1
|
Xu R, Du A, Li J, Yang Q. An anoikis-related gene signature predicts prognosis in patients with acute myeloid leukemia and immunotherapy. Am J Cancer Res 2024; 14:5116-5132. [PMID: 39659934 PMCID: PMC11626272 DOI: 10.62347/mjta2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/03/2024] [Indexed: 12/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant blood disorder and the most common type of acute leukemia in adults. Notwithstanding the plethora of therapeutic modalities, a significant cohort of patients fail to respond to treatment and experience relapse. Anoikis, a distinct modality of programmed cell death, has been linked to cancer progression. However, the prognostic significance of anoikis in AML remains unclear. In this study, a non-negative matrix factorization algorithm was utilized to efficiently reduce the dimensions of merged datasets. We used differential analysis, weighted gene co-expression network analysis (WGCNA), univariate Cox regression, and least absolute shrinkage and selection operator (LASSO) regression to identify genes associated with prognosis and develop a risk scoring model. Immunohistochemistry was conducted to assess the expression levels of key genes in clinical samples. The association between risk score and the tumor microenvironment (TME), stemness, clinical characteristics, and immunotherapy was evaluated. We identified 41 AML anoikis-related genes (ANRGs) related to survival, and seven genes were chosen to develop prognostic models. The prognostic risk score combined with the clinical and pathological features of AML was used to develop a nomogram, and decision curve analysis demonstrated the net clinical benefit of the model. Furthermore, analysis of ANRGs revealed that PDGFRB inhibition significantly reduced the proliferation of AML cells, promoted apoptosis, and inhibited AML progression both in vitro and in vivo, indicating that PDGFRB plays a crucial role in AML development.
Collapse
Affiliation(s)
- Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City)Changde 415000, Hunan, China
| | - Ashuai Du
- Department of Infectious Diseases, Guizhou Provincial People’s HospitalGuiyang 550002, Guizhou, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde HospitalChangde 415000, Hunan, China
| | - Qinglong Yang
- Department of General Surgery, Guizhou Provincial People’s HospitalGuiyang 550002, Guizhou, China
| |
Collapse
|
2
|
Cho SJ, Yoon C, Lee JH, Chang KK, Lin JX, Kim YH, Kook MC, Aksoy BA, Park DJ, Ashktorab H, Smoot DT, Schultz N, Yoon SS. Retraction: KMT2C Mutations in Diffuse-Type Gastric Adenocarcinoma Promote Epithelial-to-Mesenchymal Transition. Clin Cancer Res 2024; 30:4801. [PMID: 39402969 PMCID: PMC11574732 DOI: 10.1158/1078-0432.ccr-24-2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 11/21/2024]
|
3
|
Yoon C, Park DJ, Schmidt B, Thomas NJ, Lee HJ, Kim TS, Janjigian YY, Cohen DJ, Yoon SS. Retraction: CD44 Expression Denotes a Subpopulation of Gastric Cancer Cells in Which Hedgehog Signaling Promotes Chemotherapy Resistance. Clin Cancer Res 2024; 30:4803. [PMID: 39402971 PMCID: PMC11574784 DOI: 10.1158/1078-0432.ccr-24-2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 11/21/2024]
|
4
|
Stegat L, Eckhardt A, Gocke A, Neyazi S, Pohl L, Schmid S, Dottermusch M, Frank S, Pinnschmidt H, Herms J, Glatzel M, Snuderl M, Schweizer L, Thomas C, Neumann J, Dorostkar MM, Schüller U, Wefers AK. Integrated analyses reveal two molecularly and clinically distinct subtypes of H3 K27M-mutant diffuse midline gliomas with prognostic significance. Acta Neuropathol 2024; 148:40. [PMID: 39256213 PMCID: PMC11387453 DOI: 10.1007/s00401-024-02800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
H3 K27M-altered diffuse midline gliomas (DMGs) are highly malignant tumours that arise in the midline structures of the CNS. Most DMGs carry an H3 K27M-mutation in one of the genes encoding for histone H3. Recent studies suggested that epigenetic subgroups of DMGs can be distinguished based on alterations in the MAPK-signalling pathway, tumour localisation, mutant H3-gene, or overall survival (OS). However, as these parameters were studied individually, it is unclear how they collectively influence survival. Hence, we analysed dependencies between different parameters, to define novel epigenetic, clinically meaningful subgroups of DMGs. We collected a multifaceted cohort of 149 H3 K27M-mutant DMGs, also incorporating data of published cases. DMGs were included in the study if they could be clearly allocated to the spinal cord (n = 31; one patient with an additional sellar tumour), medulla (n = 20), pons (n = 64) or thalamus (n = 33), irrespective of further known characteristics. We then performed global genome-wide DNA methylation profiling and, for a subset, DNA sequencing and survival analyses. Unsupervised hierarchical clustering of DNA methylation data indicated two clusters of DMGs, i.e. subtypes DMG-A and DMG-B. These subtypes differed in mutational spectrum, tumour localisation, age at diagnosis and overall survival. DMG-A was enriched for DMGs with MAPK-mutations, medullary localisation and adult age. 13% of DMG-A had a methylated MGMT promoter. Contrarily, DMG-B was enriched for cases with TP53-mutations, PDGFRA-amplifications, pontine localisation and paediatric patients. In univariate analyses, the features enriched in DMG-B were associated with a poorer survival. However, all significant parameters tested were dependent on the cluster attribution, which had the largest effect on survival: DMG-A had a significantly better survival compared to DMG-B (p < 0.001). Hence, the subtype attribution based on two methylation clusters can be used to predict survival as it integrates different molecular and clinical parameters.
Collapse
Affiliation(s)
- Lotte Stegat
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alicia Eckhardt
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Antonia Gocke
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section of Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Neyazi
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Pohl
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Frank
- Department of Neuropathology, Institute of Pathology, Basel University Hospital, Basel, Switzerland
| | - Hans Pinnschmidt
- Institute of Medical Biometry and Epidemiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, USA
| | - Leonille Schweizer
- Edinger Institute (Institute of Neurology), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
- Karl Landsteiner Privatuniversität für Gesundheitswissenschaften, St. Pölten, Austria
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
5
|
Sergi CM. Pediatric cancer-pathology and microenvironment influence: a perspective into osteosarcoma and non-osteogenic mesenchymal malignant neoplasms. Discov Oncol 2024; 15:358. [PMID: 39154307 PMCID: PMC11330953 DOI: 10.1007/s12672-024-01240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Pediatric cancer remains the leading cause of disease-related death among children aged 1-14 years. A few risk factors have been conclusively identified, including exposure to pesticides, high-dose radiation, and specific genetic syndromes, but the etiology underlying most events remains unknown. The tumor microenvironment (TME) includes stromal cells, vasculature, fibroblasts, adipocytes, and different subsets of immunological cells. TME plays a crucial role in carcinogenesis, cancer formation, progression, dissemination, and resistance to therapy. Moreover, autophagy seems to be a vital regulator of the TME and controls tumor immunity. Autophagy is an evolutionarily conserved intracellular process. It enables the degradation and recycling of long-lived large molecules or damaged organelles using the lysosomal-mediated pathway. The multifaceted role of autophagy in the complicated neoplastic TME may depend on a specific context. Autophagy may function as a tumor-suppressive mechanism during early tumorigenesis by eliminating unhealthy intracellular components and proteins, regulating antigen presentation to and by immune cells, and supporting anti-cancer immune response. On the other hand, dysregulation of autophagy may contribute to tumor progression by promoting genome damage and instability. This perspective provides an assortment of regulatory substances that influence the features of the TME and the metastasis process. Mesenchymal cells in bone and soft-tissue sarcomas and their signaling pathways play a more critical role than epithelial cells in childhood and youth. The investigation of the TME in pediatric malignancies remains uncharted primarily, and this unique collection may help to include novel advances in this setting.
Collapse
Affiliation(s)
- Consolato M Sergi
- Division of Anatomic Pathology, Department of Laboratory Medicine, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Laboratory Medicine, Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada.
- University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Lebel M, Cliche DO, Charbonneau M, Brochu-Gaudreau K, Adam D, Brochiero E, Dubois CM, Cantin AM. Hypoxia Promotes Invadosome Formation by Lung Fibroblasts. Cells 2024; 13:1152. [PMID: 38995003 PMCID: PMC11240699 DOI: 10.3390/cells13131152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Lung parenchymal hypoxia has emerged as a cardinal feature of idiopathic pulmonary fibrosis (IPF). Hypoxia promotes cancer cell invasion and metastasis through signaling that is dependent upon the lysophosphatidic acid (LPA) receptor, LPA1 (LPAR1). Abundant data indicate that LPA1-dependent signaling also enhances lung fibrogenesis in IPF. We recently reported that fibroblasts isolated from the lungs of individuals with IPF have an increased capacity to form subcellular matrix-degradative structures known as invadosomes, an event that correlates with the degree of lung fibrosis. We therefore hypothesized that hypoxia promotes invadosome formation in lung fibroblasts through LPA1-dependent signaling. Here, it is demonstrated that invadosome formation by fibroblasts from the lungs of individuals with advanced IPF is inhibited by both the tyrosine receptor kinase inhibitor nintedanib and inhibition of LPA1. In addition, exposure of normal human lung fibroblasts to either hypoxia or LPA increased their ability to form invadosomes. Mechanistically, the hypoxia-induced invadosome formation by lung fibroblasts was found to involve LPA1 and PDGFR-Akt signaling. We concluded that hypoxia increases the formation of invadosomes in lung fibroblasts through the LPA1 and PDGFR-Akt signaling axis, which represents a potential target for suppressing lung fibrosis.
Collapse
Affiliation(s)
- Mégane Lebel
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominic O Cliche
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Martine Charbonneau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Claire M Dubois
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - André M Cantin
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
7
|
Huang C, Yoon C, Zhou XH, Zhou YC, Zhou WW, Liu H, Yang X, Lu J, Lee SY, Huang K. Retraction Note: ERK1/2-Nanog signaling pathway enhances CD44(+) cancer stem-like cell phenotypes and epithelial-to-mesenchymal transition in head and neck squamous cell carcinomas. Cell Death Dis 2024; 15:219. [PMID: 38491046 PMCID: PMC10943203 DOI: 10.1038/s41419-024-06608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Affiliation(s)
- Chuang Huang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Changhwan Yoon
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiao-Hong Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Ying-Chun Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Wen-Wen Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Hong Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jun Lu
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian Province, Chongqing, China
| | - Sei Young Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Kun Huang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Lu J, Bang H, Kim SM, Cho SJ, Ashktorab H, Smoot DT, Zheng CH, Ryeom SW, Yoon SS, Yoon C, Lee JH. Retraction Note: Lymphatic metastasis-related TBL1XR1 enhances stemness and metastasis in gastric cancer stem-like cells by activating ERK1/2-SOX2 signaling. Oncogene 2024; 43:838. [PMID: 38378920 DOI: 10.1038/s41388-024-02962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Heejin Bang
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Su Mi Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, South Korea
| | - Soo-Jeong Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | - Duane T Smoot
- Department of Medicine, Howard University, Washington, DC, USA
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jun Ho Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Liu B, Zheng X, Li J, Yao P, Guo P, Liu W, Zhao G. Atovaquone inhibits colorectal cancer metastasis by regulating PDGFRβ/NF-κB signaling pathway. BMC Cancer 2023; 23:1070. [PMID: 37932661 PMCID: PMC10629062 DOI: 10.1186/s12885-023-11585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Colorectal cancer is a common malignant tumour. Invasive growth and distant metastasis are the main characteristics of its malignant biological behaviour, and they are also the primary factors leading to death in colon cancer patients. Atovaquone is an antimalarial drug, and its anticancer effect has recently been demonstrated in several cancer models in vitro and in vivo, but it has not been examined in the treatment of colorectal cancer. METHODS To elucidate the effect of atovaquone on colorectal cancer. We used RNA transcriptome sequencing, RT‒PCR and Western blot experiments to examine the expression of NF-κB (p-P65), EMT-related proteins and related inflammatory factors (IL1B, IL6, CCL20, CCL2, CXCL8, CXCL6, IL6ST, FAS, IL10 and IL1A). The effect of atovaquone on colorectal cancer metastasis was validated using an animal model of lung metastases. We further used transcriptome sequencing, the GCBI bioinformatics database and the STRING database to predict relevant target proteins. Furthermore, pathological sections were collected from relevant cases for immunohistochemical verification. RESULTS This study showed that atovaquone could inhibit colorectal cancer metastasis and invasion in vivo and in vitro, inhibit the expression of E-cadherin protein, and promote the protein expression of N-cadherin, vimentin, ZEB1, Snail and Slug. Atovaquone could inhibit EMT by inhibiting NF-κB (p-P65) and related inflammatory factors. Further bioinformatics analysis and verification showed that PDGFRβ was one of the targets of atovaquone. CONCLUSION In summary, atovaquone can inhibit the expression of NF-κB (p-P65) and related inflammatory factors by inhibiting the protein expression of p-PDGFRβ, thereby inhibiting colorectal cancer metastasis. Atovaquone may be a promising drug for the treatment of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Bin Liu
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Xin Zheng
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajun Li
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Peng Yao
- Department of Nephrology, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Peng Guo
- Chengdu Medical College, 610500, Chengdu, Sichuan, China
| | - Wei Liu
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
11
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Maher J, Davies DM. CAR-Based Immunotherapy of Solid Tumours-A Survey of the Emerging Targets. Cancers (Basel) 2023; 15:1171. [PMID: 36831514 PMCID: PMC9953954 DOI: 10.3390/cancers15041171] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Immunotherapy with CAR T-cells has revolutionised the treatment of B-cell and plasma cell-derived cancers. However, solid tumours present a much greater challenge for treatment using CAR-engineered immune cells. In a partner review, we have surveyed data generated in clinical trials in which patients with solid tumours that expressed any of 30 discrete targets were treated with CAR-based immunotherapy. That exercise confirms that efficacy of this approach falls well behind that seen in haematological malignancies, while significant toxic events have also been reported. Here, we consider approximately 60 additional candidates for which such clinical data are not available yet, but where pre-clinical data have provided support for their advancement to clinical evaluation as CAR target antigens.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
13
|
Liu B, Pang K, Feng C, Liu Z, Li C, Zhang H, Liu P, Li Z, He S, Tu C. Comprehensive analysis of a novel cuproptosis-related lncRNA signature associated with prognosis and tumor matrix features to predict immunotherapy in soft tissue carcinoma. Front Genet 2022; 13:1063057. [PMID: 36568384 PMCID: PMC9768346 DOI: 10.3389/fgene.2022.1063057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: A crucial part of the malignant processes of soft tissue sarcoma (STS) is played by cuproptosis and lncRNAs. However, the connection between cuproptosis-related lncRNAs (CRLs) and STS is nevertheless unclear. As a result, our objective was to look into the immunological activity, clinical significance, and predictive accuracy of CRLs in STS. Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, respectively, provided information on the expression patterns of STS patients and the general population. Cuproptosis-related lncRNA signature (CRLncSig) construction involved the univariate, multivariate, and least absolute shrinkage and selection operator Cox regression analysis. The predictive performance of the CRLncSig was evaluated using a serial analysis. Further research was done on the connections between the CRLncSig and the tumor immune milieu, somatic mutation, immunotherapy response, and chemotherapeutic drug susceptibility. Notably, an in vitro investigation served to finally validate the expression of the hallmark CRLs. Results: A novel efficient CRLncSig composed of seven CRLs was successfully constructed. Additionally, the low-CRLncSig group's prognosis was better than that of the high-CRLncSig group's based on the new CRLncSig. The innovative CRLncSig then demonstrated outstanding, consistent, and independent prognostic and predictive usefulness for patients with STS, according to the evaluation and validation data. The low-CRLncSig group's patients also displayed improved immunoreactivity phenotype, increased immune infiltration abundance and checkpoint expression, and superior immunotherapy response, whereas those in the high-CRLncSig group with worse immune status, increased tumor stemness, and higher collagen levels in the extracellular matrix. Additionally, there is a noticeable disparity in the sensitivity of widely used anti-cancer drugs amongst various populations. What's more, the nomogram constructed based on CRLncSig and clinical characteristics of patients also showed good predictive ability. Importantly, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) demonstrated that the signature CRLs exhibited a significantly differential expression level in STS cell lines. Conclusion: In summary, this study revealed the novel CRLncSig could be used as a promising predictor for prognosis prediction, immune activity, tumor immune microenvironment, immune response, and chemotherapeutic drug susceptibility in patients with STS. This may provide an important direction for the clinical decision-making and personalized therapy of STS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ke Pang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haixia Zhang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shasha He, ; Chao Tu,
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shasha He, ; Chao Tu,
| |
Collapse
|
14
|
GC S, Tuy K, Rickenbacker L, Jones R, Chakraborty A, Miller CR, Beierle EA, Hanumanthu VS, Tran AN, Mobley JA, Bellis SL, Hjelmeland AB. α2,6 Sialylation mediated by ST6GAL1 promotes glioblastoma growth. JCI Insight 2022; 7:e158799. [PMID: 36345944 PMCID: PMC9675560 DOI: 10.1172/jci.insight.158799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
One of the least-investigated areas of brain pathology research is glycosylation, which is a critical regulator of cell surface protein structure and function. β-Galactoside α2,6-sialyltransferase (ST6GAL1) is the primary enzyme that α2,6 sialylates N-glycosylated proteins destined for the plasma membrane or secretion, thereby modulating cell signaling and behavior. We demonstrate a potentially novel, protumorigenic role for α2,6 sialylation and ST6GAL1 in the deadly brain tumor glioblastoma (GBM). GBM cells with high α2,6 sialylation exhibited increased in vitro growth and self-renewal capacity and decreased mouse survival when orthotopically injected. α2,6 Sialylation was regulated by ST6GAL1 in GBM, and ST6GAL1 was elevated in brain tumor-initiating cells (BTICs). Knockdown of ST6GAL1 in BTICs decreased in vitro growth, self-renewal capacity, and tumorigenic potential. ST6GAL1 regulates levels of the known BTIC regulators PDGF Receptor β (PDGFRB), Activated Leukocyte Cell Adhesion Molecule, and Neuropilin, which were confirmed to bind to a lectin-recognizing α2,6 sialic acid. Loss of ST6GAL1 was confirmed to decrease PDGFRB α2,6 sialylation, total protein levels, and the induction of phosphorylation by PDGF-BB. Thus, ST6GAL1-mediated α2,6 sialylation of a select subset of cell surface receptors, including PDGFRB, increases GBM growth.
Collapse
Affiliation(s)
- Sajina GC
- Department of Cell, Developmental and Integrative Biology
| | - Kaysaw Tuy
- Department of Cell, Developmental and Integrative Biology
| | | | - Robert Jones
- Department of Cell, Developmental and Integrative Biology
| | | | | | | | | | | | - James A. Mobley
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
15
|
Aluai-Cunha C, Matos A, Amorim I, Carvalho F, Rêma A, Santos A. Immunohistochemical Expression of Platelet-Derived Growth Factor Receptor β (PDGFR-β) in Canine Cutaneous Peripheral Nerve Sheath Tumors: A Preliminary Study. Vet Sci 2022; 9:vetsci9070345. [PMID: 35878362 PMCID: PMC9319676 DOI: 10.3390/vetsci9070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The peripheral nerve sheath tumors are relatively common neoplasms, belong to the soft tissue sarcomas group, and are poorly investigated in veterinary medicine; the diagnosis is complex, and therapeutic options are limited. The platelet-derived growth factor receptors, namely the β subunit, are an important class of tyrosine kinase receptors that can be activated by genetic alterations and contribute to the process of carcinogenesis, so the inhibition of this receptor is an important therapeutic target. Using the immunohistochemical technique, this study aims to evaluate the expression of this receptor in 19 samples, 10 malignant and 9 benign tumors. The results showed that the majority of benign tumors, about 67% of cases, expressed the receptor in less than 25% of neoplastic cells and, in 80% cases of malignant tumors, the receptor was expressed in more than 25% of neoplastic cells. It was also found that, in the larger tumors, the expression of this receptor was significantly higher. With these findings it seems reasonable to speculate that the drugs able to inhibit this receptor, such as toceranib, may be considered in the therapeutic approach of these tumors. Abstract As in humans, the prevalence of tumors in companion animals is increasing dramatically and there is a strong need for research on new pharmacological agents particularly for the treatment of those tumors that are resistant to conventional chemotherapy agents such as soft tissue sarcomas (STS). Because malignant (MPNST) and benign peripheral nerve sheath tumors (BPNST) are relatively common STS in dogs, the aim of this retrospective study was to evaluate the immunohistochemical (IHC) expression of PDGFR-β, contributing to its characterization as a potential target for their treatment. A total of 19 samples were included, 9 histologically classified as benign and the other 10 as malignant. The results showed diffuse immunoexpression in the cytoplasm of neoplastic cells. Six (66.7%) BPNST expressed the receptor in less than 25% of neoplastic cells and only three (33.3%) exhibited labelling in more than 25% of neoplastic cells. In contrast, all MPNST expressed PDGFR-β, and in 8 (80%) of these samples, the receptor was expressed in more than 25% of neoplastic cells, and only 2 (20%) cases expressed the receptor in less than 25% of neoplastic cells. PDGFR-β expression was significantly higher in MPNST and larger tumors, suggesting that drugs able to inhibit the activity of this tyrosine kinase receptor, such as toceranib, may be considered in the approach of unresectable tumors and/or in the context of adjuvant or neoadjuvant therapies.
Collapse
Affiliation(s)
- Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.A.-C.); (A.M.)
| | - Augusto Matos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.A.-C.); (A.M.)
- Animal Science and Study Centre (CECA), Food and Agrarian Sciences and Technologies Institute (ICETA), P. Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - Irina Amorim
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.A.); (F.C.); (A.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fátima Carvalho
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.A.); (F.C.); (A.R.)
| | - Alexandra Rêma
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.A.); (F.C.); (A.R.)
| | - Andreia Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.A.-C.); (A.M.)
- Animal Science and Study Centre (CECA), Food and Agrarian Sciences and Technologies Institute (ICETA), P. Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
16
|
Mercer-Smith AR, Buckley A, Valdivia A, Jiang W, Thang M, Bell N, Kumar RJ, Bomba HN, Woodell AS, Luo J, Floyd SR, Hingtgen SD. Next-generation Tumor-homing Induced Neural Stem Cells as an Adjuvant to Radiation for the Treatment of Metastatic Lung Cancer. Stem Cell Rev Rep 2022; 18:2474-2493. [PMID: 35441348 DOI: 10.1007/s12015-022-10375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The spread of non-small cell lung cancer (NSCLC) to the leptomeninges is devastating with a median survival of only a few months. Radiation offers symptomatic relief, but new adjuvant therapies are desperately needed. Spheroidal, human induced neural stem cells (hiNeuroS) secreting the cytotoxic protein, TRAIL, have innate tumoritropic properties. Herein, we provide evidence that hiNeuroS-TRAIL cells can migrate to and suppress growth of NSCLC metastases in combination with radiation. In vitro cell tracking and post-mortem tissue analysis showed that hiNeuroS-TRAIL cells migrate to NSCLC tumors. Importantly, isobolographic analysis suggests that TRAIL with radiation has a synergistic cytotoxic effect on NSCLC tumors. In vivo, mice treated with radiation and hiNeuroS-TRAIL showed significant (36.6%) improvements in median survival compared to controls. Finally, bulk mRNA sequencing analysis showed both NSCLC and hiNeuroS-TRAIL cells showed changes in genes involved in migration following radiation. Overall, hiNeuroS-TRAIL cells +/- radiation have the capacity to treat NSCLC metastases.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew Buckley
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wulin Jiang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Morrent Thang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Noah Bell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rashmi J Kumar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jie Luo
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
17
|
Characterization and clinical relevance of PDGFRA pathway copy number variation gains across human cancers. Mol Genet Genomics 2022; 297:561-571. [PMID: 35212838 PMCID: PMC8960564 DOI: 10.1007/s00438-022-01860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/22/2022] [Indexed: 12/04/2022]
Abstract
We investigated the copy number variation (CNV) of PDGFRA pathway across all common cancer types as well as its clinical relevance. This study included a total of 10,678 patients with pan-cancerous species involving 33 types of cancers and patient information was obtained from The Cancer Genome Atlas. According to the PDGFRA pathway CNV, all samples were divided into copy number gain (CN gain) group and No CN gain group. The analysis of loss of heterozygosity (LOH) fraction, CNV burden, tumor mutation burden (TMB), and the number of immunogenic mutations were performed, as well as the correlation analysis of PDGFRA pathway CN gain with tumor-related signaling pathways and tumor-infiltrating immune cell subpopulations. The results showed that CN gain of PDGFRA pathway in the cancer patients was associated with significantly shorter overall survival. The CN gain of PDGFRA pathway was identified as a prognostic risk factor for some tumors. CN gain was accompanied by an altered percentage of LOH, CNV burden, TMB, the number of immunogenic mutations were increased and tumor-infiltrating immune cell subpopulations were less. While certain tumor-related signaling pathways, such as hypoxia, cell cycle, DNA repair, and epithelial-mesenchymal transition were more enriched in the CN gain group, quiescence, and inflammation pathways were more enriched in the No CN gain group. In conclusion, PDGFRA pathway CNV gain may be a poor prognostic factor in cancer patients.
Collapse
|
18
|
Zhang L, Zhu Y, Wei X, Chen X, Li Y, Zhu Y, Xia J, Huang Y, Huang Y, Wang J, Pang Z. Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model. Acta Pharm Sin B 2022; 12:3427-3447. [PMID: 35967283 PMCID: PMC9366539 DOI: 10.1016/j.apsb.2022.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.
Collapse
Affiliation(s)
- Longlong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiheng Huang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China
- Corresponding authors.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
19
|
Yoon C, Lu J, Ryeom SW, Simon MC, Yoon SS. PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death Dis 2021; 12:749. [PMID: 34321458 PMCID: PMC8319167 DOI: 10.1038/s41419-021-04036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
To identify drivers of sarcoma cancer stem-like cells (CSCs), we compared gene expression using RNA sequencing between HT1080 fibrosarcoma and SK-LMS-1 leiomyosarcoma spheroids (which are enriched for CSCs) compared with the parent populations. The most overexpressed survival signaling-related gene in spheroids was phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of PI3K, which functions in tumorigenesis and metastasis. In a human sarcoma microarray, PIK3R3 was also overexpressed by 4.1-fold compared with normal tissues. PIK3R3 inhibition using shRNA in the HT1080, SK-LMS-1, and DDLS8817 dedifferentiated liposarcoma in spheroids and in CD133+ cells (a CSC marker) reduced expression of CD133 and the stem cell factor Nanog and blocked spheroid formation by 61-71%. Mechanistic studies showed that in spheroid cells, PIK3R3 activated AKT and ERK signaling. Inhibition of PIK3R3, AKT, or ERK using shRNA or inhibitors decreased expression of Nanog, spheroid formation by 68-73%, and anchorage-independent growth by 76-91%. PIK3R3 or ERK1/2 inhibition similarly blocked sarcoma spheroid cell migration, invasion, secretion of MMP-2, xenograft invasion into adjacent normal tissue, and chemotherapy resistance. Together, these results show that signaling through the PIK3R3/ERK/Nanog axis promotes sarcoma CSC phenotypes such as migration, invasion, and chemotherapy resistance, and identify PIK3R3 as a potential therapeutic target in sarcoma.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Sznurkowska MK, Aceto N. The gate to metastasis: key players in cancer cell intravasation. FEBS J 2021; 289:4336-4354. [PMID: 34077633 PMCID: PMC9546053 DOI: 10.1111/febs.16046] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Metastasis is a leading cause of cancer‐related death and consists of a sequence of events including tumor expansion, intravasation of cancer cells into the circulation, survival in the bloodstream, extravasation at distant sites, and subsequent organ colonization. Particularly, intravasation is a process whereby cancer cells transverse the endothelium and leave the primary tumor site, pioneering the metastatic cascade. The identification of those mechanisms that trigger the entry of cancer cells into the bloodstream may reveal fundamentally novel ways to block metastasis at its start. Multiple factors have been implicated in cancer progression, yet, signals that unequivocally provoke the detachment of cancer cells from the primary tumor are still under investigation. Here, we discuss the role of intrinsic properties of cancer cells, tumor microenvironment, and mechanical cues in the intravasation process, outlining studies that suggest the involvement of various factors and highlighting current understanding and open questions in the field.
Collapse
Affiliation(s)
- Magdalena K Sznurkowska
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland.,Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| |
Collapse
|
21
|
Tuy K, Rickenbacker L, Hjelmeland AB. Reactive oxygen species produced by altered tumor metabolism impacts cancer stem cell maintenance. Redox Biol 2021; 44:101953. [PMID: 34052208 PMCID: PMC8212140 DOI: 10.1016/j.redox.2021.101953] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Controlling reactive oxygen species (ROS) at sustainable levels can drive multiple facets of tumor biology, including within the cancer stem cell (CSC) population. Tight regulation of ROS is one key component in CSCs that drives disease recurrence, cell signaling, and therapeutic resistance. While ROS are well-appreciated to need oxygen and are a product of oxidative phosphorylation, there are also important roles for ROS under hypoxia. As hypoxia promotes and sustains major stemness pathways, further consideration of ROS impacts on CSCs in the tumor microenvironment is important. Furthermore, glycolytic shifts that occur in cancer and may be promoted by hypoxia are associated with multiple mechanisms to mitigate oxidative stress. This altered metabolism provides survival advantages that sustain malignant features, such as proliferation and self-renewal, while producing the necessary antioxidants that reduce damage from oxidative stress. Finally, disease recurrence is believed to be attributed to therapy resistant CSCs which can be quiescent and have changes in redox status. Effective DNA damage response pathways and/or a slow-cycling state can protect CSCs from the genomic catastrophe induced by irradiation and genotoxic agents. This review will explore the delicate, yet complex, relationship between ROS and its pleiotropic role in modulating the CSC.
Collapse
Affiliation(s)
- Kaysaw Tuy
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Rickenbacker
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
22
|
Sun T, Bi F, Liu Z, Yang Q. TMEM119 facilitates ovarian cancer cell proliferation, invasion, and migration via the PDGFRB/PI3K/AKT signaling pathway. J Transl Med 2021; 19:111. [PMID: 33731124 PMCID: PMC7968362 DOI: 10.1186/s12967-021-02781-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/08/2021] [Indexed: 12/28/2022] Open
Abstract
Background Ovarian cancer (OV) is the deadliest gynecological cancer. Transmembrane protein 119 (TMEM119) has been reported as oncogene in several human cancers. However, the function of TMEM119 in OV is still poorly known. Methods Western blot and qRT-PCR were used to analyze TMEM119 levels. Transwell assays, wound healing assays, CCK-8 assays and EdU cell proliferation assays were designed to explore the function and potential mechanism of TMEM119 in malignant biological behaviors in OV. Results TMEM119 was observed to be overexpressed in OV tissues and associated with poor survival in OV patients. Knockdown and overexpression experiments demonstrated that TMEM119 promoted proliferation, invasion, and migration in OV cells in vitro. TMEM119 mRNA expression was related to the pathways of focal adhesion according to Gene Set Enrichment Analyses and was correlated with the mRNA expression level of platelet-derived growth factor receptor beta (PDGFRB). TMEM119 exerted oncogenic effects partially by regulating the expression of PDGFRB and by activating the PI3K/AKT signaling pathway. Conclusions Collectively, our findings highlight the potential role of TMEM119 in the malignant biological behavior of OV, which may serve as a potential biomarker and a therapeutic candidate for OV. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02781-x.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
23
|
Yoon C, Lu J, Yi BC, Chang KK, Simon MC, Ryeom S, Yoon SS. PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. Oncogenesis 2021; 10:12. [PMID: 33468992 PMCID: PMC7815726 DOI: 10.1038/s41389-020-00300-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
The self-renewal transcription factor Nanog and the phosphoinositide 3-kinase (PI3K)-Akt pathway are known to be essential for maintenance of mesenchymal stem cells. We evaluated their contribution to the maintenance of CD133(+) cancer stem-like cells (CSCs) and spheroid-forming cells in patient-derived cell lines from three human sarcoma subtypes: HT1080 fibrosarcoma, SK-LMS-1 leiomyosarcoma, and DDLS8817 dedifferentiated liposarcoma. Levels of Nanog and activated Akt were significantly higher in sarcoma cells grown as spheroids or sorted for CD133 expression to enrich for CSCs. shRNA knockdown of Nanog decreased spheroid formation 10- to 14-fold, and reversed resistance to both doxorubicin and radiation in vitro and in H1080 flank xenografts. In the HT1080 xenograft model, doxorubicin and Nanog knockdown reduced tumor growth by 34% and 45%, respectively, and the combination reduced tumor growth by 74%. Using a human phospho-kinase antibody array, Akt1/2 signaling, known to regulate Nanog, was found to be highly activated in sarcoma spheroid cells compared with monolayer cells. Pharmacologic inhibition of Akt using LY294002 and Akt1/2 knockdown using shRNA in sarcoma CSCs decreased Nanog expression and spheroid formation and reversed chemotherapy resistance. Akt1/2 inhibition combined with doxorubicin treatment of HT1080 flank xenografts reduced tumor growth by 73%. Finally, in a human sarcoma tumor microarray, expression of CD133, Nanog, and phospho-Akt were 1.8- to 6.8-fold higher in tumor tissue compared with normal tissue. Together, these results indicate that the Akt1/2-Nanog pathway is critical for maintenance of sarcoma CSCs and spheroid-forming cells, supporting further exploration of this pathway as a therapeutic target in sarcoma.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Brendan C Yi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin K Chang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Kwon D, Ronen S, Giubellino A, Keiser E, Aung PP, Nagarajan P, Tetzlaff MT, Ivan D, Curry JL, Prieto VG, Torres-Cabala CA. Cutaneous adnexal carcinosarcoma: Immunohistochemical and molecular evidence of epithelial mesenchymal transition. J Cutan Pathol 2020; 48:526-534. [PMID: 32564423 DOI: 10.1111/cup.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
Cutaneous carcinosarcomas are rare biphenotypic tumors that simultaneously show epithelial and mesenchymal differentiation. The most common carcinomatous components in skin carcinosarcomas are basal cell carcinoma and squamous cell carcinoma; adnexal carcinomas are rarely encountered. We report a case of an adnexal carcinoma with ductal and squamous differentiation and spindle cell component, which is interpreted as carcinosarcoma. Loss of immunohistochemical expression of E-cadherin and β-catenin detected in the sarcomatous component suggested epithelial mesenchymal transition (EMT). RNA sequencing analysis identified several gene mutations and alterations such as translocations and upregulations/downregulations, either shared by the two components of the tumor or differentially present in the carcinoma or the sarcoma parts. Thus, mutations in genes, such as TP53, were found in both components of the tumor while mutations in PDGFRA and RB1 (a pathogenic missense mutation) were exclusively present in the sarcomatous areas, further supporting EMT. EMT is a dynamic process by which tumors acquire mesenchymal phenotype while simultaneously losing epithelial properties. Although the pathways involved in EMT have been extensively studied, this phenomenon still needs to be investigated in cutaneous tumors of adnexal origin for a better understanding of their pathogenesis. These molecular changes may represent promising targets for personalized therapies.
Collapse
Affiliation(s)
- DongHyang Kwon
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shira Ronen
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minnesota, USA
| | - Elizabeth Keiser
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Doina Ivan
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Raghavan S, Snyder CS, Wang A, McLean K, Zamarin D, Buckanovich RJ, Mehta G. Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem Cells via PDGF Signaling. Cancers (Basel) 2020; 12:cancers12082063. [PMID: 32726910 PMCID: PMC7464970 DOI: 10.3390/cancers12082063] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC. We hypothesized that PDGF secretion by CA-MSC increases self-renewal, migration, epithelial to mesenchymal transition (EMT) and chemoresistance in ovarian CSC. Our results indicate that PDGF signaling in the CSC-MSC heterospheroids significantly increased stemness, metastatic potential and chemoresistance of CSC. Knockdown of PDGFB in MSC resulted in abrogation of these phenotypes in the heterospheroids. Our studies also reveal a cross-talk between PDGF and Hedgehog signaling in ovarian cancer. Overall, our data suggest that when the stromal signaling via PDGF to ovarian CSC is blocked in addition to chemotherapy pressure, the tumor cells are significantly more sensitive to chemotherapy. Our results emphasize the importance of disrupting the signals from the microenvironment to the tumor cells, in order to improve response rates. These findings may lead to the development of combination therapies targeting stromal signaling (such as PDGF and Hedgehog) that can abrogate the tumorigenic, metastatic and platinum resistant phenotypes of ovarian CSC through additional investigations.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Anni Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Karen McLean
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitriy Zamarin
- Department of Gynecologic Medical Oncology and Immunotherapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ronald J. Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Precision Health, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-763-3957; Fax: +1-734-763-4788
| |
Collapse
|
26
|
Micati DJ, Radhakrishnan K, Young JC, Rajpert‐De Meyts E, Hime GR, Abud HE, Loveland KL. ‘Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway’. Andrology 2020; 8:1456-1470. [DOI: 10.1111/andr.12823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Diana J. Micati
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Karthika Radhakrishnan
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Julia C. Young
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Ewa Rajpert‐De Meyts
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Gary R. Hime
- Department of Anatomy and Neuroscience University of Melbourne Melbourne Victoria Australia
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Stem Cells and Development Program Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Kate L. Loveland
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| |
Collapse
|
27
|
Cancer Stem Cells in Soft-Tissue Sarcomas. Cells 2020; 9:cells9061449. [PMID: 32532153 PMCID: PMC7349510 DOI: 10.3390/cells9061449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcomas (STS) are a rare group of mesenchymal solid tumors with heterogeneous genetic profiles and clinical features. Systemic chemotherapy is the backbone treatment for advanced STS; however, STS frequently acquire resistance to standard therapies, which highlights the need to improve treatments and identify novel therapeutic targets. Increases in the knowledge of the molecular pathways that drive sarcomas have brought to light different molecular alterations that cause tumor initiation and progression. These findings have triggered a breakthrough of targeted therapies that are being assessed in clinical trials. Cancer stem cells (CSCs) exhibit mesenchymal stem cell (MSC) features and represent a subpopulation of tumor cells that play an important role in tumor progression, chemotherapy resistance, recurrence and metastasis. In fact, CSCs phenotypes have been identified in sarcomas, allied to drug resistance and tumorigenesis. Herein, we will review the published evidence of CSCs in STS, discussing the molecular characteristic of CSCs, the commonly used isolation techniques and the new possibilities of targeting CSCs as a way to improve STS treatment and consequently patient outcome.
Collapse
|
28
|
Liu Z, Deng M, Wu L, Zhang S. An integrative investigation on significant mutations and their down-stream pathways in lung squamous cell carcinoma reveals CUL3/KEAP1/NRF2 relevant subtypes. Mol Med 2020; 26:48. [PMID: 32434476 PMCID: PMC7240936 DOI: 10.1186/s10020-020-00166-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/16/2020] [Indexed: 01/10/2023] Open
Abstract
Background Molecular mechanism of lung squamous cell carcinoma (LUSC) remains poorly understood, hampering effective targeted therapies or precision diagnosis about LUSC. We devised an integrative framework to investigate on the molecular patterns of LUSC by systematically mining the genomic, transcriptional and clinical information. Methods We utilized the genomics and transcriptomics data for the LUSC cohorts in The Cancer Genome Atlas.. Both kinds of omics data for 33 types of cancers were downloaded from The NCI’s Genomic Data Commons (GDC) (https://gdc.cancer.gov/about-data/publications/pancanatlas). The genomics data were processed in mutation annotation format (maf), and the transcriptomics data were determined by RNA-seq method. Mutation significance was estimated by MutSigCV. Prognosis analysis was based on the cox proportional hazards regression (Coxph) model. Results Significant somatic mutated genes (SMGs) like NFE2L2, RASA1 and COL11A1 and their potential down-stream pathways were recognized. Furthermore, two LUSC-specific and prognosis-meaningful subtypes were identified. Interestingly, the good prognosis subtype was enriched with mutations in CUL3/KEAP1/NRF2 pathway and with markedly suppressed expressions of multiple down-stream pathways like epithelial mesenchymal transition. The subtypes were verified by the other two cohorts. Additionally, primarily regulated down-stream elements of different SMGs were also estimated. NFE2L2, KEAP1 and RASA1 mutations showed remarkable effects on the subtype-determinant gene expressions, especially for the inflammatory relevant genes. Conclusions This study supplies valuable references on potential down-stream processes of SMGs and an alternative way to classify LUSC.
Collapse
Affiliation(s)
- Zongang Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District Shenyang, Liaoning, 110004, People's Republic of China
| | - Meiyan Deng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District Shenyang, Liaoning, 110004, People's Republic of China
| | - Lin Wu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District Shenyang, Liaoning, 110004, People's Republic of China.
| | - Suning Zhang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District Shenyang, Liaoning, 110004, People's Republic of China
| |
Collapse
|
29
|
The Tumor Microenvironment of Pediatric Sarcoma: Mesenchymal Mechanisms Regulating Cell Migration and Metastasis. Curr Oncol Rep 2019; 21:90. [PMID: 31418125 PMCID: PMC6695368 DOI: 10.1007/s11912-019-0839-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents a selection of regulatory molecules of tumor microenvironmental properties and metastasis. Signaling pathways controlling mesenchymal biology in bone and soft-tissue sarcomas found in children and adolescents are prioritized. RECENT FINDINGS The tumor microenvironment of pediatric tumors is still relatively unexplored. Highlighted findings are mainly on deregulated genes associated with cell adhesion, migration, and tumor cell dissemination. How these processes are involved in a mesenchymal phenotype and metastasis is further discussed in relation to the epithelial to mesenchymal transition (EMT) in epithelial tumors. Cell plasticity is emerging as a concept with impact on tumor behavior. Sarcomas belong to a heterogeneous group of tumors where local recurrence and tumor spread pose major challenges despite intense multimodal treatments. Molecular pathways involved in the metastatic process are currently being characterized, and tumor-regulatory properties of structural components, and infiltrating, non-malignant cell types should be further investigated.
Collapse
|
30
|
Badrinath N, Yoo SY. Recent Advances in Cancer Stem Cell-Targeted Immunotherapy. Cancers (Basel) 2019; 11:cancers11030310. [PMID: 30841635 PMCID: PMC6468501 DOI: 10.3390/cancers11030310] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are one of the reasons for the relapse of cancer cells and metastasis. They have drug resistance against most chemotherapeutic agents. CSCs are also responsible for tumor cell heterogeneity and cause minimal residual disease. In order to achieve complete regression of tumors, CSCs have to be targeted. Recent advances in immunotherapies have shown promising outcomes in curing cancer, which are also applicable to target CSCs. CSCs express immune markers and exhibit specific immune characteristics in various cancers, which can be used in immunotherapies to target CSCs in the tumor microenvironment. Recently, various strategies have been used to target CSCs. Adaptive T-cells, dendritic cell (DC)-based vaccines, oncolytic viruses, immune checkpoint inhibitors, and combination therapies are now being used to target CSCs. Here, we discuss the feasibility of these immunological approaches and the recent trends in immunotherapies to target CSCs.
Collapse
Affiliation(s)
- Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| | - So Young Yoo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea.
| |
Collapse
|