1
|
Li L, Li J, Chen R, Huang C, Zuo Y, Lu R, Liu X, Huang J, Wang Y, Zhao X, Cheng J, Zhao X, Du C, Yu J. Loss of Fbxo45 in AT2 cells leads to insufficient histone supply and initiates lung adenocarcinoma. Cell Death Differ 2024:10.1038/s41418-024-01433-z. [PMID: 39672818 DOI: 10.1038/s41418-024-01433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024] Open
Abstract
Dysregulation of histone supply is implicated in various cancers, including lung adenocarcinoma (LUAD), although the underlying mechanisms remain poorly understood. Here, we demonstrate that knockout of Fbxo45 in mouse alveolar epithelial type 2 (AT2) cells leads to spontaneous LUAD. Our findings reveal that FBXO45 is a novel cell-cycle-regulated protein that is degraded upon phosphorylation by CDK1 during the S/G2 phase. During the S phase or DNA damage repair, FBXO45 binds to UPF1 and recruits the phosphatase PPP6C, thereby inhibiting UPF1 phosphorylation. This process is crucial for preventing the degradation of replication-dependent (RD) histone mRNAs and ensuring an adequate histone supply. In the absence of FBXO45, the impaired interaction between PPP6C and UPF1 results in sustained hyperphosphorylation of UPF1 throughout the cell cycle, leading to an insufficient histone supply, chromatin relaxation, genomic instability, and an increased rate of gene mutations, ultimately culminating in malignant transformation. Notably, analysis of clinical LUAD specimens confirms a positive correlation between the loss of FBXO45 and genomic instability, which is consistent with our findings in the mouse model. These results highlight the critical role of FBXO45 as a genomic guardian in coordinating histone supply and DNA replication, providing valuable insights into potential therapeutic targets and strategies for the treatment of LUAD.
Collapse
Affiliation(s)
- Lian Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojia Liu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojing Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chunling Du
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| |
Collapse
|
2
|
Heraud-Farlow JE, Taylor SR, Chalk AM, Escudero A, Hu SB, Goradia A, Sun T, Li Q, Nikolic I, Li JB, Fidalgo M, Guallar D, Simpson KJ, Walkley CR. GGNBP2 regulates MDA5 sensing triggered by self double-stranded RNA following loss of ADAR1 editing. Sci Immunol 2024; 9:eadk0412. [PMID: 39576872 DOI: 10.1126/sciimmunol.adk0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing of double-stranded RNA (dsRNA) by ADAR1 is an essential modifier of the immunogenicity of cellular dsRNA. The role of MDA5 in sensing unedited cellular dsRNA and the downstream activation of type I interferon (IFN) signaling are well established. However, we have an incomplete understanding of pathways that modify the response to unedited dsRNA. We performed a genome-wide CRISPR screen and showed that GGNBP2, CNOT10, and CNOT11 interact and regulate sensing of unedited cellular dsRNA. We found that GGNBP2 acts between dsRNA transcription and its cytoplasmic sensing by MDA5. GGNBP2 loss prevented induction of type I IFN and autoinflammation after the loss of ADAR1 editing activity by modifying the subcellular distribution of endogenous A-to-I editing substrates and reducing cytoplasmic dsRNA load. These findings reveal previously undescribed pathways to modify diseases associated with ADAR mutations and may be determinants of response or resistance to small-molecule ADAR1 inhibitors.
Collapse
Affiliation(s)
- Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Scott R Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Adriana Escudero
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Shi-Bin Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ankita Goradia
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Tao Sun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Miguel Fidalgo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Zhang H, Bai Y, Li J, Chen T, Shang G. FBXO22 promotes osteosarcoma progression via regulation of FOXO1 for ubiquitination and degradation. J Cell Mol Med 2024; 28:e70021. [PMID: 39153212 PMCID: PMC11330286 DOI: 10.1111/jcmm.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Accumulating evidence has demonstrated that F-box protein 22 (FBXO22) participates in tumour development and progression in various types of human malignancies. However, the functions and detailed molecular mechanisms of FBXO22 in osteosarcoma tumorigenesis and progression remain elusive. In this study, we aimed to determine the effects of FBXO22 on the cell proliferation, migration and invasion of osteosarcoma cells using cell counting kit-8 and Matrigel Transwell approaches. Moreover, we explored the molecular mechanisms by which FBXO22 mediated oncogenesis and progression in osteosarcoma via Western blotting, immunoprecipitation and ubiquitination. We found that FBXO22 depletion inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas FBXO22 overexpression increased the proliferation and motility of osteosarcoma cells. Mechanistically, FBXO22 promoted the ubiquitination and degradation of FoxO1 in osteosarcoma cells. FBXO22 depletion reduced cell proliferation and motility via regulation of FoxO1. Taken together, our findings provide new insight into FBXO22-induced osteosarcoma tumorigenesis. The inhibition of FBXO22 could be a promising strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- He Zhang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yang Bai
- Department of NursingShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiatong Li
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ting Chen
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanning Shang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Zhu B, Hu Y, Wu R, Yu Q, Wen W. FBXO45 levels regulated ferroptosis renal tubular epithelial cells in a model of diabetic nephropathy by PLK1. Open Med (Wars) 2024; 19:20240971. [PMID: 38841177 PMCID: PMC11151394 DOI: 10.1515/med-2024-0971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Objective This research aims to investigate the role and underlying biological mechanism of FBXO45 in regulating ferroptosis of renal fibrocytes in a diabetic nephropathy (DN) model. Methods C57BL/6 mice were fed with a high-fat diet and injected with streptozotocin to induce diabetes. Human renal glomerular endothelial cells stimulated with d-glucose. Results Serum FBXO45 mRNA expression was found to be down-regulated in patients with DN. There was a negative correlation between the expression of serum FBXO45 mRNA and serum α-SMA, Collagen I, and E-cadherin mRNA in patients with DN. Additionally, the expression of serum FBXO45 mRNA showed a negative correlation with blood sugar levels. Based on a 3D model prediction, it was observed that FBXO45 interacts with polo-like kinase 1 (PLK1) at GLY-271, ILE-226, GLY-166, LEU-165, ARG-245, and ASN-220, while PLK1 interacts with FBXO45 at TYR-417, ARG-516, HIS-489, TYR-485, GLN-536, and ARG-557. This interaction was confirmed through immunoprecipitation assay, which showed the interlinking of FBXO45 protein with PLK1 protein. Conclusions These findings indicate that FBXO45 plays a role in mitigating ferroptosis in DN through the regulation of the PLK1/GPX4/SOX2 pathway. This highlights the potential of targeting FBXO45 as a therapeutic approach to ameliorate ferroptosis in DN.
Collapse
Affiliation(s)
- Bingming Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yongxuan Hu
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of SouthernMedical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510600, China
| | - Ruishan Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 510600, China
| | - Quan Yu
- Medical Experimental Research Center, School of Medicine, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Wangrong Wen
- Clinical Laboratory Center, The Affiliated Shunde Hospital Of Jinan University, Foshan, Guangdong, 528305, China
| |
Collapse
|
5
|
Zheng M, Wu L, Xiao R, Cai J, Chen W, Shen S. Fbxo45 facilitates the malignant progression of breast cancer by targeting Bim for ubiquitination and degradation. BMC Cancer 2024; 24:619. [PMID: 38773471 PMCID: PMC11110447 DOI: 10.1186/s12885-024-12382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Breast cancer is one of the common malignancies in women. Evidence has demonstrated that FBXO45 plays a pivotal role in oncogenesis and progression. However, the role of FBXO45 in breast tumorigenesis remains elusive. Exploration of the regulatory mechanisms of FBXO45 in breast cancer development is pivotal for potential therapeutic interventions in patients with breast cancer. METHODS Hence, we used numerous approaches to explore the functions of FBXO45 and its underlaying mechanisms in breast cancer pathogenesis, including CCK-8 assay, EdU assay, colony formation analysis, apoptosis assay, RT-PCR, Western blotting, immunoprecipitation, ubiquitination assay, and cycloheximide chase assay. RESULTS We found that downregulation of FBXO45 inhibited cell proliferation, while upregulation of FBXO45 elevated cell proliferation in breast cancer. Silencing of FBXO45 induced cell apoptosis, whereas overexpression of FBXO45 inhibited cell apoptosis in breast cancer. Moreover, FBXO45 interacted with BIM and regulated its ubiquitination and degradation. Furthermore, knockdown of FBXO45 inhibited cell proliferation via regulation of BIM pathway. Notably, overexpression of FBXO45 facilitated tumor growth in mice. Strikingly, FBXO45 expression was associated with poor survival of breast cancer patients. CONCLUSION Our study could provide the rational for targeting FBXO45 to obtain benefit for breast cancer patients. Altogether, modulating FBXO45/Bim axis could be a promising strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Linfeng Wu
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Rongyao Xiao
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Jiaohao Cai
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Weike Chen
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Shurong Shen
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Chen X, Ma J, Wang ZW, Wang Z. The E3 ubiquitin ligases regulate inflammation in cardiovascular diseases. Semin Cell Dev Biol 2024; 154:167-174. [PMID: 36872193 DOI: 10.1016/j.semcdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Accumulating evidence has illustrated that the E3 ubiquitin ligases critically participate in the development and progression of cardiovascular diseases. Dysregulation of E3 ubiquitin ligases exacerbates cardiovascular diseases. Blockade or activation of E3 ubiquitin ligases mitigates cardiovascular performance. Therefore, in this review, we mainly introduced the critical role and underlying molecular mechanisms of E3 ubiquitin ligase NEDD4 family in governing the initiation and progression of cardiovascular diseases, including ITCH, WWP1, WWP2, Smurf1, Smurf2, Nedd4-1 and Nedd4-2. Moreover, the functions and molecular insights of other E3 ubiquitin ligases, such as F-box proteins, in cardiovascular disease development and malignant progression are described. Furthermore, we illustrate several compounds that alter the expression of E3 ubiquitin ligases to alleviate cardiovascular diseases. Therefore, modulation of E3 ubiquitin ligases could be a novel and promising strategy for improvement of therapeutic efficacy of deteriorative cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhi-Wei Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Zhiting Wang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Song G, Sun Z, Chu M, Zhang Z, Chen J, Wang Z, Zhu X. FBXO28 promotes cell proliferation, migration and invasion via upregulation of the TGF-beta1/SMAD2/3 signaling pathway in ovarian cancer. BMC Cancer 2024; 24:122. [PMID: 38267923 PMCID: PMC10807113 DOI: 10.1186/s12885-024-11893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Ovarian cancer is one of the most common gynecological malignancies due to the lack of early symptoms, early diagnosis and limited screening. Therefore, it is necessary to understand the molecular mechanism underlying the occurrence and progression of ovarian cancer and to identify a basic biomarker for the early diagnosis and clinical treatment of ovarian cancer. METHODS The association between FBXO28 and ovarian cancer prognosis was analyzed using Kaplan‒Meier survival analysis. The difference in FBXO28 mRNA expression between normal ovarian tissues and ovarian tumor tissues was obtained from The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) cohorts. The expression levels of the FBXO28 protein in ovarian cancer tissues and normal ovarian tissues were measured via immunohistochemical staining. Western blotting was used to determine the level of FBXO28 expression in ovarian cancer cells. The CCK-8, the colony formation, Transwell migration and invasion assays were performed to evaluate cell proliferation and motility. RESULTS We found that a higher expression level of FBXO28 was associated with poor prognosis in ovarian cancer patients. Analysis of the TCGA and GTEx cohorts showed that the FBXO28 mRNA level was lower in normal ovarian tissue samples than in ovarian cancer tissue samples. Compared with that in normal ovarian tissues or cell lines, the expression of FBXO28 was greater in ovarian tumor tissues or tumor cells. The upregulation of FBXO28 promoted the viability, proliferation, migration and invasion of ovarian cancer cells. Finally, we demonstrated that FBXO28 activated the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer. CONCLUSIONS In conclusion, FBXO28 enhanced oncogenic function via upregulation of the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer.
Collapse
Affiliation(s)
- Gendi Song
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Man Chu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zihan Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiajia Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhiwei Wang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Sun M, Shi G, Zhang X, Kan C, Xie S, Peng W, Liu W, Wang P, Zhang R. Deciphering roles of protein post-translational modifications in IgA nephropathy progression and potential therapy. Aging (Albany NY) 2024; 16:964-982. [PMID: 38175721 PMCID: PMC10817402 DOI: 10.18632/aging.205406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), one type of glomerulonephritis, displays the accumulation of glycosylated IgA in the mesangium. Studies have demonstrated that both genetics and epigenetics play a pivotal role in the occurrence and progression of IgAN. Post-translational modification (PTM) has been revealed to critically participate in IgAN development and progression because PTM dysregulation results in impaired degradation of proteins that regulate IgAN pathogenesis. A growing number of studies identify that PTMs, including sialylation, o-glycosylation, galactosylation, phosphorylation, ubiquitination and deubiquitination, modulate the initiation and progression of IgAN. Hence, in this review, we discuss the functions and mechanisms of PTMs in regulation of IgAN. Moreover, we outline numerous compounds that govern PTMs and attenuate IgAN progression. Targeting PTMs might be a useful strategy to ameliorate IgAN.
Collapse
Affiliation(s)
- Mengying Sun
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Xiaohan Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Chao Kan
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Shimin Xie
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Weixiang Peng
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
9
|
Zhang F, Wang Y, He Y, Dong B. Correlation of FBXO45 Expression Levels with Cancer Severity by ZEB1 Ubiquitin in Non-Small-Cell Lung Cancer. J Environ Pathol Toxicol Oncol 2024; 43:13-23. [PMID: 39016138 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The early diagnostic methods for non-small-cell lung cancer (NSCLC) are limited, lacking effective biomarkers, and the late stage surgery is difficult and has a high recurrence rate. We investigated whether the effects of FBXO45 in arcinogenesis and metastasis of NSCLC. The up-regulation of FBXO45 expression in NSCLC patients or cell lines were observed. FBXO45 gene promoted metastasis and Warburg effect, and reduced ferroptosis of NSCLC. FBXO45 induced ZEB1 expression to promote Warburg effect and reduced ferroptosis of NSCLC. Sh-FBXO45 reduced cancer growth of NSCLC in mice model. FBXO45 decreased the ubiquitination of ZEB1, leading to increased expression of ZEB1, which in turn promoted the Warburg effect and reduced ferroptosis in NSCLC. In vivo imaging, Sh-FBXO45 also reduced ZEB1 expression levels of lung tissue in mice model. FBXO45 in NSCLC through activating the Warburg effect, and the inhibition of ferroptosis of NSCLC by the suppression of ZEB1 ubiquitin, FBXO45 may be a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Fenjuan Zhang
- Department of Pathology, Xianyang Central Hospital, Xianyang City, 712000 Shaanxi Province, China
| | - Yawei Wang
- Department of Pathology, Qianxian People's Hospital, Qianxian 713300, China
| | - Yan He
- Department of Pathology, Jingyang Country Hospital, Jingyang 713700, China
| | | |
Collapse
|
10
|
Yang C, Ge Y, Zang Y, Xu M, Jin L, Wang Y, Xu X, Xue B, Wang Z, Wang L. CDC20 promotes radioresistance of prostate cancer by activating Twist1 expression. Apoptosis 2023; 28:1584-1595. [PMID: 37535214 DOI: 10.1007/s10495-023-01877-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.
Collapse
Affiliation(s)
- Chuanlai Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Scientific Research Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yuegang Ge
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yachen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ming Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yang Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xinyu Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, 233003, Anhui, China.
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
11
|
Wang M, Zhang Y, Gao L, Zhang H, Yang Z, Liu J, Shan W, Zeng L, Zhang R, Li Y, Liu J. RIG-I promotes cell proliferation in esophageal squamous cell carcinoma by facilitating p21 degradation. Med Oncol 2023; 40:288. [PMID: 37656315 DOI: 10.1007/s12032-023-02157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is considered a key sensor for host recognition of RNA virus infections. Recent studies have shown that RIG-I also regulates carcinogenesis. However, the role of RIG-I in esophageal squamous cell carcinoma (ESCC) remains unclear. We investigated the RIG-I expression in ESCC cells using a public database, immunohistochemistry, and Western blotting. We evaluated the proliferative activity of ESCC cells using CCK-8, colony formation, and EdU staining assays. Further, we determined the ESCC cell-cycle changes using flow cytometry and the ubiquitination of p21 in the cells using cycloheximide chase and ubiquitination assays. Finally, we verified the in vivo effects of RIG-I on ESCC cells by constructing xenograft models. RIG-I was highly expressed in ESCC cells and significantly promoted their proliferation and cell-cycle. Moreover, RIG-I knockdown inhibited xenograft growth in nude mice. Furthermore, RIG-I accelerated the cell-cycle by promoting the ubiquitination and degradation of p21. Overall, this study revealed that the increased expression of RIG-I due to ESCC accelerated the progression of esophageal cancer by promoting the ubiquitination and degradation of p21, which is related to the prognosis of ESCC. Thus, RIG-I may be a novel therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Meng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Liping Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Hailin Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhenwei Yang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jialong Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Wenqing Shan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Lingxiu Zeng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Ranran Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yong Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangyang, Hubei, 441021, China.
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China.
| |
Collapse
|
12
|
Gao J, Yang D, Huang Z, Pan X, Cao R, Lian C, Ma J, Li Y, Wang Z, Xia J. Nosip is a potential therapeutic target in hepatocellular carcinoma cells. iScience 2023; 26:107353. [PMID: 37529099 PMCID: PMC10387614 DOI: 10.1016/j.isci.2023.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Nitric oxide synthase-interacting protein (Nosip) interacts with nitric oxide synthase (NOS) and regulates NO synthesis and release, which participates in various critical physiological and pathological processes. However, the role of Nosip in hepatocellular carcinoma (HCC) is unclear. In this study, Nosip expression was found to be elevated in HCC tissues and cells. Nosip siRNA transfection inhibited the proliferation and motility of HCC cells and promoted apoptosis. In contrast, overexpression of Nosip promoted proliferation and migration and invasion, and inhibited apoptosis of HCC cells. As a natural compound, quercetin exerted the effect of inhibiting the proliferation and motility of HCC cells, and this anticancer activity probably via repressing the expression of Nosip. Our results suggest that Nosip could act as an oncogene in the progression of HCC and that quercetin may be a potential natural compound for treating HCC by inhibiting the expression of Nosip.
Collapse
Affiliation(s)
- Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
- Department of Clinical Laboratory, the Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Dandan Yang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zheng Huang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Ruoxue Cao
- Department of Laboratory, Lianyungang Second People’s Hospital, Lianyungang 222000, Jiangsu, China
| | - Chaoqun Lian
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| |
Collapse
|
13
|
Zheng C, Chen J, Wu Y, Wang X, Lin Y, Shu L, Liu W, Wang P. Elucidating the role of ubiquitination and deubiquitination in osteoarthritis progression. Front Immunol 2023; 14:1217466. [PMID: 37359559 PMCID: PMC10288844 DOI: 10.3389/fimmu.2023.1217466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis is non-inflammatory degenerative joint arthritis, which exacerbates disability in elder persons. The molecular mechanisms of osteoarthritis are elusive. Ubiquitination, one type of post-translational modifications, has been demonstrated to accelerate or ameliorate the development and progression of osteoarthritis via targeting specific proteins for ubiquitination and determining protein stability and localization. Ubiquitination process can be reversed by a class of deubiquitinases via deubiquitination. In this review, we summarize the current knowledge regarding the multifaceted role of E3 ubiquitin ligases in the pathogenesis of osteoarthritis. We also describe the molecular insight of deubiquitinases into osteoarthritis processes. Moreover, we highlight the multiple compounds that target E3 ubiquitin ligases or deubiquitinases to influence osteoarthritis progression. We discuss the challenge and future perspectives via modulation of E3 ubiquitin ligases and deubiquitinases expression for enhancement of the therapeutic efficacy in osteoarthritis patients. We conclude that modulating ubiquitination and deubiquitination could alleviate the osteoarthritis pathogenesis to achieve the better treatment outcomes in osteoarthritis patients.
Collapse
Affiliation(s)
- Chenxiao Zheng
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Jiayi Chen
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Yurui Wu
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Xiaochao Wang
- Department of Orthopaedics, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongan Lin
- South China University of Technology, Guangzhou, Guangdong, China
| | - Lilu Shu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Zhang L, Shi Z, Zhang F, Chen B, Qiu W, Cai L, Lin X. Ubiquitination-related biomarkers in metastatic melanoma patients and their roles in tumor microenvironment. Front Oncol 2023; 13:1170190. [PMID: 37274231 PMCID: PMC10235493 DOI: 10.3389/fonc.2023.1170190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the deadliest type of cutaneous malignancy. Ubiquitination is a process of protein sorting and degradation that exhibits multiple functions in the progression of various tumors. This study aimed to characterize a set of genes for ubiquitination in SKCM. Methods The expression patterns of ubiquitin-associated genes (URGs) and the corresponding clinical information in SKCM tissues were comprehensively analyzed based on The Cancer Genome Atlas (TCGA) database. We performed univariate and multivariate Cox proportional regression models to characterize the risk scores and identify four critical genes related to prognostic ubiquitination (HCLS1, CORO1A, NCF1 and CCRL2), which were used to construct the prognostic signatures. We also studied the effects of HCLS1, CORO1A and CCRL2 on tumor metastasis-related indicators at the cellular level through in vitro experiments. Results SKCM patients in the low-risk group showing a longer survival than those in the high-risk group. Characteristic risk scores correlated with several clinicopathological variables and reflected the infiltration of multiple immune cells. In addition, the knockdown of CLS1, CORO1A and CCRL2 affected cellular malignant biological behavior through the EMT signaling pathway. Conclusion This study provides a novel and prospective strategy to improve the clinical survival of SKCM patients.
Collapse
|
15
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
16
|
Hou B, Chen T, Zhang H, Li J, Wang P, Shang G. The E3 ubiquitin ligases regulate PD-1/PD-L1 protein levels in tumor microenvironment to improve immunotherapy. Front Immunol 2023; 14:1123244. [PMID: 36733484 PMCID: PMC9887025 DOI: 10.3389/fimmu.2023.1123244] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
The tumor microenvironment (TME) is the tumor surrounding environment, which is critical for tumor development and progression. TME is also involved in clinical intervention and treatment outcomes. Modulation of TME is useful for improving therapy strategies. PD-L1 protein on tumor cells interacts with PD-1 protein on T cells, contributing to T cell dysfunction and exhaustion, blockage of the immune response. Evidence has demonstrated that the expression of PD-1/PD-L1 is associated with clinical response to anti-PD-1/PD-L1 therapy in cancer patients. It is important to discuss the regulatory machinery how PD-1/PD-L1 protein is finely regulated in tumor cells. In recent years, studies have demonstrated that PD-1/PD-L1 expression was governed by various E3 ubiquitin ligases in TME, contributing to resistance of anti-PD-1/PD-L1 therapy in human cancers. In this review, we will discuss the role and molecular mechanisms of E3 ligases-mediated regulation of PD-1 and PD-L1 in TME. Moreover, we will describe how E3 ligases-involved PD-1/PD-L1 regulation alters anti-PD-1/PD-L1 efficacy. Altogether, targeting E3 ubiquitin ligases to control the PD-1/PD-L1 protein levels could be a potential strategy to potentiate immunotherapeutic effects in cancer patients.
Collapse
Affiliation(s)
- Bo Hou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiatong Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Guanning Shang,
| |
Collapse
|