1
|
Tao D, Lou S, Huang W, Sun K, Li J, Wang Z, Pi Y, Zhao Y, Wen J, Xie Q, Meng F, Lou G. Clinical and prognostic significance of FBXL6 expression in ovarian cancer. Gene 2025; 933:148978. [PMID: 39368786 DOI: 10.1016/j.gene.2024.148978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE Growing evidence indicates that F-box and leucine-rich repeat protein 6 (FBXL6) is associated with the progression of various cancers, including gastric cancer, hepatocellular carcinoma, and colorectal cancer. This study focuses on the prognostic significance of FBXL6 in OC. METHODS Differential levels of FBXL6 in multiple cancers were evaluated using the TCGA and GSE26712 databases. We screened FBXL6-related differentially expressed genes using the GSE63885 dataset and conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis. The genes that associate with FBXL6 were screened using the "limma" package, the STRING database, and Cytoscape software, and the association was validated through Gene Expression Profiling Interactive Analysis. The potential substrates of FBXL6 were predicted using UbiBrowser2.0 database. FBXL6 protein levels in 84 OC samples were evaluated using immunohistochemistry. The prognostic significance of FBXL6 was explored using Kaplan-Meier and Cox regression analyses. Based on the Cox regression results, an FBXL6-based nomogram that can predict the overall survival (OS) rate were constructed. Moreover, we examined the net benefits and discriminative ability of the nomogram using the decision curve analysis (DCA), calibration plots, and receiver operating characteristic (ROC) curve. RESULTS FBXL6 was elevated in OC tissues, and the overexpression of FBXL6 was linked to poor prognosis in OC patients. The ROC and DCA curves indicated that the prognostic value of the FBXL6-based nomogram model was superior to that of FBXL6, age, and FIGO stage alone. CONCLUSIONS Elevated FBXL6 expression was an independent factor for OC, and an easily applied nomogram was developed to predict OS in OC patients.
Collapse
Affiliation(s)
- Dianxin Tao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Shenghan Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Wei Huang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Kaidi Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Jian Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Zhiqiang Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Yanan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Yue Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Jinglin Wen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Qin Xie
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Fanling Meng
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| |
Collapse
|
2
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Tang D, Kroemer G, Kang R. Ferroptosis in hepatocellular carcinoma: from bench to bedside. Hepatology 2024; 80:721-739. [PMID: 37013919 PMCID: PMC10551055 DOI: 10.1097/hep.0000000000000390] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
The most widespread type of liver cancer, HCC, is associated with disabled cellular death pathways. Despite therapeutic advancements, resistance to current systemic treatments (including sorafenib) compromises the prognosis of patients with HCC, driving the search for agents that might target novel cell death pathways. Ferroptosis, a form of iron-mediated nonapoptotic cell death, has gained considerable attention as a potential target for cancer therapy, especially in HCC. The role of ferroptosis in HCC is complex and diverse. On one hand, ferroptosis can contribute to the progression of HCC through its involvement in both acute and chronic liver conditions. In contrast, having ferroptosis affect HCC cells might be desirable. This review examines the role of ferroptosis in HCC from cellular, animal, and human perspectives while examining its mechanisms, regulation, biomarkers, and clinical implications.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; 75015 Paris, France
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
4
|
Liu Y, Ouyang L, Jiang S, Liang L, Chen Y, Mao C, Jiang Y, Cong L. PPP2R1A silencing suppresses LUAD progression by sensitizing cells to nelfinavir-induced apoptosis and pyroptosis. Cancer Cell Int 2024; 24:145. [PMID: 38654331 DOI: 10.1186/s12935-024-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Lung adenocarcinoma is a major public health problem with the low 5-year survival rate (15%) among cancers. Aberrant alterations of meiotic genes, which have gained increased attention recently, might contribute to elevated tumor risks. However, systematic and comprehensive studies based on the relationship between meiotic genes and LUAD recurrence and treatment response are still lacking. In this manuscript, we first confirmed that the meiosis related prognostic model (MRPM) was strongly related to LUAD progression via LASSO-Cox regression analyses. Furthermore, we identified the role of PPP2R1A in LUAD, which showed more contributions to LUAD process compared with other meiotic genes in our prognostic model. Additionally, repression of PPP2R1A enhances cellular susceptibility to nelfinavir-induced apoptosis and pyroptosis. Collectively, our findings indicated that meiosis-related genes might be therapeutic targets in LUAD and provided crucial guidelines for LUAD clinical intervention.
Collapse
Affiliation(s)
- Yating Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lianlian Ouyang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, 410011, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China
| | - Yuanbing Chen
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China.
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Luo N, Zhang K, Li X, Hu Y, Guo L. Tanshinone IIA destabilizes SLC7A11 by regulating PIAS4-mediated SUMOylation of SLC7A11 through KDM1A, and promotes ferroptosis in breast cancer. J Adv Res 2024:S2090-1232(24)00152-8. [PMID: 38615741 DOI: 10.1016/j.jare.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Breast cancer (BC) is the most common malignancy in women with unfavorite prognosis. OBJECTIVES Tanshinone IIA (Tan IIA) inhibits BC progression, however, the underlying mechanism remains largely undefined. METHODS The cytotoxicity of Tan IIA was assessed by CCK-8 and LDH assays. Ferroptosis was monitored by the level of MDA, Fe2+, lipid ROS and GSH. IHC and western blot were employed to detect the localization and expression of SLC7A11, PIAS4, KDM1A and other key molecules. The SUMOylation of SLC7A11 was detected by Ni-beads pull-down assay and co-IP. Luciferase and ChIP assays were employed to detect the direct association between KDM1A and PIAS4 promoter. The proliferative and metastatic properties of BC cells were assessed by colony formation, CCK-8 and Transwell assays, respectively. The in vitro findings were verified in xenograft and lung metastasis models. RESULTS Tan IIA promoted ferroptosis by suppressing SLC7A11 in BC cells. Silencing of PIAS4 or KDM1A inhibited cell growth and metastasis in BC. Mechanistically, PIAS4 facilitated the SUMOylation of SLC7A11 via direct binding to SLC7A11, and KDM1A acted as a transcriptional activator of PIAS4. Functional studies further revealed that Tan IIA decreased KDM1A expression, thus suppressing PIAS4 expression transcriptionally. The inhibition of PIAS4-dependent SUMOylation of SLC7A11 further induced ferroptosis, thereby inhibiting proliferation and metastasis in BC. CONCLUSION Tan IIA promoted ferroptosis and inhibited tumor growth and metastasis via suppressing KDM1A/PIAS4/SLC7A11 axis.
Collapse
Affiliation(s)
- Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - KeJing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China.
| |
Collapse
|
6
|
Shin D, Lee J, Roh JL. Pioneering the future of cancer therapy: Deciphering the p53-ferroptosis nexus for precision medicine. Cancer Lett 2024; 585:216645. [PMID: 38280477 DOI: 10.1016/j.canlet.2024.216645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
The TP53 gene, encoding the p53 protein, has been a focal point of research since its 1979 discovery, playing a crucial role in tumor suppression. Ferroptosis, a distinct form of cell death characterized by lipid peroxide accumulation, has gained prominence since its recognition in 2012. Recent studies have unveiled an intriguing connection between p53 and ferroptosis, with implications for cancer therapy. Recent research underscores p53 as a novel target for cancer therapy, influencing key metabolic processes in ferroptosis. Notably, p53 represses the expression of the cystine-glutamate antiporter SLC7A11, supporting p53-mediated tumor growth suppression. Furthermore, under metabolic stress, p53 mitigates ferroptosis sensitivity, aiding cancer cells in coping and delaying cell death. This dynamic interplay between p53 and ferroptosis has far-reaching implications for various diseases, particularly cancer. This review provides a comprehensive overview of ferroptosis in cancer cells, elucidating p53's role in regulating ferroptosis, and explores the potential of targeting p53 to induce ferroptosis for cancer therapy. Understanding this complex relationship between p53 and ferroptosis offers a promising avenue for developing innovative cancer treatments.
Collapse
Affiliation(s)
- Daiha Shin
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
7
|
Yan S, Fu P, Li H, Huang Z, Shan R, Gong B. Comprehensive Analysis of circRNA, lncRNA, miRNA and mRNA Expression Profiles and Their Competing Endogenous RNA Networks in Hepatitis B Virus-Related Hepatocellular Carcinoma. Mol Biotechnol 2024:10.1007/s12033-024-01056-2. [PMID: 38411789 DOI: 10.1007/s12033-024-01056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Pursuing knowledge about circular RNA (circRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression profiles and their competing endogenous RNA (ceRNA) networks in hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) was the focus of this research. Expression patterns of circRNAs, lncRNAs, miRNAs, and mRNAs were searched for in relation to HBV-related HCC using whole-transcriptome sequencing. The expression levels of chosen circRNA, lncRNA, miRNA, and mRNA were analyzed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The potential connections and roles of ceRNA were deduced via bioinformatics research. The sum of 284 circRNAs, 2,927 lncRNAs, 693 miRNAs, and 5566 mRNAs were discovered to be expressed at considerably different levels in HBV-related HCC tissue and adjacent normal tissue. And the most significantly up- and down-regulated circRNAs, lncRNAs, miRNAs, and mRNAs were verified in HBV-related HCC by qRT-PCR. The circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks of HBV-related HCC were established, and the ceRNA regulatory networks revealed the gene expression mechanisms controlled by ncRNAs. Collectively, we revealed the contribution of various circRNA, lncRNA, miRNA, and mRNA expression profiles and identified their ceRNA regulatory networks in HBV-related HCC, providing a theoretical basis for further exploration.
Collapse
Affiliation(s)
- Shaoying Yan
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, China
| | - Peng Fu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiming Li
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zikun Huang
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Kong J, Lyu H, Ouyang Q, Shi H, Zhang R, Xiao S, Guo D, Zhang Q, Chen XZ, Zhou C, Tang J. Insights into the Roles of Epigenetic Modifications in Ferroptosis. BIOLOGY 2024; 13:122. [PMID: 38392340 PMCID: PMC10886775 DOI: 10.3390/biology13020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Ferroptosis is a non-apoptotic mode of cell death driven by membrane lipid peroxidation and is characterized by elevated intracellular levels of Fe2+, ROS, and lipid peroxidation. Studies have shown that ferroptosis is related to the development of multiple diseases, such as cancer, neurodegenerative diseases, and acute myeloid leukemia. Ferroptosis plays a dual role in the occurrence and development of these diseases. Ferroptosis mainly involves iron metabolism, ROS, and lipid metabolism. Various mechanisms, including epigenetic regulation, have been reported to be deeply involved in ferroptosis. Abnormal epigenetic modifications have been reported to promote tumor onset or other diseases and resistance to chemotherapy drugs. In recent years, diversified studies have shown that epigenetic modification is involved in ferroptosis. In this review, we reviewed the current resistance system of ferroptosis and the research progress of epigenetic modification, such as DNA methylation, RNA methylation, non-coding RNAs, and histone modification in cancer and other diseases by regulating ferroptosis.
Collapse
Affiliation(s)
- Jinghua Kong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qian Ouyang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
9
|
Wang Z, Zhou C, Zhang Y, Tian X, Wang H, Wu J, Jiang S. From synergy to resistance: Navigating the complex relationship between sorafenib and ferroptosis in hepatocellular carcinoma. Biomed Pharmacother 2024; 170:116074. [PMID: 38147732 DOI: 10.1016/j.biopha.2023.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major global health burden, and sorafenib, a multi-kinase inhibitor, has shown effectiveness in the treatment of HCC and is considered as the first-line therapy for advanced HCC. However, the response to sorafenib varies among patients, and the development of drug resistance poses a prevalent obstacle. Ferroptosis, a newly characterized form of cell death featured by iron-dependent lipid peroxidation, has emerged as a critical player in the reaction to sorafenib therapy in HCC. The induction of ferroptosis has been shown to augment the anticancer benefits of sorafenib. However, it has also been observed to contribute to sorafenib resistance. This review presents a comprehensive and thorough analysis that elucidates the intricate relationship between ferroptosis and sorafenib over recent years, aiming to formulate effective therapeutic approaches for liver cancer. Based on this exploration, we propose innovative strategies intended to overcome sorafenib resistance via targeted modulation of ferroptosis.
Collapse
Affiliation(s)
- Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyang Zhou
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yiming Zhang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China; College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
11
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
12
|
Tang J, Long G, Xiao D, Liu S, Xiao L, Zhou L, Tao Y. ATR-dependent ubiquitin-specific protease 20 phosphorylation confers oxaliplatin and ferroptosis resistance. MedComm (Beijing) 2023; 4:e463. [PMID: 38124786 PMCID: PMC10732327 DOI: 10.1002/mco2.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Oxaliplatin (OXA) resistance is a major clinic challenge in hepatocellular carcinoma (HCC). Ferroptosis is a kind of iron-dependent cell death. Triggering ferroptosis is considered to restore sensitivity to chemotherapy. In the present study, we found that USP20 was overexpressed in OXA-resistant HCC cells. High expression of USP20 in HCC was associated with poor prognosis. USP20 contributes OXA resistance and suppress ferroptosis in HCC. Pharmacological inhibition or knockdown of USP20 triggered ferroptosis and increased the sensitivity of HCC cells to OXA both in vitro and in vivo. Coimmunoprecipitation results revealed that the UCH domain of USP20 interacted with the N terminal of SLC7A11. USP20 stabilized SLC7A11 via removing K48-linked polyubiquitination of SLC7A11 protein at K30 and K37. Most importantly, DNA damage-induced ATR activation was required for Ser132 and Ser368 phosphorylation of USP20. USP20 phosphorylation at Ser132 and Ser368 enhanced its stability and thus conferred OXA and ferroptosis resistance of HCC cells. Our study reveals a previously undiscovered association between OXA and ferroptosis and provides new insight into mechanisms regarding how DNA damage therapies always lead to therapeutic resistance. Therefore, targeting USP20 may mitigate the development of drug resistance and promote ferroptosis of HCC in patients receiving chemotherapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Guo Long
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liang Xiao
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ledu Zhou
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Xiangya HospitalCentral South UniversityHunanChina
- Cancer Research Institute and School of Basic MedicineNHC Key Laboratory of Carcinogenesis (Central South University)Central South UniversityChangshaHunanChina
- Department of Thoracic SurgeryHunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer and Hunan Key Laboratory of Tumor Models and Individualized MedicineSecond Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
13
|
Hao M, Jiang Y, Zhang Y, Yang X, Han J. Ferroptosis regulation by methylation in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188972. [PMID: 37634887 DOI: 10.1016/j.bbcan.2023.188972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Epigenetic regulation plays a critical role in cancer development and progression. Methylation is an important epigenetic modification that influences gene expression by adding a methyl group to nucleic acids and proteins. Ferroptosis is a new form of regulated cell death triggered by the accumulation of iron and lipid peroxidation. Emerging evidence have shown that methylation regulation plays a significant role in the regulation of ferroptosis in cancer. This review aims to explore the methylation regulation of ferroptosis in cancer, including reactive oxygen species and iron bio-logical activity, amino acid and lipid metabolism, and drugs interaction. The findings of this review may provide new insights and strategies for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Mengqiu Hao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yixin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yang Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| |
Collapse
|
14
|
Chen Y, Liu Y, Xiong J, Ouyang L, Tang M, Mao C, Li L, Xiao D, Liu S, Yang Z, Huang J, Tao Y. LINC02774 inhibits glycolysis in glioma to destabilize HIF-1α dependent on transcription factor RP58. MedComm (Beijing) 2023; 4:e364. [PMID: 37701531 PMCID: PMC10494996 DOI: 10.1002/mco2.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Glioma, the most common of malignant tumors in the brain, is responsible for the majority of deaths from primary brain tumors. The regulation of long noncoding RNAs (lncRNAs) in HIF-1α-driven tumor development remains unclear. LINC02774 is a nuclear lncRNA and that it is being reported for the first time in this study. We found the downregulation of LINC02774 in glioma and decreased with the degree of malignant, with its expression showing a negative correlation with the relative index of enhanced magnetic resonance (RIEMR). RIEMR-associated LINC02774 was found to inhibit glycolysis by modulating the hypoxia pathway rather than the hypoxia response itself. LINC02774 interacted with its neighboring gene, RP58 (ZBTB18), to enhance the expression of PHD3, which catalyzed HIF-1α hydroxylase and ubiquitination, leading to the downregulation of HIF-1α expression. We also found that the function of LINC02774, dependent on PHD3, was diminished upon RP58 depletion. Notably, higher expression of RIEMR-associated LINC02774 was associated with a favorable prognosis. In conclusion, these findings reveal the role of RIEMR-associated LINC02774, which relies on its neighbor gene, RP58, to regulate the hypoxia pathway as a novel tumor suppressor, suggesting its potential to be a prognostic marker and a molecular target for the therapy of glioma.
Collapse
Affiliation(s)
- Yuanbing Chen
- Department of NeurosurgeryThird Xiangya Hospital, Central South UniversityChangshaHunanChina
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Central South UniversityHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Jianbing Xiong
- Department of EmergencyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Lianlian Ouyang
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Central South UniversityHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Miao Tang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Central South UniversityHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Liling Li
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shuang Liu
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Zhen Yang
- Shanghai Key Laboratory of Medical EpigeneticsFudan UniversityShanghaiChina
| | - Jun Huang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Central South UniversityHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research InstituteCentral South UniversityChangshaHunanChina
| |
Collapse
|
15
|
Farooqi AA, Rakhmetova V, Kapanova G, Tanbayeva G, Mussakhanova A, Abdykulova A, Ryskulova AG. Role of Ubiquitination and Epigenetics in the Regulation of AhR Signaling in Carcinogenesis and Metastasis: "Albatross around the Neck" or "Blessing in Disguise". Cells 2023; 12:2382. [PMID: 37830596 PMCID: PMC10571945 DOI: 10.3390/cells12192382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. AhR mediates transcriptional programming in a ligand-specific, context-specific and cell-type-specific manner. Pioneering cutting-edge research works have provided fascinating new insights into the mechanistic role of AhR-driven downstream signaling in a wide variety of cancers. AhR ligands derived from food, environmental contaminants and intestinal microbiota strategically activated AhR signaling and regulated multiple stages of cancer. Although AhR has classically been viewed and characterized as a ligand-regulated transcriptional factor, its role as a ubiquitin ligase is fascinating. Accordingly, recent evidence has paradigmatically shifted our understanding and urged researchers to drill down deep into these novel and clinically valuable facets of AhR biology. Our rapidly increasing realization related to AhR-mediated regulation of the ubiquitination and proteasomal degradation of different proteins has started to scratch the surface of intriguing mechanisms. Furthermore, AhR and epigenome dynamics have shown previously unprecedented complexity during multiple stages of cancer progression. AhR not only transcriptionally regulated epigenetic-associated molecules, but also worked with epigenetic-modifying enzymes during cancer progression. In this review, we have summarized the findings obtained not only from cell-culture studies, but also from animal models. Different clinical trials are currently being conducted using AhR inhibitors and PD-1 inhibitors (Pembrolizumab and nivolumab), which confirm the linchpin role of AhR-related mechanistic details in cancer progression. Therefore, further studies are required to develop a better comprehension of the many-sided and "diametrically opposed" roles of AhR in the regulation of carcinogenesis and metastatic spread of cancer cells to the secondary organs.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Venera Rakhmetova
- Department of Internal Diseases, Medical University of Astana, Astana 010000, Kazakhstan
| | - Gulnara Kapanova
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Gulnur Tanbayeva
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
| | - Akmaral Mussakhanova
- Department of Public Health and Management, Astana Medical University, Astana 010000, Kazakhstan;
| | - Akmaral Abdykulova
- Department of General Medical Practice, General Medicine Faculty, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Alma-Gul Ryskulova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Utenos Str. 19A, Almaty 050060, Kazakhstan;
| |
Collapse
|
16
|
Wang Z, Ouyang L, Liu N, Li T, Yan B, Mao C, Xiao D, Gan B, Liu S, Tao Y. The DUBA-SLC7A11-c-Myc axis is critical for stemness and ferroptosis. Oncogene 2023; 42:2688-2700. [PMID: 37537342 DOI: 10.1038/s41388-023-02744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 08/05/2023]
Abstract
Ferroptosis is characterized by the accumulation of lipid peroxidation as a unique iron-dependent cell death. However, the interplay between stemness and ferroptosis remains unknown. Here, we demonstrate that undifferentiated cells are more sensitive to ferroptosis than differentiated cells, and cystine transporter SLC7A11 protein is highly up-regulated by deubiquitinase DUBA in differentiated cells. Additionally, DUBA promotes stemness by deubiquitinating SLC7A11. Moreover, SLC7A11 drastically increases the expression of c-Myc through cysteine, the combination of sorafenib and c-Myc inhibitor EN4 has a synergetic effect on cancer therapy. Together, our results reveal that enhanced stemness increases the susceptibility to ferroptosis, and the DUBA-SLC7A11-c-Myc axis is pivotal for differentiated cancer stem cells (CSCs) resistant to ferroptosis, providing a promised targets to eradicate CSCs through ferroptosis.
Collapse
Affiliation(s)
- Zuli Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lianlian Ouyang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Na Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Tiansheng Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Bokang Yan
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Chao Mao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer and Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
17
|
Zhu X, Li S. Ferroptosis, Necroptosis, and Pyroptosis in Gastrointestinal Cancers: The Chief Culprits of Tumor Progression and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300824. [PMID: 37436087 PMCID: PMC10502844 DOI: 10.1002/advs.202300824] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Indexed: 07/13/2023]
Abstract
In recent years, the incidence of gastrointestinal cancers is increasing, particularly in the younger population. Effective treatment is crucial for improving patients' survival outcomes. Programmed cell death, regulated by various genes, plays a fundamental role in the growth and development of organisms. It is also critical for maintaining tissue and organ homeostasis and takes part in multiple pathological processes. In addition to apoptosis, there are other types of programmed cell death, such as ferroptosis, necroptosis, and pyroptosis, which can induce severe inflammatory responses. Notably, besides apoptosis, ferroptosis, necroptosis, and pyroptosis also contribute to the occurrence and development of gastrointestinal cancers. This review aims to provide a comprehensive summary on the biological roles and molecular mechanisms of ferroptosis, necroptosis, and pyroptosis, as well as their regulators in gastrointestinal cancers and hope to open up new paths for tumor targeted therapy in the near future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangLiaoning Province110042China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangLiaoning Province110042China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with EngineeringShenyangLiaoning Province110042China
| |
Collapse
|
18
|
Zeng X, Tang X, Chen X, Wen H. RNF182 induces p65 ubiquitination to affect PDL1 transcription and suppress immune evasion in lung adenocarcinoma. Immun Inflamm Dis 2023; 11:e864. [PMID: 37249301 PMCID: PMC10201958 DOI: 10.1002/iid3.864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The RING finger (RNF) proteins are a large group of ubiquitin ligases whose aberrant expression is often associated with disease progression. This study examines the function of RNF protein 182 (RNF182) in lung adenocarcinoma (LUAD) cells and its impact on p65 and programmed death ligand 1 (PDL1) regulation. METHODS Expression of RNF182, p65, and PDL1 in LUAD tissues and cells was measured using immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and/or western blot (WB) assays. LUAD cells were induced to overexpress RNF182 and p65, followed by cell counting kit-8, colony formation, Transwell, and flow cytometry assays to evaluate the cells' malignant phenotype. Coimmunoprecipitation and WB assays were used to verify RNF182's effect on p65 ubiquitination. Chromatin immunoprecipitation-qPCR and luciferase assays were used to analyze p65's transcriptional regulation of PDL1. Coculture of LUAD with CD8+ cytotoxic T cells was performed to detect lactate dehydrogenase release and interferon-γ and interleukin-2 concentrations. LUAD cells were implanted in mice to analyze tumorigenicity. RESULTS RNF182 was poorly expressed, while p65 and PDL1 were highly expressed in LUAD tissues and cells. RNF182 overexpression suppressed the malignant properties of LUAD cells, and it promoted p65 ubiquitination and protein degradation. p65 activated PDL1 transcription. Overexpression of RNF182 suppressed the PDL1 expression, increased the cytotoxicity in LUAD cells cocultured with CD8+ T cells, and suppressed the tumorigenesis of cancer cells in vivo. However, these tumor-suppressive effects of RNF182 on LUAD cells were blocked by p65 restoration. CONCLUSION This research demonstrates that RNF182 induces p65 ubiquitination to suppress PDL1 transcription and immunosuppression in LUAD.
Collapse
Affiliation(s)
- Xingdu Zeng
- Department of Respiratory MedicineThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiPeople's Republic of China
| | - Xiaoyuan Tang
- Department of Respiratory MedicineThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiPeople's Republic of China
| | - Xingxiang Chen
- Department of Respiratory MedicineThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiPeople's Republic of China
| | - Huilan Wen
- Department of Respiratory MedicineThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiPeople's Republic of China
| |
Collapse
|
19
|
Zhang R, Kang R, Tang D. Ferroptosis in gastrointestinal cancer: From mechanisms to implications. Cancer Lett 2023; 561:216147. [PMID: 36965540 DOI: 10.1016/j.canlet.2023.216147] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Ferroptosis is a form of regulated cell death that is initiated by excessive lipid peroxidation that results in plasma membrane damage and the release of damage-associated molecular patterns. In recent years, ferroptosis has gained significant attention in cancer research due to its unique mechanism compared to other forms of regulated cell death, especially caspase-dependent apoptotic cell death. Gastrointestinal (GI) cancer encompasses malignancies that arise in the digestive tract, including the stomach, intestines, pancreas, colon, liver, rectum, anus, and biliary system. These cancers are a global health concern, with high incidence and mortality rates. Despite advances in medical treatments, drug resistance caused by defects in apoptotic pathways remains a persistent challenge in the management of GI cancer. Hence, exploring the role of ferroptosis in GI cancers may lead to more efficacious treatment strategies. In this review, we provide a comprehensive overview of the core mechanism of ferroptosis and discuss its function, regulation, and implications in the context of GI cancers.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Xiang X, Gao J, Su D, Shi D. The advancements in targets for ferroptosis in liver diseases. Front Med (Lausanne) 2023; 10:1084479. [PMID: 36999078 PMCID: PMC10043409 DOI: 10.3389/fmed.2023.1084479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis is a type of regulated cell death caused by iron overload and lipid peroxidation, and its core is an imbalance of redox reactions. Recent studies showed that ferroptosis played a dual role in liver diseases, that was, as a therapeutic target and a pathogenic factor. Therefore, herein, we summarized the role of ferroptosis in liver diseases, reviewed the part of available targets, such as drugs, small molecules, and nanomaterials, that acted on ferroptosis in liver diseases, and discussed the current challenges and prospects.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaohong Xiang
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- Department of Geriatrics, The Ninth Hospital of Xi'an, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Zheng Y, Fan J, Jiang X. The role of ferroptosis-related genes in airway epithelial cells of asthmatic patients based on bioinformatics. Medicine (Baltimore) 2023; 102:e33119. [PMID: 36862916 PMCID: PMC9981416 DOI: 10.1097/md.0000000000033119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
It has been reported that airway epithelial cells and ferroptosis have certain effect on asthma. However, the action mechanism of ferroptosis-related genes in airway epithelial cells of asthmatic patients is still unclear. Firstly, the study downloaded the GSE43696 training set, GSE63142 validation set and GSE164119 (miRNA) dataset from the gene expression omnibus database. 342 ferroptosis-related genes were downloaded from the ferroptosis database. Moreover, differentially expressed genes (DEGs) between asthma and control samples in the GSE43696 dataset were screened by differential analysis. Consensus clustering analysis was performed on asthma patients to classify clusters, and differential analysis was performed on clusters to obtain inter-cluster DEGs. Asthma-related module was screened by weighted gene co-expression network analysis. Then, DEGs between asthma and control samples, inter-cluster DEGs and asthma-related module were subjected to venn analysis for obtaining candidate genes. The last absolute shrinkage and selection operator and support vector machines were respectively applied to the candidate genes to screen for feature genes, and functional enrichment analysis was performed. Finally, a competition endogenetic RNA network was constructed and drug sensitivity analysis was conducted. There were 438 DEGs (183 up-regulated and 255 down-regulated) between asthma and control samples. 359 inter-cluster DEGs (158 up-regulated and 201 down-regulated) were obtained by screening. Then, the black module was significantly and strongly correlated with asthma. The venn analysis yielded 88 candidate genes. 9 feature genes (NAV3, ITGA10, SYT4, NOX1, SNTG2, RNF182, UPK1B, POSTN, SHISA2) were screened and they were involved in proteasome, dopaminergic synapse etc. Besides, 4 mRNAs, 5 miRNAs, and 2 lncRNAs collectively formed competition endogenetic RNA regulatory network, which included RNF182-hsa-miR-455-3p-LINC00319 and so on. The predicted therapeutic drug network map contained NAV3-bisphenol A and other relationship pairs. The study investigated the potential molecular mechanisms of NAV3, ITGA10, SYT4, NOX1, SNTG2, RNF182, UPK1B, POSTN, SHISA2 in airway epithelial cells of asthmatic patients through bioinformatics analysis, providing a reference for the research of asthma and ferroptosis.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofeng Jiang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaofeng Jiang, Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, No. 766, Xiangan North Street, Harbin 150028, China (e-mail )
| |
Collapse
|
22
|
Liu Y, Ouyang L, Mao C, Chen Y, Liu N, Chen L, Shi Y, Xiao D, Liu S, Tao Y. Inhibition of RNF182 mediated by Bap promotes non-small cell lung cancer progression. Front Oncol 2023; 12:1009508. [PMID: 36686776 PMCID: PMC9853554 DOI: 10.3389/fonc.2022.1009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Ubiquitylation that mediated by ubiquitin ligases plays multiple roles not only in proteasome-mediated protein degradation but also in various cellular process including DNA repair, signal transduction and endocytosis. RING finger (RNF) proteins form the majority of these ubiquitin ligases. Recent studies have demonstrated the important roles of RNF finger proteins in tumorigenesis and tumor progression. Benzo[a]pyrene (BaP) is one of the most common environmental carcinogens causing lung cancer. The molecular mechanism of Bap carcinogenesis remains elusive. Considering the critical roles of RNF proteins in tumorigenesis and tumor progression, we speculate on whether Bap regulates RNF proteins resulting in carcinogenesis. Methods We used GEO analysis to identify the potential RING finger protein family member that contributes to Bap-induced NSCLC. We next used RT-qPCR, Western blot and ChIP assay to investigate the potential mechanism of Bap inhibits RNF182. BGS analyses were used to analyze the methylation level of RNF182. Results Here we reported that the carcinogen Bap suppresses the expression of ring finger protein 182 (RNF182) in non-small cell lung cancer (NSCLC) cells, which is mediated by abnormal hypermethylation in an AhR independent way and transcriptional regulation in an AhR dependent way. Furthermore, RNF182 exhibits low expression and hypermethylation in tumor tissues. RNF182 also significantly suppresses cell proliferation and induces cell cycle arrest in NSCLC cell lines. Conclusion These results demonstrated that Bap inhibits RNF182 expression to promote lung cancer tumorigenesis through activating AhR and promoting abnormal methylation.
Collapse
Affiliation(s)
- Yating Liu
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Postdoctoral Research Station of Clinical Medicine & Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lianlian Ouyang
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chao Mao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yuanbing Chen
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Na Liu
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research, Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Shuang Liu, ; Yongguang Tao,
| | - Yongguang Tao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shuang Liu, ; Yongguang Tao,
| |
Collapse
|
23
|
Yang L, Guan Y, Liu Z. Role of ferroptosis and its non-coding RNA regulation in hepatocellular carcinoma. Front Pharmacol 2023; 14:1177405. [PMID: 37124203 PMCID: PMC10133567 DOI: 10.3389/fphar.2023.1177405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that involves the accumulation of iron-dependent lipid peroxides and plays a vital role in the tumorigenesis, development, and drug resistance of various tumors such as hepatocellular carcinoma (HCC). As a hotspot in molecular biology, non-coding RNAs (ncRNAs) participate in the initiation and progression of HCC, either act as oncogenes or tumor suppressors. Recent studies have shown that ncRNAs can regulate ferroptosis in HCC cells, which would affect the tumor progression and drug resistance. Therefore, clarifying the underlying role of ferroptosis and the regulatory role of ncRNA on ferroptosis in HCC could develop new treatment interventions for this disease. This review briefly summarizes the role of ferroptosis and ferroptosis-related ncRNAs in HCC tumorigenesis, progression, treatment, drug resistance and prognosis, for the development of potential therapeutic strategies and prognostic markers in HCC patients.
Collapse
Affiliation(s)
| | - Yu Guan
- *Correspondence: Yu Guan, ; Zhanbing Liu,
| | | |
Collapse
|
24
|
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 2022; 13:910292. [PMID: 36105219 PMCID: PMC9465090 DOI: 10.3389/fphar.2022.910292] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System Xc−), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System Xc−/GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System Xc−/GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc−/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Collapse
Affiliation(s)
- Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
25
|
Deng FA, Yan MY, Liu YB, Yu BX, Huang JQ, Wang C, Cheng H, Li SY. Plasma Membrane-Targeted Photooxidant for Chemotherapy-Enhanced Lipid Peroxidation. ACS APPLIED BIO MATERIALS 2022; 5:4523-4530. [PMID: 35999814 DOI: 10.1021/acsabm.2c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although photodynamic therapy (PDT) is a promising antitumor strategy for tumor treatment, the short half-life and the limited diffusion distance of reactive oxygen species (ROS) greatly hamper its antitumor efficacy. Moreover, tumor cells develop antioxidative microenvironments to weaken the oxidative damage caused by PDT. Herein, a plasma membrane-targeted photooxidant (designated as SCPP) is prepared by the self-assembly of a chimeric peptide (Pal-K(PpIX)-R4) and sorafenib. Plasma membrane-targeted SCPP could enhance lipid peroxidation (LPO) through in situ PDT upon light irradiation. Moreover, sorafenib-mediated chemotherapy could block cystine/glutamate antiporter xCT (SLC7A11) to inhibit the syntheses of intracellular GSH and glutathione peroxidase 4 (GPX4), which would destroy the antioxidant defense system of tumors. As a consequence, SCPP achieves a highly efficient tumor inhibition through enhanced PDT and ferroptosis therapy. This study might provide guidance for multisynergistic tumor therapy with a sophisticated mechanism under unfavorable conditions.
Collapse
Affiliation(s)
- Fu-An Deng
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Meng-Yi Yan
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yi-Bin Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Bai-Xue Yu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jia-Qi Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Chang Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shi-Ying Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|