1
|
Blanco R, Muñoz JP. HPV and HCMV in Cervical Cancer: A Review of Their Co-Occurrence in Premalignant and Malignant Lesions. Viruses 2024; 16:1699. [PMID: 39599814 PMCID: PMC11599080 DOI: 10.3390/v16111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Cervical cancer remains a significant global health concern, particularly in low- and middle-income countries. While persistent infection with high-risk human papillomavirus (HR-HPV) is essential for cervical cancer development, it is not sufficient on its own, suggesting the involvement of additional cofactors. The human cytomegalovirus (HCMV) is a widespread β-herpesvirus known for its ability to establish lifelong latency and reactivate under certain conditions, often contributing to chronic inflammation and immune modulation. Emerging evidence suggests that HCMV may play a role in various cancers, including cervical cancer, through its potential to influence oncogenic pathways and disrupt host immune responses. This review explores clinical evidence regarding the co-presence of HR-HPV and HCMV in premalignant lesions and cervical cancer. The literature reviewed indicates that HCMV is frequently detected in cervical lesions, particularly in those co-infected with HPV, suggesting a potential synergistic interaction that could enhance HPV's oncogenic effects, thereby facilitating the progression from low-grade squamous intraepithelial lesions (LSIL) to high-grade squamous intraepithelial lesions (HSIL) and invasive cancer. Although the precise molecular mechanisms were not thoroughly investigated in this review, the clinical evidence suggests the importance of considering HCMV alongside HPV in the management of cervical lesions. A better understanding of the interaction between HR-HPV and HCMV may lead to improved diagnostic, therapeutic, and preventive strategies for cervical cancer.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
2
|
Sabour-Takanlou M, Sabour-Takanlou L, Biray-Avci C. EZH2-associated tumor malignancy: A prominent target for cancer treatment. Clin Genet 2024; 106:377-385. [PMID: 38881299 DOI: 10.1111/cge.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The discussion in this review centers around the significant relationships between EZH2 and the initiation, progression, metastasis, metabolism, drug resistance, and immune regulation of cancer. Polycomb group (PcG) proteins, which encompass two primary Polycomb repressor complexes (PRC1 and PRC2), have been categorized. PRC2 consists mainly of four subunits, namely EZH2, EED, SUZ12, and RbAp46/48. As the crucial catalytic component within the PRC2 complex, EZH2 plays a pivotal role in controlling a wide range of biological processes. Overexpression/mutations of EZH2 have been detected in a wide variety of tumors. Several mechanisms of EZH regulation have been identified, including regulation EZH2 mRNA by miRNAs, LncRNAs, accessibility to DNA via DNA-binding proteins, post-translational modifications, and transcriptional regulation. EZH2 signaling triggers cancer progression and may intervene with anti-tumor immunity; therefore it has charmed attention as an effective therapeutic target in cancer therapy. Numerous nucleic acid-based therapies have been used in the modification of EZH2. In addition to gene therapy approaches, pharmaceutical compounds can be used to target the EZH2 signaling pathway in the treatment of cancer. EZH2-associated tumor cells and immune cells enhance the effects of the immune response in a variety of human malignancies. The combination of epigenetic modifying agents, such as anti-EZH2 compounds with immunotherapy, could potentially be efficacious even in the context of immunosuppressive tumors. Summary, understanding the mechanisms underlying resistance to EZH2 inhibitors may facilitate the development of novel drugs to prevent or treat relapse in treated patients.
Collapse
Affiliation(s)
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Gonnella R, Collura F, Corrado V, Di Crosta M, Santarelli R, Cirone M. EZH2 Inhibition by DS3201 Triggers the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle and Potentiates the Effects Induced by SAHA in Primary Effusion Lymphoma Cells. Viruses 2024; 16:1490. [PMID: 39339966 PMCID: PMC11437442 DOI: 10.3390/v16091490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Primary Effusion Lymphoma (PEL) cells carry Kaposi's sarcoma-associated herpesvirus (KSHV) in a latent state, except for a small number of cells in which the virus replicates to ensure its persistence into the infected host. However, the lytic cycle can be reactivated in vitro by exposing these lymphoma cells to various treatments, leading to cell lysis. To restrict viral antigen expression, KSHV induces repressive epigenetic changes, including DNA methylation and histone modifications. Among the latter, histone deacetylation and tri-methylation of Histone H3 lisyne-27 (H3K27me3) have been reported to play a role. Here, we found that the inhibition of H3K27 tri-methylation by valemetostat DS3201 (DS), a small molecule that inhibits Enhancer of Zeste Homolog 2 (EZH2) methyltransferase, induced the KSHV lytic cycle in PEL cells, and that this effect involved the activation of the wtp53-p21 axis and autophagic dysregulation. DS also potentiated the lytic cycle activation mediated by the Histone deacetylases (HDAC) inhibitor Suberoylanilide hydroxamic acid (SAHA) and reinforced its cytotoxic effect, suggesting that such a combination could be used to unbalance the latent/lytic cycle and further impair the survival of PEL cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.G.); (F.C.); (V.C.); (M.D.C.); (R.S.)
| |
Collapse
|
4
|
Zhang F, Ye J, Zhu J, Qian W, Wang H, Luo C. Key Cell-in-Cell Related Genes are Identified by Bioinformatics and Experiments in Glioblastoma. Cancer Manag Res 2024; 16:1109-1130. [PMID: 39253064 PMCID: PMC11382672 DOI: 10.2147/cmar.s475513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose This study aimed to explore the roles of cell-in-cell (CIC)-related genes in glioblastoma (GBM) using bioinformatics and experimental strategies. Patients and Methods The ssGSEA algorithm was used to calculate the CIC score for each patient. Subsequently, differentially expressed genes (DEGs) between the CIClow and CIChigh groups and between the tumor and control samples were screened using the limma R package. Key CIC-related genes (CICRGs) were further filtered using univariate Cox and LASSO analyses, followed by the construction of a CIC-related risk score model. The performance of the risk score model in predicting GBM prognosis was evaluated using ROC curves and an external validation cohort. Moreover, their location and differentiation trajectory in GBM were analyzed at the single-cell level using the Seurat R package. Finally, the expression of key CICRGs in clinical samples was examined by qPCR. Results In the current study, we found that CIC scorelow group had a significantly better survival in the TCGA-GBM cohort, supporting the important role of CICRGs in GBM. Using univariate Cox and LASSO analyses, PTX3, TIMP1, IGFBP2, SNCAIP, LOXL1, SLC47A2, and LGALS3 were identified as key CICRGs. Based on this data, a CIC-related prognostic risk score model was built using the TCGA-GBM cohort and validated in the CGGA-GBM cohort. Further mechanistic analyses showed that the CIC-related risk score is closely related to immune and inflammatory responses. Interestingly, at the single-cell level, key CICRGs were expressed in the neurons and myeloids of tumor tissues and exhibited unique temporal dynamics of expression changes. Finally, the expression of key CICRGs was validated by qPCR using clinical samples from GBM patients. Conclusion We identified novel CIC-related genes and built a reliable prognostic prediction model for GBM, which will provide further basic clues for studying the exact molecular mechanisms of GBM pathogenesis from a CIC perspective.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jingliang Ye
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenbo Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Haoheng Wang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Herbein G, El Baba R. Polyploid Giant Cancer Cells: A Distinctive Feature in the Transformation of Epithelial Cells by High-Risk Oncogenic HCMV Strains. Viruses 2024; 16:1225. [PMID: 39205199 PMCID: PMC11360263 DOI: 10.3390/v16081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection is common in tumor tissues across different types of cancer. While HCMV has not been recognized as a cancer-causing virus, numerous studies hint at its potential role in cancer development where its presence in various cancers corresponds with the hallmarks of cancer. Herein, we discuss and demonstrate that high-risk HCMV-DB and BL strains have the potential to trigger transformation in epithelial cells, including human mammary epithelial cells (HMECs), ovarian epithelial cells (OECs), and prostate epithelial cells (PECs), through the generation of polyploid giant cancer cells (PGCCs). A discussion is provided on how HCMV infection creates a cellular environment that promotes oncogenesis, supporting the continuous growth of CMV-transformed cells. The aforementioned transformed cells, named CTH, CTO, and CTP cells, underwent giant cell cycling with PGCC generation parallel to dedifferentiation, displaying stem-like characteristics and an epithelial-mesenchymal transition (EMT) phenotype. Furthermore, we propose that giant cell cycling through PGCCs, increased EZH2 expression, EMT, and the acquisition of malignant traits represent a deleterious response to the cellular stress induced by high-risk oncogenic HCMV strains, the latter being the origin of the transformation process in epithelial cells upon HCMV infection and leading to adenocarcinoma of poor prognosis.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
- Department of Virology, CHU Besançon, 250000 Besancon, France
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
| |
Collapse
|
6
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Wang J, Shen S, You J, Wang Z, Li Y, Chen Y, Tuo Y, Chen D, Yu H, Zhang J, Wang F, Pang X, Xiao Z, Lan Q, Wang Y. PRMT6 facilitates EZH2 protein stability by inhibiting TRAF6-mediated ubiquitination degradation to promote glioblastoma cell invasion and migration. Cell Death Dis 2024; 15:524. [PMID: 39043634 PMCID: PMC11266590 DOI: 10.1038/s41419-024-06920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Invasion and migration are the key hallmarks of cancer, and aggressive growth is a major factor contributing to treatment failure and poor prognosis in glioblastoma. Protein arginine methyltransferase 6 (PRMT6), as an epigenetic regulator, has been confirmed to promote the malignant proliferation of glioblastoma cells in previous studies. However, the effects of PRMT6 on glioblastoma cell invasion and migration and its underlying mechanisms remain elusive. Here, we report that PRMT6 functions as a driver element for tumor cell invasion and migration in glioblastoma. Bioinformatics analysis and glioma sample detection results demonstrated that PRMT6 is highly expressed in mesenchymal subtype or invasive gliomas, and is significantly negatively correlated with their prognosis. Inhibition of PRMT6 (using PRMT6 shRNA or inhibitor EPZ020411) reduces glioblastoma cell invasion and migration in vitro, whereas overexpression of PRMT6 produces opposite effects. Then, we identified that PRMT6 maintains the protein stability of EZH2 by inhibiting the degradation of EZH2 protein, thereby mediating the invasion and migration of glioblastoma cells. Further mechanistic investigations found that PRMT6 inhibits the transcription of TRAF6 by activating the histone methylation mark (H3R2me2a), and reducing the interaction between TRAF6 and EZH2 to enhance the protein stability of EZH2 in glioblastoma cells. Xenograft tumor assay and HE staining results showed that the expression of PRMT6 could promote the invasion of glioblastoma cells in vivo, the immunohistochemical staining results of mouse brain tissue tumor sections also confirmed the regulatory relationship between PRMT6, TRAF6, and EZH2. Our findings illustrate that PRMT6 suppresses TRAF6 transcription via H3R2me2a to enhance the protein stability of EZH2 to facilitate glioblastoma cell invasion and migration. Blocking the PRMT6-TRAF6-EZH2 axis is a promising strategy for inhibiting glioblastoma cell invasion and migration.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China.
| | - Shiquan Shen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Jian You
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
| | - Zhaotao Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Yan Li
- Department of Cardiology, The First Affiliated Hospital of University of Science and Technology of China, 230001, Hefei, China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Yonghua Tuo
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Danmin Chen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Haoming Yu
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Jingbo Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Fangran Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Xiao Pang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China
| | - Zongyu Xiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University, 215124, Suzhou, China.
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China.
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China.
| |
Collapse
|
8
|
Guyon J, Haidar Ahmad S, El Baba R, Le Quang M, Bikfalvi A, Daubon T, Herbein G. Generation of glioblastoma in mice engrafted with human cytomegalovirus-infected astrocytes. Cancer Gene Ther 2024; 31:1070-1080. [PMID: 38553638 PMCID: PMC11257955 DOI: 10.1038/s41417-024-00767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in glioblastoma multiforme (GB). Herewith, we present the first experimental evidence for the generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits that lead to the formation of glioblastoma in orthotopically xenografted mice. In addition to the already reported oncogenic HCMV-DB strain, we isolated three HCMV clinical strains from GB tissues that transformed HAs toward CEGBCs and generated spheroids from CEGBCs that resulted in the appearance of glioblastoma-like tumors in xenografted mice. These tumors were nestin-positive mostly in the invasive part surrounded by GFAP-positive reactive astrocytes. The glioblastoma immunohistochemistry phenotype was confirmed by EGFR and cMet gene amplification in the tumor parallel to the detection of HCMV IE and UL69 genes and proteins. Our results fit with an HCMV-induced glioblastoma model of oncogenesis in vivo which will open the door to new therapeutic approaches and assess the anti-HCMV treatment as well as immunotherapy in fighting GB which is characterized by poor prognosis.
Collapse
Affiliation(s)
- Joris Guyon
- University of Bordeaux, INSERM U1312, BRIC, Bordeaux, France
- CHU Bordeaux, Department of Medical Pharmacology, Bordeaux, France
| | - Sandy Haidar Ahmad
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Ranim El Baba
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Mégane Le Quang
- Pathology Department, University Hospital of Bordeaux, Bordeaux, France
| | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Georges Herbein
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France.
- CHU Besançon, Department of Virology, Besançon, France.
| |
Collapse
|
9
|
Zhang H, Wang Z, Qiao X, Peng N, Wu J, Chen Y, Cheng C. Unveiling the therapeutic potential of IHMT-337 in glioma treatment: targeting the EZH2-SLC12A5 axis. Mol Med 2024; 30:91. [PMID: 38886655 PMCID: PMC11184773 DOI: 10.1186/s10020-024-00857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system, with EZH2 playing a crucial regulatory role. This study further explores the abnormal expression of EZH2 and its mechanisms in regulating glioma progression. Additionally, it was found that IHMT-337 can potentially be a therapeutic agent for glioma. The prognosis, expression, and localization of EZH2 were determined using bioinformatics, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization. The effects of EZH2 on cell function were assessed using CCK-8 assays, Transwell assays, and wound healing assays. Public databases and RT-qPCR were utilized to identify downstream targets. The mechanisms regulating these downstream targets were elucidated using MS-PCR and WB analysis. The efficacy of IHMT-337 was demonstrated through IC50 measurements, WB analysis, and RT-qPCR. The effects of IHMT-337 on glioma cells in vitro were evaluated using Transwell assays, EdU incorporation assays, and flow cytometry. The potential of IHMT-337 as a treatment for glioma was assessed using a blood-brain barrier (BBB) model and an orthotopic glioma model. Our research confirms significantly elevated EZH2 expression in gliomas, correlating with patient prognosis. EZH2 facilitates glioma proliferation, migration, and invasion alongside promoting SLC12A5 DNA methylation. By regulating SLC12A5 expression, EZH2 activates the WNK1-OSR1-NKCC1 pathway, enhancing its interaction with ERM to promote glioma migration. IHMT-337 targets EZH2 in vitro to inhibit WNK1 activation, thereby suppressing glioma cell migration. Additionally, it inhibits cell proliferation and arrests the cell cycle. IHMT-337 has the potential to cross the BBB and has successfully inhibited glioma progression in vivo. This study expands our understanding of the EZH2-SLC12A5 axis in gliomas, laying a new foundation for the clinical translation of IHMT-337 and offering new insights for precision glioma therapy.
Collapse
Affiliation(s)
- Hongwei Zhang
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zixuan Wang
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaolong Qiao
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Nan Peng
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiaxing Wu
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yinan Chen
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chuandong Cheng
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
10
|
Herbein G. Cellular Transformation by Human Cytomegalovirus. Cancers (Basel) 2024; 16:1970. [PMID: 38893091 PMCID: PMC11171319 DOI: 10.3390/cancers16111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Epstein-Barr virus (EBV), Kaposi sarcoma human virus (KSHV), human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV) are the seven human oncoviruses reported so far. While traditionally viewed as a benign virus causing mild symptoms in healthy individuals, human cytomegalovirus (HCMV) has been recently implicated in the pathogenesis of various cancers, spanning a wide range of tissue types and malignancies. This perspective article defines the biological criteria that characterize the oncogenic role of HCMV and based on new findings underlines a critical role for HCMV in cellular transformation and modeling the tumor microenvironment as already reported for the other human oncoviruses.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté (UFC), 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25000 Besançon, France
| |
Collapse
|
11
|
El Baba R, Herbein G. EZH2-Myc Hallmark in Oncovirus/Cytomegalovirus Infections and Cytomegalovirus' Resemblance to Oncoviruses. Cells 2024; 13:541. [PMID: 38534385 DOI: 10.3390/cells13060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Approximately 15-20% of global cancer cases are attributed to virus infections. Oncoviruses employ various molecular strategies to enhance replication and persistence. Human cytomegalovirus (HCMV), acting as an initiator or promoter, enables immune evasion, supporting tumor growth. HCMV activates pro-oncogenic pathways within infected cells and direct cellular transformation. Thus, HCMV demonstrates characteristics reminiscent of oncoviruses. Cumulative evidence emphasizes the crucial roles of EZH2 and Myc in oncogenesis and stemness. EZH2 and Myc, pivotal regulators of cellular processes, gain significance in the context of oncoviruses and HCMV infections. This axis becomes a central focus for comprehending the mechanisms driving virus-induced oncogenesis. Elevated EZH2 expression is evident in various cancers, making it a prospective target for cancer therapy. On the other hand, Myc, deregulated in over 50% of human cancers, serves as a potent transcription factor governing cellular processes and contributing to tumorigenesis; Myc activates EZH2 expression and induces global gene expression. The Myc/EZH2 axis plays a critical role in promoting tumor growth in oncoviruses. Considering that HCMV has been shown to manipulate the Myc/EZH2 axis, there is emerging evidence suggesting that HCMV could be regarded as a potential oncovirus due to its ability to exploit this critical pathway implicated in tumorigenesis.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France
- Department of Virology, CHU Besançon, 25030 Besançon, France
| |
Collapse
|
12
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
13
|
Bouezzedine F, El Baba R, Haidar Ahmad S, Herbein G. Polyploid Giant Cancer Cells Generated from Human Cytomegalovirus-Infected Prostate Epithelial Cells. Cancers (Basel) 2023; 15:4994. [PMID: 37894361 PMCID: PMC10604969 DOI: 10.3390/cancers15204994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Prostate cancer is the most commonly diagnosed malignancy and the sixth leading cause of cancer death in men worldwide. Chromosomal instability (CIN) and polyploid giant cancer cells (PGCCs) have been considered predominant hallmarks of cancer. Recent clinical studies have proven the association of CIN, aneuploidy, and PGCCs with poor prognosis of prostate cancer (PCa). Evidence of HCMV transforming potential might indicate that HCMV may be involved in PCa. METHODS Herein, we underline the role of the high-risk HCMV-DB and -BL clinical strains in transforming prostate epithelial cells and assess the molecular and cellular oncogenic processes associated with PCa. RESULTS Oncogenesis parallels a sustained growth of "CMV-Transformed Prostate epithelial cells" or CTP cells that highly express Myc and EZH2, forming soft agar colonies and displaying stemness as well as mesenchymal features, hence promoting EMT as well as PGCCs and a spheroid appearance. CONCLUSIONS HCMV-induced Myc and EZH2 upregulation coupled with stemness and EMT traits in IE1-expressing CTP might highlight the potential role of HCMV in PCa development and encourage the use of anti-EZH2 and anti-HCMV in PCa treatment.
Collapse
Affiliation(s)
- Fidaa Bouezzedine
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, 25000 Besançon, France; (F.B.); (R.E.B.); (S.H.A.)
| | - Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, 25000 Besançon, France; (F.B.); (R.E.B.); (S.H.A.)
| | - Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, 25000 Besançon, France; (F.B.); (R.E.B.); (S.H.A.)
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, 25000 Besançon, France; (F.B.); (R.E.B.); (S.H.A.)
- Department of Virology, CHU Besançon, 25030 Besançon, France
| |
Collapse
|
14
|
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene 2023; 42:3047-3061. [PMID: 37634008 PMCID: PMC10555822 DOI: 10.1038/s41388-023-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been implicated in epithelial ovarian cancer (OC). Polyploidy giant cancer cells (PGCCs) have been observed in high-grade serous ovarian carcinoma (HGSOC); they possess cancer stem cell-like characteristics and give rise to progeny cells expressing epithelial-mesenchymal transition (EMT) markers. EZH2 plays a potential oncogenic role, correlating with high proliferative index and tumor grade in OC. Herein, we present the experimental evidence for HCMV as a reprogramming vector that elicited human ovarian epithelial cells (OECs) transformation leading to the generation of "CMV-transformed Ovarian cells" (CTO). The infection with the two high-risk clinical strains, namely HCMV-DB and BL provoked a distinct cellular and molecular mechanisms in infected OECs. EZH2 upregulation and cellular proliferation were curtailed by using EZH2 inhibitors. The HGSOC biopsies were characterized by an elevated EZH2 expression, possessing a strong positive correlation between the aforementioned marker and HCMV. From HGSOC biopsies, we isolated three HCMV clinical strains that transformed OECs generating CTO cells which displayed proliferative potentials in addition to EZH2 upregulation and PGCCs generation; these features were reduced upon EZH2 inhibition. High-risk HCMV strains transformed OECs confirming an HCMV-induced epithelial ovarian cancer model and highlighting EZH2 tumorigenic properties. Our findings might be highly relevant in the pathophysiology of ovarian tumors thereby nominating new targeted therapeutics.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Racha Mansar
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
15
|
Peredo-Harvey I, Bartek J, Ericsson C, Yaiw KC, Nistér M, Rahbar A, Söderberg-Naucler C. Higher Human Cytomegalovirus (HCMV) Specific IgG Antibody Levels in Plasma Samples from Patients with Metastatic Brain Tumors Are Associated with Longer Survival. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1248. [PMID: 37512060 PMCID: PMC10384986 DOI: 10.3390/medicina59071248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Background: Human cytomegalovirus (HCMV) has been detected in tissue samples from patients with glioblastoma but little is known about the systemic immunological response to HCMV in these patients. Objectives: To investigate the presence and clinical significance of HCMV antibodies levels in plasma samples obtained from patients with brain tumors. Materials and Methods: HCMV-specific IgG and IgM antibody levels were determined in 59 plasma samples collected from brain tumor patients included in a prospective study and in 114 healthy individuals. We examined if the levels of HCMV specific antibodies varied in patients with different brain tumor diagnoses compared to healthy individuals, and if antibody levels were predictive for survival time. Results: HCMV specific IgG antibodies were detected by ELISA in 80% and 89% of patients with GBM and astrocytoma grades II-III, respectively, in all samples (100%) from patients with secondary GBM and brain metastases, as well as in 80% of healthy donors (n = 114). All plasma samples were negative for HCMV-IgM. Patients with brain metastases who had higher plasma HCMV-IgG titers had longer survival times (p = 0.03). Conclusions: HCMV specific IgG titers were higher among all brain tumor patient groups compared with healthy donors, except for patients with secondary GBM. Higher HCMV specific IgG levels in patients with brain metastases but not in patients with primary brain tumors were associated with prolonged survival time.
Collapse
Affiliation(s)
- Inti Peredo-Harvey
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | - Koon-Chu Yaiw
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Afsar Rahbar
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Institute of Biomedicine, Infection and Immunology Unit, MediCity Research Laboratory, Turku University, FI-20014 Turku, Finland
| |
Collapse
|
16
|
Yu C, He S, Zhu W, Ru P, Ge X, Govindasamy K. Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential. Front Cell Infect Microbiol 2023; 13:1202138. [PMID: 37424781 PMCID: PMC10327488 DOI: 10.3389/fcimb.2023.1202138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Suna He
- Department of Pharmaceutical Sciences, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Penghui Ru
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kavitha Govindasamy
- School of Arts and Science, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|