of cSCC persists with clinicopathological features that are indicative of higher recurrence, metastasis, and mortality risks. Acceleration of these features is driven by a combination of genetic and environmental factors. The past several years have seen remarkable progress in shaping the treatment landscape for advanced cSCC. Risk stratification and clinical management is a top priority. This review provides an overview of the current perspectives on cSCC with a focus on staging, treatment, and maintenance strategies, along with future research directions.
Collapse
Affiliation(s)
- Rina Jiang
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Mike Fritz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Syril Keena T. Que
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
3
|
Zheng H, Tan J, Qin F, Zheng Y, Yang X, Qin X, Liao H. Analysis of cancer-associated fibroblasts related genes identifies COL11A1 associated with lung adenocarcinoma prognosis. BMC Med Genomics 2024; 17:97. [PMID: 38649961 PMCID: PMC11036680 DOI: 10.1186/s12920-024-01863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The treatment of lung adenocarcinoma is difficult due to the limited therapeutic options. Cancer-associated fibroblasts play an important role in the development of cancers. This study aimed to identify a promising molecular target associated with cancer-associated fibroblasts for the treatment of lung adenocarcinoma. METHODS The Cancer Genome Atlas lung adenocarcinoma dataset was used to screen hub genes associated with cancer-associated fibroblasts via the EPIC algorithm and Weighted Gene Co-expression Network Analysis. Multiple databases were used together with our data to verify the differential expression and survival of COL11A1. Functional enrichment analysis and the single-cell TISCH database were used to elucidate the mechanisms underlying COL11A1 expression. The correlation between COL11A1 and immune checkpoint genes in human cancers was also evaluated. RESULTS Using the EPIC algorithm and Weighted Gene Co-expression Network Analysis, 13 hub genes associated with cancer-associated fibroblasts in lung adenocarcinoma were screened. Using the GEPIA database, Kaplan-Meier Plotter database, GSE72094, GSE75037, GSE32863, and our immunohistochemistry experiment data, we confirmed that COL11A1 overexpresses in lung adenocarcinoma and that high expression of COL11A1 is associated with a poor prognosis. COL11A1 has a genetic alteration frequency of 22% in patients with lung adenocarcinoma. COL11A1 is involved in the extracellular matrix activities of lung adenocarcinoma. Using the TISCH database, we found that COL11A1 is mainly expressed by cancer-associated fibroblasts in the tumor microenvironment rather than by lung adenocarcinoma cells. Finally, we found that COL11A1 is positively correlated with HAVCR2(TIM3), CD274 (PD-L1), CTLA4, and LAG3 in lung adenocarcinoma. CONCLUSION COL11A1 may be expressed and secreted by cancer-associated fibroblasts, and a high expression of COL11A1 may result in T cell exhaustion in the tumor microenvironment of lung adenocarcinoma. COL11A1 may serve as an attractive biomarker to provide new insights into cancer therapeutics.
Collapse
Affiliation(s)
- Haosheng Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Tan
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuzhen Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingping Yang
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianyu Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hongying Liao
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Chai Y, Ma Y, Feng W, Xiang H, Lu H, Jin L. Identification and validation of a 4-extracellular matrix gene signature associated with prognosis and immune infiltration in lung adenocarcinoma. Heliyon 2024; 10:e24162. [PMID: 38293522 PMCID: PMC10827462 DOI: 10.1016/j.heliyon.2024.e24162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Background The extracellular matrix (ECM) plays a crucial role in the development and tumor microenvironment of lung adenocarcinoma (LUAD). This study aimed to establish a risk score of ECM-related genes in LUAD and explore the association between the risk score and patient survival as well as immune cell infiltration, somatic mutations, and therapy response. Methods Gene expression data from The Cancer Genome Atlas (TGCA) and eight Gene Expression Omnibus (GEO) databases were used to analyze and identify differentially expressed genes (DEGs). Prognostic ECM-related genes were identified and utilized to formulate a prognostic signature. A nomogram was constructed using TCGA dataset and validated in two GEO datasets. Differences between high- and low-risk patients were analyzed for function enrichment, immune cell infiltration, somatic mutations, and therapy response. Finally, Quantitative real-time PCR (qRT-PCR) was used to detect the mRNA expression of DEGs in LUAD. Results A risk score based on four ECM-related genes, ANOS1, CD36, COL11A1, and HMMR, was identified as an independent prognostic factor for overall survival (OS) compared to other clinical variables. Subsequently, a nomogram incorporating the risk score and TNM staging was developed using the TCGA dataset. Internal and external validation of the nomogram, conducted through calibration plots, C-index, time-dependent receiver operating characteristics (ROC), integrated discrimination improvement (IDI), and decision curve analyses (DCA), demonstrated the excellent discriminatory ability and clinical practicability of this nomogram. The risk score correlated with the distribution of function enrichment, immune cell infiltration, and immune checkpoint expression. More somatic mutations occurred in the high-risk group. The risk score also demonstrated a favorable ability to predict immunotherapy response and drug sensitivity. Conclusion A novel signature based on four ECM-related genes is developed to help predict LUAD prognosis. This signature correlates with tumor immune microenvironment and can predict the response to different therapies in LUAD patients.
Collapse
Affiliation(s)
- Yanfei Chai
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuchao Ma
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Xiang
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongwei Lu
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng RR, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. eLife 2024; 12:RP89762. [PMID: 38277211 PMCID: PMC10945706 DOI: 10.7554/elife.89762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Anas M Khanshour
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of TechnologySolnaSweden
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Lilian Antunes
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Yared H Kidane
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Reuel Cornelia
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Ophthalmology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - You-qiang Song
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Paul Gerdhem
- Department of Surgical Sciences, Uppsala UniversityUppsalaSweden
- Department of Orthopaedics and Hand Surgery, Uppsala University HospitalUppsalaSweden
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala UniversityUppsalaSweden
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Jonathan J Rios
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
7
|
Bibee KP, Kulkarni A, Lee S, Ho J, Osmanbeyoglu HU, Ferris RL, Zandberg DP. Genomic and transcriptomic analysis of cutaneous squamous cell carcinoma arising in immunocompetent and immunosuppressed patients. Oral Oncol 2024; 148:106582. [PMID: 38039877 PMCID: PMC10917075 DOI: 10.1016/j.oraloncology.2023.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is the most common skin malignancy arising in immunocompromised patients such as solid organ transplant recipients. In addition to an abundance in number, the morbidity and mortality of these tumors in this patient population exceeds that of immune competent individuals. Here, we used whole exome and bulk RNA sequencing to analyze mutation profiles between tumors arising in immunocompetent and immunosuppressed patients. METHODS DNA and RNA extracted from twenty formalin-fixed, paraffin embedded tumors and adjacent skin was sequenced. Bioinformatic analysis revealed tumor mutational burden, mutational signatures, microsatellite instability, and aberrant signaling pathways. RESULTS Similar median tumor mutational burden was found in both the tumors from the immunocompetent and the immunosuppressed cohorts. Mutation signature analysis revealed UVR signatures and evidence of azathioprine exposure. 50% of tumors from the immunosuppressed patients have mutations consistent with microsatellite instability, yet mismatch repair protein expression was preserved in the samples analyzed. Additionally, frequently mutated genes in this cohort belong to the extracellular matrix receptor interaction and calcium signaling pathways, suggesting these may be targets for future treatments of this disease. CONCLUSIONS This study utilizes whole exome and bulk RNA sequencing to identify difference between cSCC arising in immunosuppressed and immunocompetent patients using the patient's photo exposed, but histologically normal appearing skin as the "germline" comparison. We demonstrate an enrichment in microsatellite instability in the tumors from immunosuppressed patients and differences in oxidative phosphorylation and epithelial-mesenchymal transition which may be targets for therapeutic intervention based on identification of mutations.
Collapse
Affiliation(s)
- Kristin P Bibee
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Johan Ho
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hatice Ulku Osmanbeyoglu
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA; Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dan P Zandberg
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Chen M, Zhang J, Zeng J, Yu Y, Gu C. Circular circRANGAP1 Contributes to Non-small Cell Lung Cancer Progression by Increasing COL11A1 Expression Through Sponging miR-653-5p. Biochem Genet 2023; 61:2580-2598. [PMID: 37193942 DOI: 10.1007/s10528-023-10393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Numerous studies have discovered that hsa_circ_0063526 (also known as circRANGAP1) is an oncogenic circular RNA (circRNA) in some human tumors, including non-small cell lung cancer (NSCLC). However, the concrete molecular mechanism of circRANGAP1 involved in NSCLC is not completely elucidated. CircRANGAP1, microRNA-653-5p (miR-653-5p), and Type XI collagen (COL11A1) contents were determined via real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferative ability, migration, and invasion were measured using 5-ethynyl-2'-deoxyuridine (EdU), colony formation, wound healing, and transwell assays. E-cadherin, N-cadherin, Vimentin, and COL11A1 protein levels were detected via western blot assay. After Starbase software prediction, the binding between miR-653-5p and circRANGAP1 or COL11A1 was verified using a dual-luciferase reporter assay. Besides, the role of circRANGAP1 on tumor cell growth was analyzed using a xenograft tumor model in vivo. Increased circRANGAP1 and COL11A1, and reduced miR-653-5p were found in NSCLC tissues and cell lines. Furthermore, circRANGAP1 absence might hinder NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Mechanically, circRANGAP1 functioned as a sponge of miR-653-5p to increase COL11A1 expression. In vivo experiments illustrated that circRANGAP1 knockdown repressed tumor growth. CircRANGAP1 silencing might suppress NSCLC cell malignant biological behaviors, at least in part, through the miR-653-5p/COL11A1 axis. These results provided a promising strategy for treating NSCLC malignancies.
Collapse
Affiliation(s)
- Min Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Tongren Hospital, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 XianXia Road, Changning District, Shanghai, 200335, China.
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Tongren Hospital, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 XianXia Road, Changning District, Shanghai, 200335, China
| | - Jian Zeng
- Department of Respiratory and Critical Care Medicine, Shanghai Tongren Hospital, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 XianXia Road, Changning District, Shanghai, 200335, China
| | - Yiming Yu
- Department of Respiratory and Critical Care Medicine, Shanghai Tongren Hospital, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 XianXia Road, Changning District, Shanghai, 200335, China
| | - Chenlin Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Tongren Hospital, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 XianXia Road, Changning District, Shanghai, 200335, China
| |
Collapse
|
9
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng R, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542293. [PMID: 37292598 PMCID: PMC10245954 DOI: 10.1101/2023.05.26.542293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, SE
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Lilian Antunes
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Reuel Cornelia
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, CN
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, CN
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul Gerdhem
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala University, Uppsala, SE
- Department of Surgical Sciences, Uppsala University and
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, SE
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Zhang Q, An ZY, Jiang W, Jin WL, He XY. Collagen code in tumor microenvironment: Functions, molecular mechanisms, and therapeutic implications. Biomed Pharmacother 2023; 166:115390. [PMID: 37660648 DOI: 10.1016/j.biopha.2023.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, PR China; Anhui Public Health Clinical Center, Hefei 230001, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xin-Yang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China; Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230001, PR China.
| |
Collapse
|
11
|
Winge MCG, Kellman LN, Guo K, Tang JY, Swetter SM, Aasi SZ, Sarin KY, Chang ALS, Khavari PA. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer 2023:10.1038/s41568-023-00583-5. [PMID: 37286893 DOI: 10.1038/s41568-023-00583-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/09/2023]
Abstract
Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Konnie Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Susan M Swetter
- Department of Dermatology, Stanford University, Redwood City, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Department of Dermatology, Stanford University, Redwood City, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
12
|
Fabo T, Khavari P. Functional characterization of human genomic variation linked to polygenic diseases. Trends Genet 2023; 39:462-490. [PMID: 36997428 PMCID: PMC11025698 DOI: 10.1016/j.tig.2023.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
The burden of human disease lies predominantly in polygenic diseases. Since the early 2000s, genome-wide association studies (GWAS) have identified genetic variants and loci associated with complex traits. These have ranged from variants in coding sequences to mutations in regulatory regions, such as promoters and enhancers, as well as mutations affecting mediators of mRNA stability and other downstream regulators, such as 5' and 3'-untranslated regions (UTRs), long noncoding RNA (lncRNA), and miRNA. Recent research advances in genetics have utilized a combination of computational techniques, high-throughput in vitro and in vivo screening modalities, and precise genome editing to impute the function of diverse classes of genetic variants identified through GWAS. In this review, we highlight the vastness of genomic variants associated with polygenic disease risk and address recent advances in how genetic tools can be used to functionally characterize them.
Collapse
Affiliation(s)
- Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
13
|
Zhang X, Qi L, Chen X, Lai Y, Liu K, Xue K. Comparative study of alginate and type I collagen as biomaterials for cartilage stem/progenitor cells to construct tissue-engineered cartilage in vivo. Front Bioeng Biotechnol 2023; 10:1057199. [PMID: 36714619 PMCID: PMC9873961 DOI: 10.3389/fbioe.2022.1057199] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
With the help of biomaterials, cartilage stem/progenitor cells (CSPCs) derived from cartilage tissue present a promising choice for cartilage regeneration. In our previous study, we investigated whether CSPCs could be ideal seeding cells for cartilage tissue regeneration. Biomaterials are fabricated to accelerate tissue regeneration, providing a suitable environment for cell attachment, proliferation, and differentiation. Among the biomaterials used in cartilage regeneration medicine, alginate and collagen are classified as natural biomaterials and are characterized by high biocompatibility, bioactivity, and non-toxic degradation products. However, it is unclear which material would have a competitive advantage in CSPC-based cartilage regeneration in vivo. In the present study, we employed alginate and type Ⅰ collagen as substrates for CSPCs and chondrocytes, which was made control group, to explore a more suitable biomaterials for CSPCs to fabricate tissue-engineered cartilage, in vivo. Hematoxylin and eosin (HE) staining, Safranin O, immunohistochemical assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to evaluate the tissue-engineered cartilage in vivo. Compared with the alginate group, collagen enhanced the expression of cartilage-specific genes, such as ACAN, SOX9, and COLII, more markedly. Furthermore, the marker genes of expression, dedifferentiation, and hypertrophy, COLI and COLX, were downregulated in the collagen group. The results demonstrated that collagen as a substrate was superior to alginate in increasing the accumulation of cartilage-like ECM for CSPCs in vivo. In summary, compared with alginate, collagen hydrogel is an effective biomaterial for CSPC-based cartilage regeneration.
Collapse
Affiliation(s)
- Xiaodie Zhang
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - XiaoGang Chen
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, Hainan Western Central Hospital, Shanghai, China
| |
Collapse
|
14
|
Ye Q, Hu L, Jia M, Deng LJ, Fang S. Cutaneous verrucous carcinoma: A clinicopathological study of 21 cases with long-term clinical follow-up. Front Oncol 2022; 12:953932. [PMID: 36313691 PMCID: PMC9606218 DOI: 10.3389/fonc.2022.953932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Cutaneous verrucous carcinoma (CVC) is a rare variant of squamous cell carcinoma and sometimes shares similar clinical and histopathological features with other verrucous lesions. METHODS We performed a retrospective study of 21 patients diagnosed with CVC between 2012 and 2022 by reviewing clinical and histopathological data. We also compared the clinicopathological features of patients with CVC, giant condyloma acuminatum (GCA), and pseudoepitheliomatous hyperplasia (PEH). We obtained follow-up data by reviewing medical records and telephone interviews. RESULTS The average age of patients with CVC was 63.6 years, with a male predominance. The location of disease is mostly found in the foot, followed by the lower legs. Histologically, CVC is characterized by an exo-endophytic growth pattern with severe keratinization and a blunted rete ridge with pushing margins. Clinical features including exudation and crusting, induration, irregular borders, and warty surface, as well as pathological features including growth pattern, koilocytotic cells, depth and morphologic features of acanthosis, severe keratinization, and degree of dermal inflammation, were significant in distinguishing cutaneous CVC, GCA, and PEH. CONCLUSION Identification of the clinicopathological features is essential to distinguish CVC from its mimics and to make an early diagnosis. Because of the potential for recurrence and metastasis, CVC requires aggressive treatment.
Collapse
Affiliation(s)
| | | | | | | | - Sheng Fang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Luo Q, Li J, Su X, Tan Q, Zhou F, Xie S. COL11A1 serves as a biomarker for poor prognosis and correlates with immune infiltration in breast cancer. Front Genet 2022; 13:935860. [PMID: 36160004 PMCID: PMC9500398 DOI: 10.3389/fgene.2022.935860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the malignant tumor with the highest incidence rate at present, and its incidence rate ranks first in the female population. COL11A1 is an important component of collagen XI and is considered to play an important role in a variety of connective tissue diseases. Recent studies have shown that COL11A1 is associated with the occurrence and development of many kinds of malignant tumors. However, its prognostic value in breast cancer and its correlation with immune cell infiltration in tumor tissue are not clear. In this paper, we reveal the prognostic value of COL11A1 in breast cancer and its tumor immune-related function through in-depth bioinformatics analysis. The expression of COL11A1 is abnormally upregulated in breast cancer and is significantly related to the poor prognosis of breast cancer. In the analysis of the clinical characteristics of the patients, we found that the expression level of COLL11A1 was closely related to lymph node metastasis, PAM50 (Prediction Analysis of Microarray 50) expression, clinical stage and so on. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) all suggest that COL11A1 is related to tumor immunity. Further study found that the COL11A1 expression was significantly correlated with the degree of immune infiltration and the expression of a variety of immune cell markers in tumor tissue. More importantly, COL11A1 can affect the prognosis of breast cancer patients by participating in the regulation of tumor immune infiltration. Therefore, we believe that COL11A1 is a very potential target for diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Qi Luo
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Outpatient, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jinsui Li
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaohan Su
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiao Tan
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fangfang Zhou
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Anatomy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shaoli Xie
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- *Correspondence: Shaoli Xie, , orcid.org/0000-0003-4512-2725
| |
Collapse
|
16
|
Srivastava A, Tommasi C, Sessions D, Mah A, Bencomo T, Garcia JM, Jiang T, Lee M, Shen JY, Seow LW, Nguyen A, Rajapakshe K, Coarfa C, Tsai KY, Lopez-Pajares V, Lee CS. MAB21L4 Deficiency Drives Squamous Cell Carcinoma via Activation of RET. Cancer Res 2022; 82:3143-3157. [PMID: 35705526 PMCID: PMC9444977 DOI: 10.1158/0008-5472.can-22-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
Epithelial squamous cell carcinomas (SCC) most commonly originate in the skin, where they display disruptions in the normally tightly regulated homeostatic balance between keratinocyte proliferation and terminal differentiation. We performed a transcriptome-wide screen for genes of unknown function that possess inverse expression patterns in differentiating keratinocytes compared with cutaneous SCC (cSCC), leading to the identification of MAB21L4 (C2ORF54) as an enforcer of terminal differentiation that suppresses carcinogenesis. Loss of MAB21L4 in human cSCC organoids increased expression of RET to enable malignant progression. In addition to transcriptional upregulation of RET, deletion of MAB21L4 preempted recruitment of the CacyBP-Siah1 E3 ligase complex to RET and reduced its ubiquitylation. In SCC organoids and in vivo tumor models, genetic disruption of RET or selective inhibition of RET with BLU-667 (pralsetinib) suppressed SCC growth while inducing concomitant differentiation. Overall, loss of MAB21L4 early during SCC development blocks differentiation by increasing RET expression. These results suggest that targeting RET activation is a potential therapeutic strategy for treating SCC. SIGNIFICANCE Downregulation of RET mediated by MAB21L4-CacyBP interaction is required to induce epidermal differentiation and suppress carcinogenesis, suggesting RET inhibition as a potential therapeutic approach in squamous cell carcinoma.
Collapse
Affiliation(s)
- Ankit Srivastava
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm 17177, Sweden
| | - Cristina Tommasi
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Dane Sessions
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Angela Mah
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Tomas Bencomo
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Jasmine M. Garcia
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Tiffany Jiang
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Michael Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Joseph Y. Shen
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Lek Wei Seow
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Audrey Nguyen
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Kimal Rajapakshe
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology & Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL 33612, USA
| | | | - Carolyn S. Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304 USA
| |
Collapse
|
17
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|