1
|
Grigoriev V, Korzun T, Moses AS, Jozic A, Zhu X, Kim J, Newton S, Eygeris Y, Diba P, Sattler AL, Levasseur PR, Olson B, Le N, Singh P, Sharma KS, Goo YT, Mamnoon B, Raitmayr C, Mesquita Souza AP, Taratula OR, Sahay G, Marks DL, Taratula O. Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles. ACS NANO 2024; 18:33330-33347. [PMID: 39569532 DOI: 10.1021/acsnano.4c06930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Metastatic progression significantly reduces survival rates and complicates treatment strategies in various cancers. Our study introduces an mRNA therapy for metastasis inhibition by targeting activin A overexpression, a pivotal driver of metastasis and cachexia. Utilizing follistatin mRNA lipid nanoparticles, we effectively downregulated activin A both locally in the tumor environment and systemically. This led to a reduction in tumor burden and suppression of metastatic spread in a murine head and neck squamous cell carcinoma model. Treated mice exhibited minimal metastatic occurrence compared to controls. Additionally, our therapy preserved the cross-sectional area of muscle fibers and adipose tissues, combating the muscle and fat wasting typically observed in cancer-associated cachexia. The therapy also demonstrated a favorable safety profile, underscoring its potential for clinical translation. By integrating metastasis-suppressing and cachexia-alleviating mechanisms, our approach represents a promising advancement in comprehensive cancer management. Considering the widespread upregulation of activin A in many cancer types, our therapy holds considerable potential for application across a broad spectrum of oncologic treatments.
Collapse
Affiliation(s)
- Vladislav Grigoriev
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Avenue, Portland, Oregon 97239, United States
- Medical Scientist Training Program, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Samuel Newton
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Ariana L Sattler
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 2720 S Moody Ave, Portland, Oregon 97201, United States
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Brennan Olson
- Medical Scientist Training Program, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Ngoc Le
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Kongbrailatpam Shitaljit Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Yoon Tae Goo
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Babak Mamnoon
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Constanze Raitmayr
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Ana Paula Mesquita Souza
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
| | - Daniel L Marks
- Endevica Bio, 1935 Techny Road, Northbrook, Illinois 60062, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Avenue, Portland, Oregon 97239, United States
| |
Collapse
|
2
|
Flach S, Maniam P, Hey SY, Manickavasagam J. The molecular characteristics of recurrent/metastatic HPV-positive head and neck squamous cell carcinoma: A systematic review of the literature. Clin Otolaryngol 2024; 49:384-403. [PMID: 38658385 DOI: 10.1111/coa.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES About 17% of patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC), which is mainly comprised of oropharyngeal SCC (OPSCC), will experience disease recurrence, which is often considered incurable when manifested at a metastatic and/or recurrent stage. We conducted a critical qualitative systematic review. Our objectives were to provide an overview of the molecular landscape of recurrent/metastatic HPV-positive HNSCC as well as novel molecular biomarkers. DESIGN A literature review was conducted to identify studies reporting on the molecular characteristics of recurrent/metastatic HPV-positive HNSCC, novel molecular biomarkers and treatment options. The reviews of abstracts, full articles, and revision of the included studies, followed by data extraction and quality assessment were performed by three independent assessors. All primary literature, such as retrospective, prospective, and clinical trials as well as basic research studies were considered, and the final search was conducted at the end of February 2023. The level of evidence was rated using the guidelines published by the Oxford Centre for Evidence-based Medicine and quality was assessed using the Newcastle-Ottawa Scale criteria. RESULTS AND CONCLUSIONS The literature search resulted in the identification of 1991 articles. A total of 181 full articles were screened, and 66 articles were included in this analysis. Several studies reported that recurrent/metastatic HPV-positive HNSCC had higher rates of TP53 mutation and were genomically similar to HPV-negative HNSCC. The detection of circulating tumour tissue-modified HPV DNA (ctHPVDNA) as a specific biomarker has shown promising results for monitoring treatment response and recurrence in the subset of HPV-positive HNSCC. In addition, evidence for targeted therapy in recurrent/metastatic HPV-positive HNSCC has emerged, including agents that inhibit overexpressed EGFR. Studies of combination immunotherapy are also underway. Our review outlines the latest evidence on the distinct molecular profiles of recurrent/metastatic HPV-positive HNSCC as well as the clinical potential of ctHPVDNA testing in routine practice. More controlled and longitudinal studies are needed to identify additional molecular targets and to assess the performance and benefits of novel molecular biomarkers in clinical practice.
Collapse
Affiliation(s)
- Susanne Flach
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU Klinikum, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Pavithran Maniam
- Department of Otolaryngology, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Shi Ying Hey
- Department of Otolaryngology & Head and Neck Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jaiganesh Manickavasagam
- Department of Otorhinolaryngology and Head & Neck Surgery and Tayside Medical Sciences Centre, Ninewells Hospital, Dundee, UK
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| |
Collapse
|
3
|
Wu KLH, Wu CW, Chen LW, Chang HH, Cheng CL, Wu CY, Lee YC, Chen IC, Hung CY, Liu WC. Dysregulation of mitochondrial dynamics mediated aortic perivascular adipose tissue-associated vascular reactivity impairment under excessive fructose intake. Nutr Metab (Lond) 2024; 21:4. [PMID: 38167066 PMCID: PMC10763079 DOI: 10.1186/s12986-023-00776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Excessive fructose intake presents the major risk factor for metabolic cardiovascular disease. Perivascular adipose tissue (PVAT) is a metabolic tissue and possesses a paracrine function in regulating aortic reactivity. However, whether and how PVAT alters vascular function under fructose overconsumption remains largely unknown. In this study, male Sprague-Dawley rats (8 weeks old) were fed a 60% high fructose diet (HFD) for 12 weeks. Fasting blood sugar, insulin, and triglycerides were significantly increased by HFD intake. Plasma adiponectin was significantly enhanced in the HFD group. The expression of uncoupling protein 1 (UCP1) and mitochondrial mass were reduced in the aortic PVAT of the HFD group. Concurrently, the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM) were suppressed. Furthermore, decreased fusion proteins (OPA1, MFN1, and MFN2) were accompanied by increased fission proteins (FIS1 and phospho-DRP1). Notably, the upregulated α-smooth muscle actin (α-SMA) and osteocalcin in the PVAT were concurrent with the impaired reactivity of aortic contraction and relaxation. Coenzyme Q10 (Q, 10 mg/100 mL, 4 weeks) effectively reversed the aforementioned events induced by HFD. Together, these results suggested that the dysregulation of mitochondrial dynamics mediated HFD-triggered PVAT whitening to impair aortic reactivity. Fortunately, coenzyme Q10 treatment reversed HFD-induced PVAT whitening and aortic reactivity.
Collapse
Affiliation(s)
- Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan, ROC
| | - Chih-Wei Wu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Department of Counseling, National ChiaYi University, Chiayi, Taiwan, ROC
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Institute of Emergency and Critical Care Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC
| | - Hsiao-Huang Chang
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ching-Li Cheng
- Department of Nursing, National Tainan Institute of Nursing, Tainan, Taiwan, ROC
| | - Cai-Yi Wu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Yu-Chi Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Wen-Chung Liu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC.
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
4
|
Chen B, Wang Y, Wu Y, Xu T. Effect of HPV Oncoprotein on Carbohydrate and Lipid Metabolism in Tumor Cells. Curr Cancer Drug Targets 2024; 24:987-1004. [PMID: 38284713 DOI: 10.2174/0115680096266981231215111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
High-risk HPV infection accounts for 99.7% of cervical cancer, over 90% of anal cancer, 50% of head and neck cancers, 40% of vulvar cancer, and some cases of vaginal and penile cancer, contributing to approximately 5% of cancers worldwide. The development of cancer is a complex, multi-step process characterized by dysregulation of signaling pathways and alterations in metabolic pathways. Extensive research has demonstrated that metabolic reprogramming plays a key role in the progression of various cancers, such as cervical, head and neck, bladder, and prostate cancers, providing the material and energy foundation for rapid proliferation and migration of cancer cells. Metabolic reprogramming of tumor cells allows for the rapid generation of ATP, aiding in meeting the high energy demands of HPV-related cancer cell proliferation. The interaction between Human Papillomavirus (HPV) and its associated cancers has become a recent focus of investigation. The impact of HPV on cellular metabolism has emerged as an emerging research topic. A significant body of research has shown that HPV influences relevant metabolic signaling pathways, leading to cellular metabolic alterations. Exploring the underlying mechanisms may facilitate the discovery of biomarkers for diagnosis and treatment of HPV-associated diseases. In this review, we introduced the molecular structure of HPV and its replication process, discussed the diseases associated with HPV infection, described the energy metabolism of normal cells, highlighted the metabolic features of tumor cells, and provided an overview of recent advances in potential therapeutic targets that act on cellular metabolism. We discussed the potential mechanisms underlying these changes. This article aims to elucidate the role of Human Papillomavirus (HPV) in reshaping cellular metabolism and the application of metabolic changes in the research of related diseases. Targeting cancer metabolism may serve as an effective strategy to support traditional cancer treatments, as metabolic reprogramming is crucial for malignant transformation in cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- The Second Hospital of Jilin University, Changchun, China
| | - Yishi Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Sannigrahi MK, Rajagopalan P, Lai L, Liu X, Sahu V, Nakagawa H, Jalaly JB, Brody RM, Morgan IM, Windle BE, Wang X, Gimotty PA, Kelly DP, White EA, Basu D. HPV E6 regulates therapy responses in oropharyngeal cancer by repressing the PGC-1α/ERRα axis. JCI Insight 2022; 7:159600. [PMID: 36134662 PMCID: PMC9675449 DOI: 10.1172/jci.insight.159600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023] Open
Abstract
Therapy with radiation plus cisplatin kills HPV+ oropharyngeal squamous cell carcinomas (OPSCCs) by increasing reactive oxygen species beyond cellular antioxidant capacity. To explore why these standard treatments fail for some patients, we evaluated whether the variation in HPV oncoprotein levels among HPV+ OPSCCs affects mitochondrial metabolism, a source of antioxidant capacity. In cell line and patient-derived xenograft models, levels of HPV full-length E6 (fl-E6) inversely correlated with oxidative phosphorylation, antioxidant capacity, and therapy resistance, and fl-E6 was the only HPV oncoprotein to display such correlations. Ectopically expressing fl-E6 in models with low baseline levels reduced mitochondrial mass, depleted antioxidant capacity, and sensitized to therapy. In this setting, fl-E6 repressed the peroxisome proliferator-activated receptor gamma co-activator 1α/estrogen-related receptor α (PGC-1α/ERRα) pathway for mitochondrial biogenesis by reducing p53-dependent PGC-1α transcription. Concordant observations were made in 3 clinical cohorts, where expression of mitochondrial components was higher in tumors of patients with reduced survival. These tumors contained the lowest fl-E6 levels, the highest p53 target gene expression, and an activated PGC-1α/ERRα pathway. Our findings demonstrate that E6 can potentiate treatment responses by depleting mitochondrial antioxidant capacity and provide evidence for low E6 negatively affecting patient survival. E6's interaction with the PGC-1α/ERRα axis has implications for predicting and targeting treatment resistance in OPSCC.
Collapse
Affiliation(s)
| | | | - Ling Lai
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Varun Sahu
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Hiroshi Nakagawa
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Jalal B. Jalaly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert M. Brody
- Department of Otorhinolaryngology — Head and Neck Surgery and
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bradford E. Windle
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P. Kelly
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Devraj Basu
- Department of Otorhinolaryngology — Head and Neck Surgery and
| |
Collapse
|
6
|
Chang A, Sloan EK, Antoni MH, Knight JM, Telles R, Lutgendorf SK. Biobehavioral Pathways and Cancer Progression: Insights for Improving Well-Being and Cancer Outcomes. Integr Cancer Ther 2022; 21:15347354221096081. [PMID: 35579197 PMCID: PMC9118395 DOI: 10.1177/15347354221096081] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
The relationship between psychosocial factors and cancer has intrigued people for centuries. In the last several decades there has been an expansion of mechanistic research that has revealed insights regarding how stress activates neuroendocrine stress-response systems to impact cancer progression. Here, we review emerging mechanistic findings on key pathways implicated in the effect of stress on cancer progression, including the cellular immune response, inflammation, angiogenesis, and metastasis, with a primary focus on the mediating role of the sympathetic nervous system. We discuss converging findings from preclinical and clinical cancer research that describe these pathways and research that reveals how these stress pathways may be targeted via pharmacological and mind-body based interventions. While further research is required, the body of work reviewed here highlights the need for and feasibility of an integrated approach to target stress pathways in cancer patients to achieve comprehensive cancer treatment.
Collapse
Affiliation(s)
- Aeson Chang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
| | - Erica K. Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Peter MacCallum Cancer Centre, Division of Surgery, Melbourne, VIC, Australia
| | - Michael H. Antoni
- Departments of Psychology, Psychiatry, and Behavioral Sciences, and Cancer Control Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jennifer M. Knight
- Department of Psychiatry and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rachel Telles
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Susan K. Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Vincent-Chong VK, Seshadri M. Adrenergic-Angiogenic Crosstalk in Head and Neck Cancer: Mechanisms and Therapeutic Implications. FRONTIERS IN ORAL HEALTH 2021; 2. [PMID: 34790909 PMCID: PMC8594278 DOI: 10.3389/froh.2021.689482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are loco-regionally aggressive tumors that often lead to debilitating changes in appearance, speech, swallowing and respiratory function in patients. It is therefore critical to develop novel targeted treatment strategies that can effectively target multiple components within the tumor microenvironment. In this regard, there has been an increased recognition of the role of neural signaling networks as mediators of disease progression in HNSCC. Here, we summarize the current knowledge on the mechanisms of adrenergic signaling in HNSCC specifically focusing on neurovascular crosstalk and the potential of targeting the adrenergic-angiogenic axis through repurposing of FDA-approved drugs against HNSCC.
Collapse
Affiliation(s)
| | - Mukund Seshadri
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Dentistry and Maxillofacial Prosthetics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
8
|
Lopes-Santos G, Bernabé DG, Miyahara GI, Tjioe KC. Beta-adrenergic pathway activation enhances aggressiveness and inhibits stemness in head and neck cancer. Transl Oncol 2021; 14:101117. [PMID: 33993095 PMCID: PMC8236611 DOI: 10.1016/j.tranon.2021.101117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic stress leads to the activation of the beta-adrenergic pathway. Its activation has been implicated in the progression of different types of cancer but its role on head and neck squamous cell carcinomas (HNSCCs) remains undefined. The aim of this study was to investigate the influence of the beta-adrenergic pathway activation in the progression of HNSCCs and offer a panel of potential treatments for patients with the active beta-adrenergic pathway. Five hundred and twenty TCGA patients with primary HNSCCs were divided in two groups: ADRB2low / SLC6A2low and ADRB2high / SLC6A2high. Differentially expressed genes (DEGs) were identified through differential expression analysis. The association of clinicopathological and genomic features between the groups was analyzed using a bioinformatic approach. Potential drugs for treatment of HNSCC were identified based on the DEGs. There was association between ADRB2 and SLC6A2 expressions with age, race, tumor site, histologic grade, perineural invasion, and HPV p16 status. It was identified 898 DEGs between the groups. High ADRB2/SLC6A2 expression stimulated HNSCC proliferation, adhesion, invasion, and angiogenesis. On the other hand, genes related to cell stemness were downregulated in patients with activation of the beta- adrenergic pathway. Finally, 56 FDA-approved antineoplastic and immunotherapeutic drugs were identified as potential targets for the personalized treatment.
Collapse
Affiliation(s)
- Gabriela Lopes-Santos
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 16015-050, Araçatuba, São Paulo, Brazil.
| | - Daniel Galera Bernabé
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 16015-050, Araçatuba, São Paulo, Brazil; Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St, SP 15050-015, Araçatuba, São Paulo, Brazil.
| | - Glauco Issamu Miyahara
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 16015-050, Araçatuba, São Paulo, Brazil; Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St, SP 15050-015, Araçatuba, São Paulo, Brazil.
| | - Kellen Cristine Tjioe
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 16015-050, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
9
|
Interactive regulation of laryngeal cancer and neuroscience. Biochim Biophys Acta Rev Cancer 2021; 1876:188580. [PMID: 34129916 DOI: 10.1016/j.bbcan.2021.188580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/11/2023]
Abstract
Nerve fibres are distributed throughout the body along with blood and lymphatic vessels. The intrinsic morphological characteristics of nerves and the general characteristics of secretions in the tumour microenvironment provide a solid theoretical basis for exploring how neuronal tissue can influence the progression of laryngeal cancer (LC). The central nervous system (CNS) and the peripheral nervous system (PNS) jointly control many aspects of cancer and have attracted widespread attention in the study of the progression, invasion and metastasis of tumour tissue banks. Stress activates the neuroendocrine response of the human hypothalamus-pituitary-adrenal (HPA) axis. LC cells induce nerve growth in the microenvironment by releasing neurotrophic factors (NTFs), and they can also stimulate neurite formation by secreting axons and axon guides. Conversely, nerve endings secrete factors that attract LC cells; this is known as perineural invasion (PNI) and promotes the progression of the associated cancer. In this paper, we summarize the systematic understanding of the role of neuroregulation in the LC tumour microenvironment (TME) and ways in which the TME accelerates nerve growth, which is closely related to the occurrence of LC.
Collapse
|
10
|
Mravec B. Neurobiology of Cancer: Introduction of New Drugs in the Treatment and Prevention of Cancer. Int J Mol Sci 2021; 22:6115. [PMID: 34204103 PMCID: PMC8201304 DOI: 10.3390/ijms22116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Research on the neurobiology of cancer, which lies at the border of neuroscience and oncology, has elucidated the mechanisms and pathways that enable the nervous system to modulate processes associated with cancer initiation and progression. This research has also shown that several drugs which modulate interactions between the nervous system and the tumor micro- and macroenvironments significantly reduced the progression of cancer in animal models. Encouraging results were also provided by prospective clinical trials investigating the effect of drugs that reduce adrenergic signaling on the course of cancer in oncological patients. Moreover, it has been shown that reducing adrenergic signaling might also reduce the incidence of cancer in animal models, as well as in humans. However, even if many experimental and clinical findings have confirmed the preventive and therapeutic potential of drugs that reduce the stimulatory effect of the nervous system on processes related to cancer initiation and progression, several questions remain unanswered. Therefore, the aim of this review is to critically evaluate the efficiency of these drugs and to discuss questions that need to be answered before their introduction into conventional cancer treatment and prevention.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; ; Tel.: +421-(2)-59357527; Fax: +421-(2)-59357601
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
11
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:E3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
12
|
Impairment of Hypoxia-Induced CA IX by Beta-Blocker Propranolol-Impact on Progression and Metastatic Potential of Colorectal Cancer Cells. Int J Mol Sci 2020; 21:ijms21228760. [PMID: 33228233 PMCID: PMC7699498 DOI: 10.3390/ijms21228760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
The coexistence of cancer and other concomitant diseases is very frequent and has substantial implications for treatment decisions and outcomes. Beta-blockers, agents that block the beta-adrenergic receptors, have been related also to cancers. In the model of multicellular spheroids formed by colorectal cancer cells we described a crosstalk between beta-blockade by propranolol and tumour microenvironment. Non-selective beta-blocker propranolol decreased ability of tumour cells to adapt to hypoxia by reducing levels of HIF1α and carbonic anhydrase IX in 3D spheroids. We indicated a double action of propranolol in the tumour microenvironment by inhibiting the stability of HIF1α, thus mediating decrease of CA IX expression and, at the same time, by its possible effect on CA IX activity by decreasing the activity of protein kinase A (PKA). Moreover, the inhibition of β-adrenoreceptors by propranolol enhanced apoptosis, decreased number of mitochondria and lowered the amount of proteins involved in oxidative phosphorylation (V-ATP5A, IV-COX2, III-UQCRC2, II-SDHB, I-NDUFB8). Propranolol reduced metastatic potential, viability and proliferation of colorectal cancer cells cultivated in multicellular spheroids. To choose the right treatment strategy, it is extremely important to know how the treatment of concomitant diseases affects the superior microenvironment that is directly related to the efficiency of anti-cancer therapy
Collapse
|
13
|
Chandel V, Raj S, Kumar P, Gupta S, Dhasmana A, Kesari KK, Ruokolainen J, Mehra P, Das BC, Kamal MA, Kumar D. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci 2020; 258:118236. [PMID: 32795537 DOI: 10.1016/j.lfs.2020.118236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Cancer cells exhibit distinct energy metabolic pathways due to multiple oncogenic events. In normoxia condition, the anaerobic glycolysis (Warburg effect) is highly observed in head and neck squamous cell carcinoma (HNSCC). HNSCC is associated with smoking, chewing tobacco, consumption of alcohol or Human Papillomavirus (HPV) infection primarily HPV16. In recent years, the correlation of HPV with HNSCC has significantly expanded. Despite the recent advancement in therapeutic approaches, the rate of HPV infected HNSCC has significantly increased in the last few years, specifically, in lower middle-income countries. The oncoproteins of High-risk Human Papillomavirus (HR-HPV), E6 and E7, alter the metabolic phenotype in HNSCC, which is distinct from non-HPV associated HNSCC. These oncoproteins, modulate the cell cycle and metabolic signalling through interacting with tumor suppressor proteins, p53 and pRb. Since, metabolic alteration represents a major hallmark for tumorigenesis, HPV acts as a source of biomarker linked to cancer progression in HNSCC. The dependency of cancer cells to specific nutrients and alteration of various metabolic associated genes may provide a unique opportunity for pharmacological intervention in HPV infected HNSCC. In this review, we have discussed the molecular mechanism (s) and metabolic regulation in HNSCC depending on the HPV status. We have also discussed the possible potential therapeutic approaches for HPV associated HNSCC through targeting metabolic pathways.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Sibi Raj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Prabhat Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Shilpi Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Anupam Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Doiwala, Dehradun 248016, India; Department of Immunology and Microbiology, School of Medicine, University of Rio Grande Valley, McAllen, TX, USA
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Pravesh Mehra
- Department of Oral and Maxillofacial surgery, Lady Hardinge Medical College, New Delhi, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, NSW, Australia
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India.
| |
Collapse
|
14
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Human Papillomavirus-related Cancers and Mitochondria. Virus Res 2020; 286:198016. [PMID: 32445871 DOI: 10.1016/j.virusres.2020.198016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
Although it has been established that persistent infection with high risk human papillomavirus (HR-HPV) is the main cause in the development of cervical cancer, the HR-HPV infection is also related with the cause of a significant fraction of other human malignancies from the mucosal squamous epithelial such as anus, vagina, vulva, penis and oropharynx. HR-HPV infection induces cell proliferation, cell death evasion and genomic instability resulting in cell transformation, due to HPV proteins, which target and modify the function of differents cell molecules and organelles, such as mitochondria. Mitochondria are essential in the production of the cellular energy by oxidative phosphorylation (OXPHOS), in the metabolism of nucleotides, aminoacids (aa), and fatty acids, even in the regulation of cell death processes such as apoptosis or mitophagy. Thus, mitochondria have a significant role in the HPV-related cancer development. This review focuses on the role of HPV and mitochondria in HPV-related cancer development, and treatments associated to mitochondrial apoptosis.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Faculty of Chemistry, Biology Department, Laboratories F-225, National Autonomous University of Mexico, CDMX, 04510, Mexico.
| | - Ana Karina Aranda-Rivera
- Faculty of Chemistry, Biology Department, Laboratories F-315, National Autonomous University of Mexico, CDMX, 04510, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - José Pedraza-Chaverri
- Faculty of Chemistry, Biology Department, Laboratories F-315, National Autonomous University of Mexico, CDMX, 04510, Mexico.
| |
Collapse
|
15
|
Cruz-Gregorio A, Martínez-Ramírez I, Pedraza-Chaverri J, Lizano M. Reprogramming of Energy Metabolism in Response to Radiotherapy in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11020182. [PMID: 30764513 PMCID: PMC6406552 DOI: 10.3390/cancers11020182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Head and neck cancer (HNC) is the sixth cause of cancer-related death worldwide. Head and neck squamous cells carcinoma (HNSCC) is the most frequent subtype of HNC. The development of HNSCC is associated to alcohol consumption, smoking or infection by high-risk human Papillomavirus (HR-HPV). Although the incidence of cancers associated with alcohol and tobacco has diminished, HNSCC associated with HR-HPV has significantly increased in recent years. However, HPV-positive HNSCC responds well to treatment, which includes surgery followed by radiation or chemoradiation therapy. Radiation therapy (RT) is based on ionizing radiation (IR) changing cell physiology. IR can directly interact with deoxyribonucleic acid (DNA) or produce reactive oxygen and nitrogen species (RONS), provoking DNA damage. When DNA damage is not repaired, programmed cell death (apoptosis and/or autophagy) is induced. However, cancer cells can acquire resistance to IR avoiding cell death, where reprogramming of energy metabolism has a critical role and is intimately connected with hypoxia, mitochondrial physiology, oxidative stress (OS) and autophagy. This review is focused on the reprogramming of energy metabolism in response to RT in HPV-positive and HPV-negative HNSCC, showing their differences in cellular metabolism management and the probable direction of treatments for each subtype of HNSCC.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, San Fernando No. 22, Col. Sección XVI, Tlalpan, Ciudad de México 14080, México.
| | - Imelda Martínez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, San Fernando No. 22, Col. Sección XVI, Tlalpan, Ciudad de México 14080, México.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, México.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, San Fernando No. 22, Col. Sección XVI, Tlalpan, Ciudad de México 14080, México.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, México.
| |
Collapse
|
16
|
Propranolol Promotes Glucose Dependence and Synergizes with Dichloroacetate for Anti-Cancer Activity in HNSCC. Cancers (Basel) 2018; 10:cancers10120476. [PMID: 30513596 PMCID: PMC6316475 DOI: 10.3390/cancers10120476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Tumor cell metabolism differs from that of normal cells, conferring tumors with metabolic advantages but affording opportunities for therapeutic intervention. Accordingly, metabolism-targeting therapies have shown promise. However, drugs targeting singular metabolic pathways display limited efficacy, in part due to the tumor’s ability to compensate by using other metabolic pathways to meet energy and growth demands. Thus, it is critical to identify novel combinations of metabolism-targeting drugs to improve therapeutic efficacy in the face of compensatory cellular response mechanisms. Our lab has previously identified that the anti-cancer activity of propranolol, a non-selective beta-blocker, is associated with inhibition of mitochondrial metabolism in head and neck squamous cell carcinoma (HNSCC). In response to propranolol, however, HNSCC exhibits heightened glycolytic activity, which may limit the effectiveness of propranolol as a single agent. Thus, we hypothesized that propranolol’s metabolic effects promote a state of enhanced glucose dependence, and that propranolol together with glycolytic inhibition would provide a highly effective therapeutic combination in HNSCC. Here, we show that glucose deprivation synergizes with propranolol for anti-cancer activity, and that the rational combination of propranolol and dichloroacetate (DCA), a clinically available glycolytic inhibitor, dramatically attenuates tumor cell metabolism and mTOR signaling, inhibits proliferation and colony formation, and induces apoptosis. This therapeutic combination displays efficacy in both human papillomavirus-positive (HPV(+)) and HPV(−) HNSCC cell lines, as well as a recurrent/metastatic model, while leaving normal tonsil epithelial cells relatively unaffected. Importantly, the combination significantly delays tumor growth in vivo with no evidence of toxicity. Additionally, the combination of propranolol and DCA enhances the effects of chemoradiation and sensitizes resistant cells to cisplatin and radiation. This novel therapeutic combination represents a promising treatment strategy which may overcome some of the limitations of targeting individual metabolic pathways in cancer.
Collapse
|