1
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Tocci P, Caprara V, Roman C, Sestito R, Rosanò L, Bagnato A. YAP signaling orchestrates the endothelin-1-guided invadopodia formation in high-grade serous ovarian cancer. Biosci Rep 2024; 44:BSR20241320. [PMID: 39495612 DOI: 10.1042/bsr20241320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024] Open
Abstract
The high-grade serous ovarian cancer (HG-SOC) is a notoriously challenging disease, characterized by a rapid peritoneal dissemination. HG-SOC cells leverage actin-rich membrane protrusions, known as invadopodia, to degrade the surrounding extracellular matrix (ECM) and invade, initiating the metastatic cascade. In HG-SOC, the endothelin-1 (ET-1)/endothelin A receptor (ETAR)-driven signaling coordinates invadopodia activity, however how this axis integrates pro-oncogenic signaling routes, as YAP-driven one, impacting on the invadopodia-mediated ECM degradation and metastatic progression, deserves a deeper investigation. Herein, we observed that downstream of the ET-1/ET-1R axis, the RhoC and Rac1 GTPases, acting as signaling intermediaries, promote the de-phosphorylation and nuclear accumulation of YAP. Conversely, the treatment with the dual ETA/ETB receptor antagonist, macitentan, inhibits the ET-1-driven YAP activity. Similarly, RhoC silencing, or cell transfection with a dominant inactive form of Rac1, restores YAP phosphorylation. Mechanistically, the ET-1R/YAP signal alliance coordinates invadopodia maturation into ECM-degrading structures, indicating how such ET-1R-guided protein network represents a route able to enhance the HG-SOC invasive potential. At functional level, we found that the interconnection between the ET-1R/RhoC and YAP signals is required for MMP-2 and MMP-9 proteolytic functions, cell invasion, and cytoskeleton architecture changes, supporting the HG-SOC metastatic strength. In HG-SOC patient-derived xenografts (PDX) macitentan, turning-off the invadopodia regulators RhoC/YAP, halts the metastatic colonization. ET-1R targeting, hindering the YAP activity, weakens the invadopodia machinery, embodying a promising therapeutic avenue to prevent peritoneal dissemination in HG-SOC.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome 00185, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
3
|
Saito Y, Xiao Y, Yao J, Li Y, Liu W, Yuzhalin AE, Shyu YM, Li H, Yuan X, Li P, Zhang Q, Li Z, Wei Y, Yin X, Zhao J, Kariminia SM, Wu YC, Wang J, Yang J, Xia W, Sun Y, Jho EH, Chiao PJ, Hwang RF, Ying H, Wang H, Zhao Z, Maitra A, Hung MC, DePinho RA, Yu D. Targeting a chemo-induced adaptive signaling circuit confers therapeutic vulnerabilities in pancreatic cancer. Cell Discov 2024; 10:109. [PMID: 39468013 PMCID: PMC11519973 DOI: 10.1038/s41421-024-00720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/28/2024] [Indexed: 10/30/2024] Open
Abstract
Advanced pancreatic ductal adenocarcinomas (PDACs) respond poorly to all therapies, including the first-line treatment, chemotherapy, the latest immunotherapies, and KRAS-targeting therapies. Despite an enormous effort to improve therapeutic efficacy in late-stage PDAC patients, effective treatment modalities remain an unmet medical challenge. To change the status quo, we explored the key signaling networks underlying the universally poor response of PDAC to therapy. Here, we report a previously unknown chemo-induced symbiotic signaling circuit that adaptively confers chemoresistance in patients and mice with advanced PDAC. By integrating single-cell transcriptomic data from PDAC mouse models and clinical pathological information from PDAC patients, we identified Yap1 in cancer cells and Cox2 in stromal fibroblasts as two key nodes in this signaling circuit. Co-targeting Yap1 in cancer cells and Cox2 in stroma sensitized PDAC to Gemcitabine treatment and dramatically prolonged survival of mice bearing late-stage PDAC, whereas simultaneously inhibiting Yap1 and Cox2 only in cancer cells was ineffective. Mechanistically, chemotherapy triggers non-canonical Yap1 activation by nemo-like kinase in 14-3-3ζ-overexpressing PDAC cells and increases secretion of CXCL2/5, which bind to CXCR2 on fibroblasts to induce Cox2 and PGE2 expression, which reciprocally facilitate PDAC cell survival. Finally, analyses of PDAC patient data revealed that patients who received Statins, which inhibit Yap1 signaling, and Cox2 inhibitors (including Aspirin) while receiving Gemcitabine displayed markedly prolonged survival compared to others. The robust anti-tumor efficacy of Statins and Aspirin, which co-target the chemo-induced adaptive circuit in the tumor cells and stroma, signifies a unique therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendao Liu
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yueh-Ming Shyu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongzhong Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuedong Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Zhao
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed M Kariminia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Chung Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinyang Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Huamin Wang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongming Zhao
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anirban Maitra
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Departments of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
5
|
Chen X, Lin X, Xia X, Xiang X. YAP1-induced RBM24 promotes the tumorigenesis of triple-negative breast cancer through the β-catenin pathway. J Investig Med 2024; 72:403-413. [PMID: 38441112 DOI: 10.1177/10815589241239577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and refractory to current treatments. RBM24 is an RNA-binding protein and shows the ability to regulate tumor progression in multiple cancer types. However, its role in TNBC is still unclear. In this study, we analyzed publicly available profiling data from TNBC tissues and cells. Loss- and gain-of-function experiments were performed to determine the function of RBM24 in TNBC cells. The mechanism for RBM24 action in TNBC was investigated. RBM24 was deregulated in TNBC tissues and TNBC cells with depletion of SIPA1, YAP1, or ARID1A, three key regulators of TNBC. Compared to MCF10A breast epithelial cells, TNBC cells had higher levels of RBM24. Knockdown of RBM24 inhibited TNBC cell proliferation, colony formation, and tumorigenesis, while overexpression of RBM24 promoted aggressive phenotype in TNBC cells. YAP1 overexpression induced the expression of RBM24 and the RBM24 promoter-driven luciferase reporter. YAP1 was enriched at the promoter region of RBM24. Overexpression of RBM24 increased β-catenin-dependent transcriptional activity. Most importantly, knockdown of CTNNB1 rescued RBM24 aggressive phenotype in TNBC cells. Collectively, the YAP1/RBM24/β-catenin axis plays a critical role in driving TNBC progression. RBM24 may represent a novel therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Xiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Reid SE, Pantaleo J, Bolivar P, Bocci M, Sjölund J, Morsing M, Cordero E, Larsson S, Malmberg M, Seashore-Ludlow B, Pietras K. Cancer-associated fibroblasts rewire the estrogen receptor response in luminal breast cancer, enabling estrogen independence. Oncogene 2024; 43:1113-1126. [PMID: 38388711 PMCID: PMC10997519 DOI: 10.1038/s41388-024-02973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Advanced breast cancers represent a major therapeutic challenge due to their refractoriness to treatment. Cancer-associated fibroblasts (CAFs) are the most abundant constituents of the tumor microenvironment and have been linked to most hallmarks of cancer. However, the influence of CAFs on therapeutic outcome remains largely unchartered. Here, we reveal that spatial coincidence of abundant CAF infiltration with malignant cells was associated with reduced estrogen receptor (ER)-α expression and activity in luminal breast tumors. Notably, CAFs mediated estrogen-independent tumor growth by selectively regulating ER-α signaling. Whereas most prototypical estrogen-responsive genes were suppressed, CAFs maintained gene expression related to therapeutic resistance, basal-like differentiation, and invasion. A functional drug screen in co-cultures identified effector pathways involved in the CAF-induced regulation of ER-α signaling. Among these, the Transforming Growth Factor-β and the Janus kinase signaling cascades were validated as actionable targets to counteract the CAF-induced modulation of ER-α activity. Finally, genes that were downregulated in cancer cells by CAFs were predictive of poor response to endocrine treatment. In conclusion, our work reveals that CAFs directly control the luminal breast cancer phenotype by selectively modulating ER-α expression and transcriptional function, and further proposes novel targets to disrupt the crosstalk between CAFs and tumor cells to reinstate treatment response to endocrine therapy in patients.
Collapse
Affiliation(s)
- Steven E Reid
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Jessica Pantaleo
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Paulina Bolivar
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Matteo Bocci
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Jonas Sjölund
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Mikkel Morsing
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Eugenia Cordero
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Sara Larsson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Maria Malmberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, SciLifeLab, Stockholm, Sweden
- Chemical Biology Consortium Sweden (CBCS), Karolinska Institute, Stockholm, Sweden
| | - Kristian Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Thakur D, Sengupta D, Mahapatra E, Das S, Sarkar R, Mukherjee S. Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer-directs the road towards therapy resistance, metastatic progression and recurrence. Cancer Metastasis Rev 2024; 43:481-499. [PMID: 38170347 DOI: 10.1007/s10555-023-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.
Collapse
Affiliation(s)
- Debanjan Thakur
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Salini Das
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Ruma Sarkar
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388421, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
8
|
Bao L, Zhong M, Zhang Z, Yu X, You B, You Y, Gu M, Zhang Q, Chen W, Lei W, Hu S. Stiffness promotes cell migration, invasion, and invadopodia in nasopharyngeal carcinoma by regulating the WT-CTTN level. Cancer Sci 2024; 115:836-846. [PMID: 38273817 PMCID: PMC10920987 DOI: 10.1111/cas.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Matrix stiffness potently promotes the malignant phenotype in various biological contexts. Therefore, identification of gene expression to participate in mechanical force signals transduced into downstream biochemical signaling will contribute substantially to the advances in nasopharyngeal carcinoma (NPC) treatment. In the present study, we detected that cortactin (CTTN) played an indispensable role in matrix stiffness-induced cell migration, invasion, and invadopodia formation. Advances in cancer research have highlighted that dysregulated alternative splicing contributes to cancer progression as an oncogenic driver. However, whether WT-CTTN or splice variants (SV1-CTTN or SV2-CTTN) regulate matrix stiffness-induced malignant phenotype is largely unknown. We proved that alteration of WT-CTTN expression modulated matrix stiffness-induced cell migration, invasion, and invadopodia formation. Considering that splicing factors might drive cancer progression through positive feedback loops, we analyzed and showed how the splicing factor PTBP2 and TIA1 modulated the production of WT-CTTN. Moreover, we determined that high stiffness activated PTBP2 expression. Taken together, our findings showed that the PTBP2-WT-CTTN level increases upon stiffening and then promotes cell migration, invasion, and invadopodia formation in NPC.
Collapse
Affiliation(s)
- Lili Bao
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Ming Zhong
- Department of Otorhinolaryngology Head and Neck SurgeryThe People's Hospital of RugaoRugaoJiangsu ProvinceChina
| | - Zixiang Zhang
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Xiangqing Yu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Bo You
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wenhui Chen
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wei Lei
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Songqun Hu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| |
Collapse
|
9
|
Liu M, Hu W, Meng X, Wang B. TEAD4: A key regulator of tumor metastasis and chemoresistance - Mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189050. [PMID: 38072284 DOI: 10.1016/j.bbcan.2023.189050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Cancer metastasis is a complex process influenced by various factors, including epithelial-mesenchymal transition (EMT), tumor cell proliferation, tumor microenvironment, and cellular metabolic status, which remains a significant challenge in clinical oncology, accounting for a majority of cancer-related deaths. TEAD4, a key mediator of the Hippo signaling pathway, has been implicated in regulating these factors that are all critical in the metastatic cascade. TEAD4 drives tumor metastasis and chemoresistance, and its upregulation is associated with poor prognosis in many types of cancers, making it an attractive target for therapeutic intervention. TEAD4 promotes EMT by interacting with coactivators and activating the transcription of genes involved in mesenchymal cell characteristics and extracellular matrix remodeling. Additionally, TEAD4 enhances the stemness of cancer stem cells (CSCs) by regulating the expression of genes associated with CSC maintenance. TEAD4 contributes to metastasis by modulating the secretion of paracrine factors and promoting heterotypic cellular communication. In this paper, we highlight the central role of TEAD4 in cancer metastasis and chemoresistance and its impact on various aspects of tumor biology. Understanding the mechanistic basis of TEAD4-mediated processes can facilitate the development of targeted therapies and combination approaches to combat cancer metastasis and improve treatment outcomes.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Weina Hu
- Department of General Practice, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment of China Medical University, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
10
|
Liu Y, Jin A, Quan X, Shen X, Zhou H, Zhao X, Lin Z. miR-590-5p/Tiam1-mediated glucose metabolism promotes malignant evolution of pancreatic cancer by regulating SLC2A3 stability. Cancer Cell Int 2023; 23:301. [PMID: 38017477 PMCID: PMC10685474 DOI: 10.1186/s12935-023-03159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND T lymphoma invasion and metastasis 1 (Tiam1) is a tumor related gene that specifically activates Rho-like GTPases Rac1 and plays a critical role in the progression of various malignancies. Glycolysis plays an important role in cancer progression, it is crucial for supplying energy and producing metabolic end products, which can maintain the survival of tumor cells. As yet, however, the mechanism of Tiam1 in glycolysis reprogramming of pancreatic cancer (PC) remains to be clarified. Here, we investigated the functional role of Tiam1 in PC cell proliferation, metastasis and glycolysis reprogramming. It is expected to provide a new direction for clinical treatment. METHODS The clinical relevance of Tiam1 was evaluated in 66 patients with PC, the effect of Tiam1 on cell proliferation was detected via 5-Ethynyl-2'-deoxyuridine (EdU) and colony formation. The ability of cell migration was detected by the wound healing and Transwell. Quantitative real time polymerase chain reaction (qRT-PCR) and luciferase reporter gene experiments clarify the regulatory relationship of miR-590-5p inhibiting Tiam1. Detection of the molecular mechanism of Tiam1 regulating glucose metabolism reprogramming in PC by glucose metabolism kit. RNA sequencing and Co-Immunoprecipitation (CoIP) have identified glucose transporter protein 3 (SLC2A3) as a key downstream target gene for miR-590-5p/Tiam1. RESULTS We found that Tiam1 expression increased in PC tissues and was associated with lymph node metastasis. The silencing or exogenous overexpression of Tiam1 significantly altered the proliferation, invasion, and angiogenesis of PC cells through glucose metabolism pathway. In addition, Tiam1 could interact with the crucial SLC2A3 and promote the evolution of PC in a SLC2A3-dependent manner. Moreover, miR-590-5p was found to exacerbate the PC cell proliferation, migration and invasion by targeting Tiam1. Furthermore, the reversing effects on proliferation, migration and invasion were found in PC cells with miR-590-5p/Tiam1 overexpression after applying glucose metabolism inhibition. CONCLUSIONS Our findings demonstrate the critical role of Tiam1 in PC development and the miR-590-5p/Tiam1/SLC2A3 signaling pathway may serve as a target for new PC therapeutic strategies.
Collapse
Affiliation(s)
- Ying Liu
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, People's Republic of China
| | - Aihua Jin
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Xianglan Quan
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Xionghu Shen
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Houkun Zhou
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, People's Republic of China
| | - Xingyu Zhao
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, People's Republic of China
| | - Zhenhua Lin
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China.
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, People's Republic of China.
| |
Collapse
|
11
|
Wang S, Liu K, Han X, Cheng Y, Zhao E, Brat DJ, Sun Z, Fang D. ATXN3 deubiquitinates YAP1 to promote tumor growth. Am J Cancer Res 2023; 13:4222-4234. [PMID: 37818078 PMCID: PMC10560956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/11/2023] [Indexed: 10/12/2023] Open
Abstract
The ubiquitin-specific peptidase Ataxin-3 (ATXN3) has emerged as a potential oncogene in a variety of human cancers. However, the molecular mechanisms underlying how ATXN3 achieves its tumorigenic functions remain largely undefined. Herein, we report that targeted deletion of the ATXN3 gene in cancer cells by the CRISPR-Cas9 system resulted in decreased protein expression of Yes-associated protein 1 (YAP1) without altering its mRNA transcription. Interestingly, genetic ATXN3 suppression selectively inhibited the expression levels of YAP1 target genes including the connective tissue growth factor (Ctgf) and cysteine-rich angiogenic inducer 61 (Cyr61), both of which have important functions in cell adhesion, migration, proliferation and angiogenesis. Consequently, ATXN3 suppression resulted in reduced cancer cell growth and migration, which can also be largely rescued by YAP1 reconstitution. At the molecular level, ATNX3 interacts with the WW domains of YAP1 to protect YAP1 from ubiquitination-mediated degradation. Immunohistology analysis revealed a strong positive correlation between ATXN3 and YAP1 protein expression in human breast and pancreatic cancers. Collectively, our study defines ATXN3 as a previously unknown YAP1 deubiquitinase in tumorigenesis and provides a rationale for ATXN3 targeting in antitumor chemotherapy.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Basic Medical Sciences, Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Xiaohua Han
- Department of Physiology, School of Basic Medicine, Qingdao UniversityNingxia Road 308, Qingdao 266071, Shandong, China
| | - Yang Cheng
- College of Basic Medical Sciences, Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Emily Zhao
- Weinberg College of Arts and Sciences, Northwestern UniversityEvanston, IL 60201, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical UniversityDalian 116044, Liaoning, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| |
Collapse
|
12
|
Huang Q, Zhang R, Xia Y, Shen J, Dong H, Li X, Tao D, Xie D, Liu L. DAB2IP suppresses invadopodia formation through destabilizing ALK by interacting with USP10 in breast cancer. iScience 2023; 26:107606. [PMID: 37664607 PMCID: PMC10470318 DOI: 10.1016/j.isci.2023.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/26/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Invadopodia, being actin-rich membrane protrusions, play a vital role in tumor cell invasion and metastasis. Our previous studies have revealed some functions of the DOC-2/DAB2 interacting protein (DAB2IP) as a tumor suppressor. Nevertheless, the specific role and mechanism of DAB2IP in invadopodia formation remain unclear. Here, we find that DAB2IP effectively suppresses invadopodia formation and metastasis in breast cancer, both in vitro and in vivo. Additionally, DAB2IP could downregulate anaplastic lymphoma kinase (ALK), resulting in the inhibition of tyrosine phosphorylation of Cortactin and the prevention of invadopodia formation. DAB2IP competitively antagonizes the interaction between the deubiquitinating enzyme Ubiquitin-specific peptidase 10 (USP10) and ALK, leading to a decrease in the abundance of ALK protein. In summary, DAB2IP impairs the stability of ALK through USP10-dependent deubiquitination, suppressing Cortactin phosphorylation, thereby inhibiting invadopodia formation and metastasis of breast cancer cells. Furthermore, this study suggests a potential therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Qingwen Huang
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Rui Zhang
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yun Xia
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jie Shen
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Hongliang Dong
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Deding Tao
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Daxing Xie
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Liang Liu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
13
|
Zhou T, Li X, Liu J, Hao J. The Hippo/YAP signaling pathway: the driver of cancer metastasis. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0164. [PMID: 37493303 PMCID: PMC10466436 DOI: 10.20892/j.issn.2095-3941.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Tianxing Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xueyang Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
14
|
Kassuhn W, Cutillas PR, Kessler M, Sehouli J, Braicu EI, Blüthgen N, Kulbe H. In Silico Analysis Predicts Nuclear Factors NR2F6 and YAP1 as Mesenchymal Subtype-Specific Therapeutic Targets for Ovarian Cancer Patients. Cancers (Basel) 2023; 15:3155. [PMID: 37370765 DOI: 10.3390/cancers15123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Tumour heterogeneity in high-grade serous ovarian cancer (HGSOC) is a proposed cause of acquired resistance to treatment and high rates of relapse. Among the four distinct molecular subtypes of HGSOC, the mesenchymal subtype (MES) has been observed with high frequency in several study cohorts. Moreover, it exhibits aggressive characteristics with poor prognosis. The failure to adequately exploit such subtypes for treatment results in high mortality rates, highlighting the need for effective targeted therapeutic strategies that follow the idea of personalized medicine (PM). METHODS As a proof-of-concept, bulk and single-cell RNA data were used to characterize the distinct composition of the tumour microenvironment (TME), as well as the cell-cell communication and its effects on downstream transcription of MES. Moreover, transcription factor activity contextualized with causal inference analysis identified novel therapeutic targets with potential causal impact on transcription factor dysregulation promoting the malignant phenotype. FINDINGS Fibroblast and macrophage phenotypes are of utmost importance for the complex intercellular crosstalk of MES. Specifically, tumour-associated macrophages were identified as the source of interleukin 1 beta (IL1B), a signalling molecule with significant impact on downstream transcription in tumour cells. Likewise, signalling molecules tumour necrosis factor (TNF), transforming growth factor beta (TGFB1), and C-X-C motif chemokine 12 (CXCL12) were prominent drivers of downstream gene expression associated with multiple cancer hallmarks. Furthermore, several consistently hyperactivated transcription factors were identified as potential sources for treatment opportunities. Finally, causal inference analysis identified Yes-associated protein 1 (YAP1) and Nuclear Receptor Subfamily 2 Group F Member 6 (NR2F6) as novel therapeutic targets in MES, verified in an independent dataset. INTERPRETATION By utilizing a sophisticated bioinformatics approach, several candidates for treatment opportunities, including YAP1 and NR2F6 were identified. These candidates represent signalling regulators within the cellular network of the MES. Hence, further studies to confirm these candidates as potential targeted therapies in PM are warranted.
Collapse
Affiliation(s)
- Wanja Kassuhn
- Tumorbank Ovarian Cancer Network, 13353 Berlin, Germany
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, 13353 Berlin, Germany
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1B 6BQ, UK
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Jalid Sehouli
- Tumorbank Ovarian Cancer Network, 13353 Berlin, Germany
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, 13353 Berlin, Germany
| | - Elena I Braicu
- Tumorbank Ovarian Cancer Network, 13353 Berlin, Germany
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, 13353 Berlin, Germany
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- IRI Life Sciences, Humboldt University, 10117 Berlin, Germany
| | - Hagen Kulbe
- Tumorbank Ovarian Cancer Network, 13353 Berlin, Germany
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, 13353 Berlin, Germany
| |
Collapse
|
15
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
16
|
Venghateri JB, Dassa B, Morgenstern D, Shreberk-Shaked M, Oren M, Geiger B. Deciphering the involvement of the Hippo pathway co-regulators, YAP/TAZ in invadopodia formation and matrix degradation. Cell Death Dis 2023; 14:290. [PMID: 37185904 PMCID: PMC10130049 DOI: 10.1038/s41419-023-05769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Invadopodia are adhesive, actin-rich protrusions formed by metastatic cancer cells that degrade the extracellular matrix and facilitate invasion. They support the metastatic cascade by a spatially and temporally coordinated process whereby invading cells bind to the matrix, degrade it by specific metalloproteinases, and mechanically penetrate diverse tissue barriers by forming actin-rich extensions. However, despite the apparent involvement of invadopodia in the metastatic process, the molecular mechanisms that regulate invadopodia formation and function are still largely unclear. In this study, we have explored the involvement of the key Hippo pathway co-regulators, namely YAP, and TAZ, in invadopodia formation and matrix degradation. Toward that goal, we tested the effect of depletion of YAP, TAZ, or both on invadopodia formation and activity in multiple human cancer cell lines. We report that the knockdown of YAP and TAZ or their inhibition by verteporfin induces a significant elevation in matrix degradation and invadopodia formation in several cancer cell lines. Conversely, overexpression of these proteins strongly suppresses invadopodia formation and matrix degradation. Proteomic and transcriptomic profiling of MDA-MB-231 cells, following co-knockdown of YAP and TAZ, revealed a significant change in the levels of key invadopodia-associated proteins, including the crucial proteins Tks5 and MT1-MMP (MMP14). Collectively, our findings show that YAP and TAZ act as negative regulators of invadopodia formation in diverse cancer lines, most likely by reducing the levels of essential invadopodia components. Dissecting the molecular mechanisms of invadopodia formation in cancer invasion may eventually reveal novel targets for therapeutic applications against invasive cancer.
Collapse
Affiliation(s)
- Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | | | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Ma FY, Zhou XH, Liang Q. Advances in understanding of role and mechanism of Hippo signaling pathway in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:14-19. [DOI: 10.11569/wcjd.v31.i1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors, and most patients have a poor prognosis. Many studies have shown that the Hippo signaling pathway plays a key role in the occurrence and development of CRC by regulating CRC cell proliferation and apoptosis, tumor invasion and metastasis, autophagy, metabolic reprogramming, drug resistance, and other processes. This article reviews the latest progress in research of the expression of key molecules of the Hippo signaling pathway in CRC as well as the understanding of the mechanism by which this pathway regulates the occurrence and development of CRC.
Collapse
Affiliation(s)
- Fu-Yan Ma
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Han Zhou
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qiao Liang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
18
|
Wang YQ, Wu DH, Wei D, Shen JY, Huang ZW, Liang XY, Cho WC, Ma J, Lv J, Chen YP. TEAD4 is a master regulator of high-risk nasopharyngeal carcinoma. SCIENCE ADVANCES 2023; 9:eadd0960. [PMID: 36608137 PMCID: PMC9821866 DOI: 10.1126/sciadv.add0960] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The molecular basis underlying nasopharyngeal carcinoma (NPC) remains unclear. Recent progress in transcriptional regulatory network analysis helps identify the master regulator (MR) proteins that transcriptionally define malignant tumor phenotypes. Here, we investigated transcription factor-target interactions and identified TEA domain transcription factor 4 (TEAD4) as an MR of high-risk NPC. Precisely, TEAD4 promoted NPC migration, invasion and cisplatin resistance, depending on its autopalmitoylation. Mechanistically, YTHDF2 (YTH domain family 2) recognized WTAP (Wilms tumor 1-associating protein)-mediated TEAD4 m6A methylation to facilitate its stability and led to aberrant up-regulation of TEAD4. Up-regulated TEAD4 further drove NPC progression by transcriptionally activating BZW2 (basic leucine zipper and W2 domains 2) to induce the oncogenic AKT pathway. Moreover, the transcriptional activity of TEAD4 was independent of its canonical coactivators YAP/TAZ. Clinically, TEAD4 serves as an independent predictor of unfavorable prognosis and cisplatin response in NPC. Our data revealed the crucial role of TEAD4 in driving tumor malignancy, thus, may provide therapeutic vulnerability in NPC.
Collapse
Affiliation(s)
- Ya-Qin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Dong-Hong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jia-Yi Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zi-Wei Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Xiao-Yu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - William C.S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, Hong Kong, P.R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiawei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yu-Pei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| |
Collapse
|
19
|
Perrin L, Gligorijevic B. Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer. Phys Biol 2022; 20:10.1088/1478-3975/aca0d8. [PMID: 36343366 PMCID: PMC9942491 DOI: 10.1088/1478-3975/aca0d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Cancer invasion and metastasis require remodeling of the adjacent extracellular matrix (ECM). In this mini review, we will cover the mechanisms of proteolytic degradation and the mechanical remodeling of the ECM by cancer cells, with a focus on invadopodia. Invadopodia are membrane protrusions unique to cancer cells, characterized by an actin core and by the focal degradation of ECM via matrix metalloproteases (MMPs). While ECM can also be remodeled, at lower levels, by focal adhesions, or internal collagen digestion, invadopodia are now recognized as the major mechanism for MMP-dependent pericellular ECM degradation by cancer cells. Recent evidence suggests that the completion of epithelial-mesenchymal transition may be dispensable for invadopodia and metastasis, and that invadopodia are required not only for mesenchymal, single cell invasion, but also for collective invasion. During collective invasion, invadopodia was then shown to be located in leader cells, allowing follower cells to move via cooperation. Collectively, this suggests that invadopodia function may be a requirement not only for later steps of metastasis, but also for early invasion of epithelial cells into the stromal tissue. Over the last decade, invadopodia studies have transitioned into in 3D andin vivosettings, leading to the confirmation of their essential role in metastasis in preclinical animal models. In summary, invadopodia may hold a great potential for individual risk assessment as a prognostic marker for metastasis, as well as a therapeutic target.
Collapse
Affiliation(s)
- L. Perrin
- Bioengineering Department, Temple University, Philadelphia PA, USA
- Present address, Institut Curie, Paris, France
| | - B. Gligorijevic
- Bioengineering Department, Temple University, Philadelphia PA, USA
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia PA, USA
| |
Collapse
|