1
|
Karaosmanoğlu C, Yıldız SH, Akdoğan M, Erdoğan MÖ. Association of CUL4B with the pathogenesis of age-related cataract. Int Ophthalmol 2024; 44:288. [PMID: 38937308 DOI: 10.1007/s10792-024-03011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/29/2023] [Indexed: 06/29/2024]
Abstract
PURPOSE Age-related cataract (ARC) is the most common cause of visual impairment and blindness in older adults. However, the role of CUL4B in the ARC remains unclear. Therefore, we investigated CUL4B expression and its effects on apoptosis. MATERIALS AND METHODS CUL4B expression levels were detected by a quantitative real-time polymerase chain reaction from the anterior lens capsules of patients with ARC and HLE-B3 cells treated with different concentrations of H2O2. CUL4B expression was silenced by siRNA transfection to evaluate apoptosis. CUL4B and apoptotic proteins B cell lymphoma 2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), caspase-3, cleaved caspase-3, Bax, Bak, and Bid were assessed using western blot analysis. Apoptosis was monitored using the TUNEL assay. RESULTS CUL4B expression was downregulated in the anterior lens capsules (P < 0.0001) and H2O2-treated HLE-B3 cells (P = 0.0405). CUL4B protein levels were significantly lower in 100 µmol/L (P = 0.0012) and 200 µmol/L (P = 0.0041) H2O2-treated HLE-B3 cells than in the untreated cells. CUL4B expression was significantly knocked down at the mRNA (P = 0.0043) and protein levels (P = 0.0002) in HLE-B3 cells. Bcl-2 (P = 0.0199), Mcl-1 (P = 0.0042), and caspase-3 (P = 0.0142) were significantly downregulated, whereas cleaved caspase-3 (P = 0.0089) and Bak (P = 0.009) were significantly upregulated in the knockdown group. The TUNEL assay showed a greater induction of apoptosis. CONCLUSIONS CUL4B downregulation promotes the apoptosis of lens epithelial cells. Our study may help in understanding the role of CUL4B in ARC pathogenesis.
Collapse
Affiliation(s)
- Cem Karaosmanoğlu
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Saliha Handan Yıldız
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Müberra Akdoğan
- Department of Ophthalmology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Müjgan Özdemir Erdoğan
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
2
|
Hu M, Li J, Fu Y, Xu E, Li D, Huang S, Tong D, Jin S, Guan T, Liu Y. Establishment and characterization of cisplatin-resistant cell lines from canine mammary gland tumors. Theriogenology 2024; 217:103-112. [PMID: 38271764 DOI: 10.1016/j.theriogenology.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
The development of cisplatin resistance is one of the major causes of mammary cancer treatment failure, and is associated with changes in Sox4 gene expression. To investigate the characteristic changes that occur in canine mammary gland tumor (CMGT) cells following the development of acquired cisplatin resistance, along with the relationship between these changes and the Sox4 gene. We constructed cisplatin-resistant cell line, CHMpCIS, from the cell line CHMp, which was isolated from the primary lesion of a malignant CMGT. The biological characteristics of these cells were examined by Western blot analysis, Transwell assays, and mammosphere formation assays. Compared to CHMp cells, CHMpCIS cells exhibited elevated cisplatin resistance, apoptotic escape ability, enhanced epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) features, in addition to over-activation of the Wnt/β-catenin signaling pathway and increased Sox4 protein. In CMGT cases, CMGT tissues (CMGTT) expressed higher levels of Sox4 protein and mRNA compared to adjacent tissues (CAMGTT). We found that these changes were inhibited by silencing of Sox4 expression in CHMpCIS cells. Furthermore, activation of the Wnt/β-catenin signaling pathway increased Sox4 expression levels through a positive feedback loop. These results suggested that CHMpCIS cells circumvented the damage caused by cisplatin through altering the expression of the Sox4 gene and activating the Wnt/β-catenin pathway, thereby changing the cellular biological characteristics.
Collapse
Affiliation(s)
- Mengxin Hu
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Li
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yunwei Fu
- University Hospital, Northeast Agricultural University, Harbin, 150030, China
| | - Enshuang Xu
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Veterinary Surgery, College of Veterinary Medicine, Heilongjiang Bayi Land Reclamation University, Daqing, 163000, China
| | - Ding Li
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siqi Huang
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Danning Tong
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shengzi Jin
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tongxu Guan
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yun Liu
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Dar AA, Ortega Y, Aktas S, Wu K, Guha I, Porter N, Rosen S, DeVita RJ, Pan ZQ, Oliver PM. CRL4b Inhibition Ameliorates Experimental Autoimmune Encephalomyelitis Progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:982-991. [PMID: 38265261 PMCID: PMC11060073 DOI: 10.4049/jimmunol.2300754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Multiple sclerosis, and its murine model experimental autoimmune encephalomyelitis (EAE), is a neurodegenerative autoimmune disease of the CNS characterized by T cell influx and demyelination. Similar to other autoimmune diseases, therapies can alleviate symptoms but often come with side effects, necessitating the exploration of new treatments. We recently demonstrated that the Cullin-RING E3 ubiquitin ligase 4b (CRL4b) aided in maintaining genome stability in proliferating T cells. In this study, we examined whether CRL4b was required for T cells to expand and drive EAE. Mice lacking Cul4b (Cullin 4b) in T cells had reduced EAE symptoms and decreased inflammation during the peak of the disease. Significantly fewer CD4+ and CD8+ T cells were found in the CNS, particularly among the CD4+ T cell population producing IL-17A, IFN-γ, GM-CSF, and TNF-α. Additionally, Cul4b-deficient CD4+ T cells cultured in vitro with their wild-type counterparts were less likely to expand and differentiate into IL-17A- or IFN-γ-producing effector cells. When wild-type CD4+ T cells were activated in vitro in the presence of the recently developed CRL4 inhibitor KH-4-43, they exhibited increased apoptosis and DNA damage. Treatment of mice with KH-4-43 following EAE induction resulted in stabilized clinical scores and significantly reduced numbers of T cells and innate immune cells in the CNS compared with control mice. Furthermore, KH-4-43 treatment resulted in elevated expression of p21 and cyclin E2 in T cells. These studies support that therapeutic inhibition of CRL4 and/or CRL4-related pathways could be used to treat autoimmune disease.
Collapse
Affiliation(s)
- Asif A Dar
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Yohaniz Ortega
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Sera Aktas
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Kenneth Wu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinani, New York, NY 10029
| | - Ipsita Guha
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Nadia Porter
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Siera Rosen
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zhen-qiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinani, New York, NY 10029
| | - Paula M Oliver
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
4
|
Ge W, Gong Y, Li Y, Wu N, Ruan Y, Xu T, Shu Y, Qiu W, Wang Y, Zhao C. IL-17 induces non-small cell lung cancer metastasis via GCN5-dependent SOX4 acetylation enhancing MMP9 gene transcription and expression. Mol Carcinog 2023; 62:1399-1416. [PMID: 37294072 DOI: 10.1002/mc.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Interleukin-17 (IL-17), a potent proinflammatory cytokine, can trigger the metastasis of non-small cell lung cancer (NSCLC). However, the underlying mechanism involved in IL-17-induced NSCLC cell metastasis remains unclear. In this study, we found that not only the expression of IL-17, IL-17RA, and/or general control nonrepressed protein 5 (GCN5), SRY-related HMG-BOX gene 4 (SOX4), and matrix metalloproteinase 9 (MMP9) was increased in the NSCLC tissues and in the IL-17-stimulated NSCLC cells, but also IL-17 treatment could enhance NSCLC cell migration and invasion. Further mechanism exploration revealed that IL-17-upregulated GCN5 and SOX4 could bind to the same region (-915 to -712 nt) of downstream MMP9 gene promoter driving its gene transcription. In the process, GCN5 could mediate SOX4 acetylation at lysine 118 (K118, a newly identified site) boosting MMP9 gene expression as well as cell migration and invasion. Moreover, the SOX4 acetylation or MMP9 induction and metastatic nodule number in the lung tissues of the BALB/c nude mice inoculated with the NSCLC cells stably infected by corresponding LV-shGCN5 or LV-shSOX4, LV-shMMP9 plus IL-17 incubation were markedly reduced. Overall, our findings implicate that NSCLC metastasis is closely associated with IL-17-GCN5-SOX4-MMP9 axis.
Collapse
Affiliation(s)
- Wen Ge
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajuan Gong
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Li
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningxia Wu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuting Ruan
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Yin X, Wang S, Ge R, Chen J, Gao Y, Xu S, Yang T. Long non-coding RNA DNMBP-AS1 promotes prostate cancer development by regulating LCLAT1. Syst Biol Reprod Med 2023; 69:142-152. [PMID: 36602957 DOI: 10.1080/19396368.2022.2129520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is as a serious threat to male's health around the world. Recent studies have indicated that long non-coding RNAs (lncRNAs) occupy an important position in various human cancers. However, the function and mechanism of lncRNA DNMBP antisense RNA 1 (DNMBP-AS1) in PCa is rarely investigated. RT-qPCR analysis was used to test gene expression. CCK-8, colony formation, EdU staining and transwell assays were conducted to assess the function of DNMBP-AS1 on PCa cell behaviors. RNA pull down, RIP and luciferase reporter assays were implemented to verify the mechanism of DNMBP-AS1. DNMBP-AS1 was obviously up-regulated in PCa cell lines. Functionally, DNMBP-AS1 knockdown weakened cell proliferation, migration and invasion of PCa. Mechanistically, DNMBP-AS1 sponged microRNA-6766-3p (miR-6766-3p) to regulate lysocardiolipin acyltransferase 1 (LCLAT1) expression. Furthermore, DNMBP-AS1 could stabilize LCLAT1 expression by recruiting ELAV like RNA binding protein 1 (ELAVL1). Consequently, rescue assays demonstrated that DNMBP-AS1 regulated PCa cell proliferation, migration and invasion through enhancing LCLAT1 expression. Collectively, we elucidated the function and regulatory mechanism of DNMBP-AS1 and provided the first evidence of DNMBP-AS1 as a driver for PCa.
Collapse
Affiliation(s)
- Xiangang Yin
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Suying Wang
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Rong Ge
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Jinping Chen
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Youliang Gao
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Shanshan Xu
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Ting Yang
- Beijing Jinglai Huake Biotechnology Co., Ltd, Beijing, China
| |
Collapse
|
6
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Liu L, Han B, Liu L, Cui H, Liu H, Jia R, Zhang X, Lu X. Circ_0021573 acts as a competing endogenous RNA to promote the malignant phenotypes of human ovarian cancer cells. Reprod Biol 2023; 23:100704. [PMID: 36481473 DOI: 10.1016/j.repbio.2022.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs) have been reported to be implicated in the tumorigenesis and progression of ovarian cancer. Here, the study was designed to explore the activity of human circ_0021573 in ovarian cancer pathogenesis and its regulation through the competing endogenous RNA (ceRNA) crosstalk. Circ_0021573, microRNA (miR)- 936, and cullin 4B (CUL4B) were quantified by qRT-PCR and western blot. Cell proliferation ability was detected by XTT, 5-Ethynyl-2'-Deoxyuridine (EdU), and colony formation assays. Cell apoptosis, migration, and invasion were assessed by flow cytometry, wound-healing, and transwell assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-936 and circ_0021573 or CUL4B 3'UTR. Xenograft studies were applied to assess the role of circ_0021573 in tumor growth. Our data showed that circ_0021573 expression is enhanced in human ovarian cancer. Inhibition of circ_0021573 impedes cell proliferation, migration, and invasion and promotes apoptosis in vitro, as well as diminishes tumor growth in vivo. Mechanistically, circ_0021573 contains a miR-936 binding site, and miR-936 is a relevant mediator of circ_0021573 regulation. MiR-936 direct targets and inhibits CUL4B. MiR-936-mediated suppression of CUL4B hinders cell proliferation, migration, and invasion and accelerates apoptosis in vitro.. These data suggested that circ_0021573 might promote the malignant phenotypes of ovarian cancer cells by functioning as a ceRNA for miR-936 to induce CUL4B, which provided a promising target for the prevention and inhibition of ovarian cancer.
Collapse
Affiliation(s)
- Lifang Liu
- The Laboratory of Cell and Genetics, the People's Hospital of Hebi, 458030 Hebi City, Henan, China
| | - Bingkai Han
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, College of Exercise and Health Sciences, Tianjin University of Sport, Tianjin City 301617, China
| | - Lixia Liu
- Department of Obstetrics and Gynecology, the People's Hospital of Hebi, 458030 Hebi City, Henan, China
| | - Hongying Cui
- Department of Obstetrics and Gynecology, the People's Hospital of Hebi, 458030 Hebi City, Henan, China
| | - Hao Liu
- The Laboratory of Cell and Genetics, the People's Hospital of Hebi, 458030 Hebi City, Henan, China
| | - Rui Jia
- Eproductive Center, the People's Hospital of Hebi, 458030 Hebi City, Henan, China
| | - Xiaoyan Zhang
- The Laboratory of Cell and Genetics, the People's Hospital of Hebi, 458030 Hebi City, Henan, China
| | - Xiaoxiao Lu
- Sumy National Agrarian University, Sumy City 40021, Ukraine.
| |
Collapse
|
8
|
Associations between Body Mass Index and Prostate Cancer: The Impact on Progression-Free Survival. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020289. [PMID: 36837490 PMCID: PMC9967817 DOI: 10.3390/medicina59020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Background and objectives: This study aimed to evaluate the impact of body mass index on PCa outcomes in our institution and also to find if there are statistically significant differences between the variables. Materials and Methods: A retrospective chart review was performed to extract information about all male patients with prostate cancer between 1 February 2015, and 25 October 2022, and with information about age, weight, height, follow-up, and PSA. We identified a group of 728 patients, of which a total of 219 patients resulted after the inclusion and exclusion criteria were applied. The primary endpoint was progression-free survival, which was defined as the length of time that the patient lives with the disease, but no relapses occur, and this group included 105 patients. In this case, 114 patients had a biological, local or metastatic relapse and were included in the progression group. Results: Our study suggests that prostate cancer incidence rises with age (72 ± 7.81 years) in men with a normal BMI, but the diagnostic age tends to drop in those with higher BMIs, i.e., overweight, and obese in the age range of 69.47 ± 6.31 years, respectively, 69.1 ± 7.51 years. A statistically significant difference was observed in the progression group of de novo metastases versus the absent metastases group at diagnostic (p = 0.04). The progression group with metastases present (n = 70) at diagnostic had a shorter time to progression, compared to the absent metastases group (n = 44), 18.04 ± 11.37 months, respectively, 23.95 ± 16.39 months. Also, PSA levels tend to diminish with increasing BMI classification, but no statistically significant difference was observed. Conclusions: The median diagnostic age decreases with increasing BMI category. Overweight and obese patients are more likely to have an advanced or metastatic prostate cancer at diagnosis. The progression group with metastatic disease at diagnostic had a shorter time to progression, compared to the absent metastases group. Regarding prostate serum antigen, the levels tend to become lower in the higher BMI groups, possibly leading to a late diagnosis.
Collapse
|
9
|
Huang G, Jiang Z, Zhu W, Wu Z. Exosomal circKDM4A Induces CUL4B to Promote Prostate Cancer Cell Malignancy in a miR-338-3p-Dependent Manner. Biochem Genet 2023; 61:390-409. [PMID: 35930171 DOI: 10.1007/s10528-022-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Circular RNA lysine demethylase 4A (circKDM4A) is also named circ_0012098 and its abnormal expression has been confirmed in serum exosomes of prostate cancer (PC) patients. However, whether PC progression involves the exosomal circ_0012098 remains unknown. RNA expression of circKDM4A, microRNA-338-3p (miR-338-3p) and cullin 4B (CUL4B) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot. The positive expression rate of nuclear proliferation marker (ki-67) was analyzed by immunohistochemistry assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to identify the interaction between miR-338-3p and circKDM4A or CUL4B. Mouse model assay was performed to determine the effect of exosomal circKDM4A on tumorigenesis in vivo. CircKDM4A expression was significantly upregulated in the serum exosomes from PC patients compared with the exosomes from healthy volunteers. Exosomes treatment promoted the proliferation, migration and invasion of PC cells but inhibited apoptosis; however, these effects were attenuated after circKDM4A knockdown. Meanwhile, circKDM4A depletion restored exosome-increased circKDM4A expression. Additionally, circKDM4A acted as a miR-338-3p sponge, and miR-338-3p bound to CUL4B in PC cells. CircKDM4A regulated the effect of exosome-induced PC cell malignancy by interacting with miR-338-3p and CUL4B. Moreover, circKDM4A silencing relieved exosome-induced tumor growth in vivo. Exosomal circKDM4A promoted PC malignant progression by the miR-338-3p/CUL4B axis, providing a therapeutic target for PC.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China.
| | - Zeping Jiang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Wuan Zhu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Zhiyue Wu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| |
Collapse
|
10
|
Wang X, Han B, Dou B, Gao L, Sun F, Qi M, Zhang J, Hu J. A trio of tumor suppressor miRNA downregulates CREB5 dependent transcription to modulate neoadjuvant hormonal therapy sensitivity. Neoplasia 2023; 36:100875. [PMID: 36603462 PMCID: PMC9826888 DOI: 10.1016/j.neo.2022.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Neoadjuvant hormonal therapy (NHT) prior to radical prostatectomy (RP) is an approach that can potentially maximize survival outcomes in prostate cancer (PCa) patients with high-risk disease. Unfortunately, subsets of patients do not respond well to such hormonal therapy. We previously identified several pathological parameters in predicting differences in response to NHT of PCa. However, little is known about the potential role and mechanism of miRNAs mediated NHT resistance (NHT-R) in PCa. Here we demonstrate that miR-l42-3p, miR-150-5p and miR-342-3p are the top downregulated miRNAs in PCa tissues with NHT-R. Functional analysis reveals that the three miRNAs inhibit cell proliferation in vitro. Transfection of miRNAs mimics strengthens the inhibitory effects of bicalutamide and enzalutamide to PCa cells. Luciferase reporter assay reveals that CREB5 is the common target of these three miRNAs. Clinically, high expression level of CREB5 correlates with high Gleason score, advanced tumor stage and NHT-R in PCa tissues. CREB5 expression promotes antiandrogen therapy resistance in LNCaP cells and IL6 signaling pathway may be involved in this process. In all, our findings highlight an important role of miR-142-3p, miR-150-5p, and miR-342-3p in contributing NHT-R by targeting CREB5 in PCa.
Collapse
Affiliation(s)
- Xueli Wang
- Department of Pathology, Binzhou City Central Hospital, Binzhou 251700, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baokai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mei Qi
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Jing Hu
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Mi J, Wang S, Liu P, Liu C, Zhuang D, Leng X, Zhang Q, Bai F, Feng Q, Wu X. CUL4B Upregulates RUNX2 to Promote the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Epigenetically Repressing the Expression of miR-320c and miR-372/373-3p. Front Cell Dev Biol 2022; 10:921663. [PMID: 35784474 PMCID: PMC9243338 DOI: 10.3389/fcell.2022.921663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) within the periodontal ligament (PDL), termed periodontal ligament stem cells (PDLSCs), have a self-renewing capability and a multidirectional differentiation potential. The molecular mechanisms that regulate multidirectional differentiation, such as the osteogenic differentiation of PDLSCs, remain to be elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING ubiquitin ligase (CRL4B) complex, is involved in regulating a variety of developmental and physiological processes including the skeletal development and stemness of cancer stem cells. However, nothing is known about the possible role of CUL4B in the osteogenic differentiation of PDLSCs. Here, we found that knockdown of CUL4B decreased the proliferation, migration, stemness and osteogenic differentiation ability of PDLSCs. Mechanistically, we demonstrate that CUL4B cooperates with the PRC2 complex to repress the expression of miR-320c and miR-372/373-3p, which results in the upregulation of RUNX2, a master transcription factor (TF) that regulates osteogenic differentiation. In brief, the present study reveals the role of CUL4B as a new regulator of osteogenic differentiation in PDLSCs.
Collapse
Affiliation(s)
- Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Shenzhen Research Institute of Shandong University, Shenzhen, China
- *Correspondence: Jun Mi, ; Xunwei Wu,
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xue Leng
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Jun Mi, ; Xunwei Wu,
| |
Collapse
|
12
|
Shujuan K, Zhongxin L, Jingfang M, Zhili C, Wei W, Liu Q, Li Y. Circular RNA circ_0000518 promotes breast cancer progression through the microRNA-1225-3p/SRY-box transcription factor 4 pathway. Bioengineered 2022; 13:2611-2622. [PMID: 35112991 PMCID: PMC8974136 DOI: 10.1080/21655979.2021.2019877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This work is designed to probe the functions and mechanisms of circ_0000518 in breast cancer (BC). qRT-PCR was performed to evaluate the circ_0000518, miR-1225-3p and Sry‑Related HMG box 4 (SOX4) mRNA expression in BC tissues and cells. After circ_0000518 was overexpressed in MDA-MB-468 cells, and circ_0000518 was knocked down in BT549 cells, CCK-8 test, and EdU assay were performed to measure the viability and growth of MDA-MB-468 and BT549 cells. Wound healing experiment was executed to determine the migration of BC cells. The invasion of cells was studied by the Transwell assay. Bioinformatics analysis, dual-luciferase reporter gene assay, qRT-PCR and Western blot were applied to predict and verify the binding sites between circ_0000518 and miR-1225-3p, miR-1225-3p and SOX4 mRNA. Pearson's correlation analysis was utilized to evaluate the correlations among circ_0000518 expression, miR-1225-3p expression, and SOX4 mRNA expression in BC specimens. It was revealed that, circ_0000518 and SOX4 mRNA expression levels were up-modulated in BC tissues, while miR-1225-3p expression was down-modulated in BC tissues than that in adjacent tissues. Circ_0000518 overexpression or inhibition of miR-1225-3p remarkably enhanced the growth, migration as well as invasion of BC cells in vitro, whereas circ_0000518 knockdown or miR-1225-3p overexpression worked oppositely. Circ_0000518 was identified as a molecular sponge of miR-1225-3p, and it can up-regulate SOX4 mRNA expression via repressing miR-1225-3p. In conclusion, circ_0000518 is oncogenic in BC and functions through miR-1225-3p/SOX4 axis.
Collapse
Affiliation(s)
- Kang Shujuan
- Department of Brest, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Li Zhongxin
- Department of Hepatobiliary Surgery, Handan Central Hospital, Handan, Hebei, China
| | - Ma Jingfang
- Department of Pathology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Cui Zhili
- Department of Gynecology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Wei Wei
- Department of Oncology, The Second People's Hospital, Dongying, Shandong, China
| | - Qian Liu
- Department of Oncology, The Second People's Hospital, Dongying, Shandong, China
| | - Yan Li
- Department of Oncology, The Second People's Hospital, Dongying, Shandong, China
| |
Collapse
|
13
|
Gu Z, You Z, Yang Y, Ding R, Wang M, Pu J, Chen J. Inhibition of MicroRNA miR-101-3p on prostate cancer progression by regulating Cullin 4B (CUL4B) and PI3K/AKT/mTOR signaling pathways. Bioengineered 2021; 12:4719-4735. [PMID: 34338146 PMCID: PMC8806765 DOI: 10.1080/21655979.2021.1949513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To probe into the efffects of miR-101-3p via regulating CUL4B within PI3K/AKT/mTOR signaling pathway on progression of prostate cancer (PCA). Western blot and qRT-PCR were adopted to detect CUL4B and miR-101-3p expressions in 75 cases with PCA . The cellular strains of PCA (LNCaP and PC3) were chose as the objects to check the targeting correlation between CUL4B and miR-101-3p through dual-luciferase reporter experiments. LNCaP cells and PC3 cells were randomly divided into the blank group, miR-101-3p mimic group, siRNA negative control (NC) group, CUL4B siRNA group and CUL4B siRNA plus the miR-101-3p inhibitor group. Cellular bioactivity measurement was done via Cell-Light EDU, MTT, Annexin-V-FITC/PI, scratch-heal experiments and invasion tests of Transwell. MiR-101-3p expression was decreased more signally in tumor tissues than in normal tissues adjacent to the cancer. MiR-101-3p inhibited cellular proliferating, migrating and invasion. Nevertheless, it promoted cellular apoptosis, up-regulated apoptotic proteins as well as down-regulated anti-apoptotic proteins. CUL4B siRNA and miR-101-3p simulation were similar in terms of their outcomes. Nonetheless, these results could be reversed through the miR-101-3p inhibitor. Besides, CUL4B siRNA and the simulation halted a serious of PI3K signal in PCA cells. MiR-101-3p expression was down-regulated in PCA patients. CUL4B was upregulated in PCA patients. Moreover, miR-101-3p suppressed cellular invasion, migration, proliferation and led to cellular apoptosis, which might be related to the PI3K/AKT/mTOR signaling pathway suppression. Finally, we found, MiR-101-3P suppressed PCA progression via aiming for CUL4B, which may offer the new molecular target for PCA clinical treatment.
Collapse
Affiliation(s)
- Zhenhua Gu
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Zhixin You
- Department of Urology, Kunshan Second People's Hospital, Kunshan City, China
| | - Yucheng Yang
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Rui Ding
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Meili Wang
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Jianming Pu
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jian Chen
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| |
Collapse
|
14
|
Zhang C, Cao C, Liu XL, Jun T, Liu P. Cul4b Promotes Progression of Malignant Cutaneous Melanoma Patients by Regulating CDKN2A. TOHOKU J EXP MED 2021; 254:33-39. [PMID: 34011786 DOI: 10.1620/tjem.254.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although several molecular targeted therapy and immunotherapy have been developed, cutaneous melanoma prognosis is still not satisfying. Cul4b promotes the progression of several malignant tumors by regulating cell proliferation. However, its prognostic role in malignant cutaneous melanoma has not been evaluated. In this study, immunohistochemistry was performed to assess the expression of Cul4b in a consecutive patient cohort. The prognostic role of Cul4b was estimated with univariate and multivariate analysis. Cul4b was knocked down in melanoma cell line to evaluate its role in promoting cell proliferation. The results revealed that Cul4b was highly expressed in some of the cutaneous malignant melanoma patients and high expression of Cul4b was associated with poor melanoma-specific overall survival and poor disease-free survival. Cul4b expression was associated with Breslow categories, Clark level, and Ki67 expression. Univariate and multivariate analysis revealed that Cul4b is an independent prognosis risk factor of cutaneous melanoma. Downregulation of Cul4b inhibited the proliferation ability of melanoma cells and downregulated the expression of CDKN2A. These results suggest that Cul4b plays an essential role in cutaneous melanoma progression and may serve as a promising treatment target.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Dermatology, The Second Affiliated Hospital of Shandong First Medical University
| | - Can Cao
- Department of Dermatology, The Second Affiliated Hospital of Shandong First Medical University
| | - Xiu-Li Liu
- Department of Neonatal, Gaotang People's Hospital
| | - Tan Jun
- Department of Dermatology, Shaanxi Provincial People's Hospital
| | - Pei Liu
- Department of Burn and Plastic Surgery, Qilu Hospital of Shandong University
| |
Collapse
|
15
|
Ye X, Liu X, Gao M, Gong L, Tian F, Shen Y, Hu H, Sun G, Zou Y, Gong Y. CUL4B Promotes Temozolomide Resistance in Gliomas by Epigenetically Repressing CDNK1A Transcription. Front Oncol 2021; 11:638802. [PMID: 33869025 PMCID: PMC8050354 DOI: 10.3389/fonc.2021.638802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/19/2021] [Indexed: 01/10/2023] Open
Abstract
Resistance to temozolomide (TMZ), the first-line chemotherapeutic drug for glioblastoma (GBM) and anaplastic gliomas, is one of the most significant obstacles in clinical treatment. TMZ resistance is regulated by complex genetic and epigenetic networks. Understanding the mechanisms of TMZ resistance can help to identify novel drug targets and more effective therapies. CUL4B has been shown to be upregulated and promotes progression and chemoresistance in several cancer types. However, its regulatory effect and mechanisms on TMZ resistance have not been elucidated. The aim of this study was to decipher the role and mechanism of CUL4B in TMZ resistance. Western blot and public datasets analysis showed that CUL4B was upregulated in glioma specimens. CUL4B elevation positively correlated with advanced pathological stage, tumor recurrence, malignant molecular subtype and poor survival in glioma patients receiving TMZ treatment. CUL4B expression was correlated with TMZ resistance in GBM cell lines. Knocking down CUL4B restored TMZ sensitivity, while upregulation of CUL4B promoted TMZ resistance in GBM cells. By employing senescence β-galactosidase staining, quantitative reverse transcription PCR and Chromatin immunoprecipitation experiments, we found that CUL4B coordinated histone deacetylase (HDAC) to co-occupy the CDKN1A promoter and epigenetically silenced CDKN1A transcription, leading to attenuation of TMZ-induced senescence and rendering the GBM cells TMZ resistance. Collectively, our findings identify a novel mechanism by which GBM cells develop resistance to TMZ and suggest that CUL4B inhibition may be beneficial for overcoming resistance.
Collapse
Affiliation(s)
- Xiang Ye
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaochen Liu
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Gong
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Tian
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yangli Shen
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gongping Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Dar AA, Sawada K, Dybas JM, Moser EK, Lewis EL, Park E, Fazelinia H, Spruce LA, Ding H, Seeholzer SH, Oliver PM. The E3 ubiquitin ligase Cul4b promotes CD4+ T cell expansion by aiding the repair of damaged DNA. PLoS Biol 2021; 19:e3001041. [PMID: 33524014 PMCID: PMC7888682 DOI: 10.1371/journal.pbio.3001041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/17/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
The capacity for T cells to become activated and clonally expand during pathogen invasion is pivotal for protective immunity. Our understanding of how T cell receptor (TCR) signaling prepares cells for this rapid expansion remains limited. Here we provide evidence that the E3 ubiquitin ligase Cullin-4b (Cul4b) regulates this process. The abundance of total and neddylated Cul4b increased following TCR stimulation. Disruption of Cul4b resulted in impaired proliferation and survival of activated T cells. Additionally, Cul4b-deficient CD4+ T cells accumulated DNA damage. In T cells, Cul4b preferentially associated with the substrate receptor DCAF1, and Cul4b and DCAF1 were found to interact with proteins that promote the sensing or repair of damaged DNA. While Cul4b-deficient CD4+ T cells showed evidence of DNA damage sensing, downstream phosphorylation of SMC1A did not occur. These findings reveal an essential role for Cul4b in promoting the repair of damaged DNA to allow survival and expansion of activated T cells.
Collapse
Affiliation(s)
- Asif A. Dar
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Keisuke Sawada
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joseph M. Dybas
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical Health and Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily K. Moser
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emma L. Lewis
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eddie Park
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hossein Fazelinia
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lynn A. Spruce
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hua Ding
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Steven H. Seeholzer
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paula M. Oliver
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
17
|
Ashok C, Selvam M, Ponne S, Parcha PK, Raja KMP, Baluchamy S. CREB acts as a common transcription factor for major epigenetic repressors; DNMT3B, EZH2, CUL4B and E2F6. Med Oncol 2020; 37:68. [PMID: 32710193 DOI: 10.1007/s12032-020-01395-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
CREB signaling is known for several decades, but how it regulates both positive and negative regulators of cell proliferation is not well understood. On the other hand functions of major epigenetic repressors such as DNMT3B, EZH2 and CUL4B for their repressive epigenetic modifications on chromatin have also been well studied. However, there is very limited information available on how these repressors are regulated at their transcriptional level. Here, using computational tools and molecular techniques including site directed mutagenesis, promoter reporter assay, chromatin immunoprecipitation (ChIP), we identified that CREB acts as a common transcription factor for DNMT3B, EZH2, CUL4B and E2F6. ChIP assay revealed that pCREB binds to promoters of these repressors at CREs and induce their transcription. As expected, the expression of these repressors and their associated repressive marks particularly H3K27me3 and H2AK119ub are increased and decreased upon CREB overexpression and knock-down conditions respectively in the cancer cells indicating that CREB regulates the functions of these repressors by activating their transcription. Since CREB and these epigenetic repressors are overexpressed in various cancer types, our findings showed the molecular relationship between them and indicate that CREB is an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Cheemala Ashok
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Saravanaraman Ponne
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Phani K Parcha
- Department of Biochemistry and Molecular Biology, Pondicherry Central University, Pondicherry, 605014, India
| | | | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
18
|
Tiwari R, Manzar N, Ateeq B. Dynamics of Cellular Plasticity in Prostate Cancer Progression. Front Mol Biosci 2020; 7:130. [PMID: 32754615 PMCID: PMC7365877 DOI: 10.3389/fmolb.2020.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the current advances in the treatment for prostate cancer, the patients often develop resistance to the conventional therapeutic interventions. Therapy-induced drug resistance and tumor progression have been associated with cellular plasticity acquired due to reprogramming at the molecular and phenotypic levels. The plasticity of the tumor cells is mainly governed by two factors: cell-intrinsic and cell-extrinsic. The cell-intrinsic factors involve alteration in the genetic or epigenetic regulators, while cell-extrinsic factors include microenvironmental cues and drug-induced selective pressure. Epithelial-mesenchymal transition (EMT) and stemness are two important hallmarks that dictate cellular plasticity in multiple cancer types including prostate. Emerging evidence has also pinpointed the role of tumor cell plasticity in driving anti-androgen induced neuroendocrine prostate cancer (NEPC), a lethal and therapy-resistant subtype. In this review, we discuss the role of cellular plasticity manifested due to genetic, epigenetic alterations and cues from the tumor microenvironment, and their role in driving therapy resistant prostate cancer.
Collapse
Affiliation(s)
| | | | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
19
|
Duan PJ, Zhao JH, Xie LL. Cul4B promotes the progression of ovarian cancer by upregulating the expression of CDK2 and CyclinD1. J Ovarian Res 2020; 13:76. [PMID: 32622365 PMCID: PMC7335446 DOI: 10.1186/s13048-020-00677-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Ovarian cancer is one of the most common malignant tumors in the female reproductive system with the highest mortality rate. Cul4B participates in the oncogenesis and progression of several malignant tumors. However, the role of Cul4B in ovarian cancer has not been studied. Results High expression of intratumor Cul4B was associated with poor patient survival. Cul4B expression was associated with FIGO stage and Cul4B was independent risk factor of ovarian cancer disease-free survival and overall survival. In vitro studies revealed that overexpression of Cul4B promoted tumor proliferation while knockdown of Cul4B significantly inhibited the proliferation capacity of ovarian cancer cells. Mechanistically, Cul4B was found to promotes cell entering S phase from G0/G1 phase by regulating the expression of CDK2 and CyclinD1. Cul4B regulates the expression of CDK2 and CyclinD1 by repressing miR-372. Conclusions The results revealed that high expression of Cul4B is associated with poor ovarian cancer prognosis and Cul4B may serve as a potential treating target for an adjuvant therapy.
Collapse
Affiliation(s)
- Peng-Jing Duan
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Shandong Medical College, 80 Jintan Road, Linyi, 276000, Shandong, China
| | - Juan-Hong Zhao
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Shandong Medical College, 80 Jintan Road, Linyi, 276000, Shandong, China
| | - Li-Li Xie
- Department of Gynaecology, The people's hospital of Linshu, 182 West Shuhe Road, Linshu, 276700, Shandong, China.
| |
Collapse
|
20
|
Ma T, Chen H, Wang P, Yang N, Bao J. Downregulation of lncRNA ZEB1-AS1 Represses Cell Proliferation, Migration, and Invasion Through Mediating PI3K/AKT/mTOR Signaling by miR-342-3p/CUL4B Axis in Prostate Cancer. Cancer Biother Radiopharm 2020; 35:661-672. [PMID: 32275162 DOI: 10.1089/cbr.2019.3123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Prostate cancer (PCa) is the second most common cancer among men, threatening men's health and life. Long noncoding RNA Zinc-finger E-box binding homeobox 1 antisense gene 1 (ZEB1-AS1) and Cullin 4B (CUL4B) were reported to be connected with the tumorigenesis of PCa. However, it is unclear whether ZEB1-AS1 regulates the expression of CUL4B in PCa. Materials and Methods: The levels of ZEB1-AS1 and CUL4B in PCa tissues and cells were evaluated by quantitative real-time polymerase chain reaction. Protein levels of CUL4B, p21, CyclinD1, matrix metalloprotease 9 (MMP9), E-cadherin, phosphorylated-phosphatidylinositol 3 kinase (p-PI3K), PI3K phosphorylated protein kinase B (p-AKT), AKT, p-mTOR and mammalian target of rapamycin (mTOR) in PCa tissues or cells were assessed by Western blot analysis. The proliferation, migration, and invasion abilities of PCa cells were determined with 3-(4, 5-dimethylthiazol-2-YI)-2,5-diphenyltetrazolium bromide (MTT) or transwell assay. The interaction between ZEB1-AS1 or CUL4B and microRNA-342-3p (miR-342-3p) was predicted using starBase v2.0 database and confirmed by the dual-luciferase reporter assay. Results: ZEB1-AS1 and CUL4B were upregulated and miR-342-3p was downregulated in PCa tissues and cells. Both ZEB1-AS1 and CUL4B inhibition constrained proliferation, migration, and invasion of PCa cells. Moreover, the elevation of CUL4B reversed the effects of ZEB1-AS1 silencing on the proliferation, migration, and invasion of PCa cells. Importantly, ZEB1-AS1 modulated CUL4B expression by sponging miR-342-3p in PCa cells. Besides, ZEB1-AS1 mediated PI3K/AKT/mTOR signal pathway by miR-342-3p/CUL4B axis in PCa cells. Conclusion: ZEB1-AS1 modulated PCa progression through mediating PI3K/AKT/mTOR signaling by miR-342-3p/CUL4B axis, providing a possible strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Teng Ma
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Hua Chen
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Peilong Wang
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Ningqiang Yang
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Junsheng Bao
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
21
|
The CUL4B-miR-372/373-PIK3CA-AKT axis regulates metastasis in bladder cancer. Oncogene 2020; 39:3588-3603. [PMID: 32127645 DOI: 10.1038/s41388-020-1236-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022]
Abstract
CUL4B, which acts as a scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complexes, participates in a variety of biological processes. Previous studies have shown that CUL4B is often overexpressed and exhibits oncogenic activities in a variety of solid tumors. However, the roles and the underlying mechanisms of CUL4B in bladder cancer (BC) were poorly understood. Here, we showed that CUL4B levels were overexpressed and positively correlated with the malignancy of BC, and CUL4B could confer BC cells increased motility, invasiveness, stemness, and chemoresistance. The PIK3CA/AKT pathway was identified as a critical downstream mediator of CUL4B-driven oncogenicity in BC cells. Furthermore, we demonstrated that CRL4B epigenetically repressed the transcription of miR-372/373, via catalyzing monoubiquitination of H2AK119 at the gene cluster encoding miR-372/373, leading to upregulation of PIK3CA and activation of AKT. Our findings thus establish a critical role for the CUL4B-miR-372/373-PIK3CA/AKT axis in the pathogenesis of BC and have important prognostic and therapeutic implications in BC.
Collapse
|
22
|
Xiong J, Tu Y, Feng Z, Li D, Yang Z, Huang Q, Li Z, Cao Y, Jie Z. Epigenetics mechanisms mediate the miR-125a/BRMS1 axis to regulate invasion and metastasis in gastric cancer. Onco Targets Ther 2019; 12:7513-7525. [PMID: 31571904 PMCID: PMC6753057 DOI: 10.2147/ott.s210376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Altered expression of breast cancer metastasis suppressor 1 (BRMS1), is a tumor suppressor, which is found in many types of cancers, including gastric cancer (GC), but the mechanism by which BRMS1 inhibits invasion and metastasis in GC is unknown. The aim of the study was to investigate the molecular mechanisms of miR-125a/BRMS1 in GC. Materials and methods The expression of BRMS1 and miR-125a were detected by quantitative real-time PCR (qRT-PCR) and analyzed by bioinformatics. BSP and MSP were used to detecte the methylation status of miR-125a and BRMS1 which was treated by 5-Aza or not. Western Blot and qRT-PCR were used to analyze the expression of BRMS1 and EZH2. Transwell was performed to explore the invasion and metastasis ability of GC cells. The nude mice were used for the tumor formation assay. Results BRMS1 may be regulated by copy number variation (CNV), methylation and miR-125a-5p. As one of the essential components of PRC2, EZH2 is an important regulatory factor resulting in the low expression of miR-125a. An epigenetic mechanism mediates the miR-125a/BRMS1 axis to inhibit the invasion and metastasis of GC cells. In vivo experiments, it is also showed that BRMS1 is involved in invasion and metastasis but not the proliferation in GC. Conclusion These studies shed light on the mechanism of BRMS1 inhibition of GC invasion and metastasis and the development of new drugs targeting the miR-125a/BRMS1 axis, which will be a promising therapeutic strategy for GC and other human cancers.
Collapse
Affiliation(s)
- Jianbo Xiong
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Tu
- Department of Pathology, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zhouwen Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Qiuxia Huang
- Department of Nursing, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Cao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|