1
|
Guo S, Ding R, Zhao Q, Wang X, Lv S, Ji XY. Recent Insights into the Roles of PEST-Containing Nuclear Protein. Mol Biotechnol 2024:10.1007/s12033-024-01188-5. [PMID: 38762838 DOI: 10.1007/s12033-024-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein containing two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qian Zhao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xu Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, 475004, Henan, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China.
| |
Collapse
|
2
|
Tan J, Wang L, Song X, Zhang Y, Song Z, Duan M. Optimization of a tri-drug treatment against lung cancer using orthogonal design in preclinical studies. PeerJ 2023; 11:e15672. [PMID: 37456863 PMCID: PMC10340110 DOI: 10.7717/peerj.15672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023] Open
Abstract
A growing body of evidence suggests that anesthetics impact the outcome of patients with cancer after surgical intervention. However, the optimal dose and underlying mechanisms of co-administered anesthetics in lung tumor therapy have been poorly studied. Here, we aimed to investigate the role of combined anesthetics propofol, sufentanil, and rocuronium in treating lung cancer using an orthogonal experimental design and to explore the optimal combination of anesthetics. First, we evaluated the effects of the three anesthetics on the proliferation and invasion of A-549 cells using Cell Counting Kit 8 and Transwell migration and invasion assays. Subsequently, we applied the orthogonal experimental design (OED) method to screen the appropriate concentrations of the combined anesthetics with the most effective antitumor activity. We found that all three agents inhibited the proliferation of A-549 cells in a dose- and time-dependent manner when applied individually or in combination, with the highest differences in the magnitude of inhibition occurring 24 h after combined drug exposure. The optimal combination of the three anesthetics that achieved the strongest reduction in cell viability was 1.4 µmol/L propofol, 2 nmol/L sufentanil, and 7.83 µmol/L rocuronium. This optimal 3-drug combination produced a more beneficial result at 24 h than either single drug. Our results provide a theoretical basis for improving the efficacy of lung tumor treatment and optimizing anesthetic strategies.
Collapse
Affiliation(s)
- Jing Tan
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Wang
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Song
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yijian Zhang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhenghuan Song
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhang L, Guo D, Shen J, Zheng Y, Zhai J, Li R, He D, Zhang B. Tissue mechanics modulate PCNP expression in oral squamous cell carcinomas with different differentiation. Front Oncol 2023; 12:1072276. [PMID: 36703786 PMCID: PMC9873348 DOI: 10.3389/fonc.2022.1072276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background PEST-containing nuclear protein (PCNP), a novel zinc finger protein, participates in cell cycle regulation. Previous studies have confirmed that PCNP plays a role in mediating cellular development and invasion in a variety of cancer types. However, the relationship between PCNP expression and the occurrence and development of oral squamous cell carcinoma (OSCC) requires further exploration. In this study, we used biological atomic force microscopy to examine the histomorphological and mechanical properties of OSCC to explore the relationship between PCNP expression and differentiation of OSCC. Methods Seventy-seven OSCC samples with varying degrees of differentiation were selected for hematoxylin and eosin staining, immunohistochemistry, and cellular mechanical measurement. The expression of PCNP and the mechanical properties such as stiffness and roughness of the tissue interface in OSCC samples were investigated. The Kaplan-Meier survival curve was utilized to assess the relationship of PCNP expression with patient survival. Results The level of PCNP was significantly higher in well-differentiated OSCC than in moderately and poorly differentiated OSCC (P < 0.001). High expression of PCNP was specifically associated with higher tumor differentiation, lack of lymph node metastasis, and lower tumor node metastasis stage (all P < 0.05). Patients with high PCNP expression had a higher survival rate than those with low PCNP expression. The average variation of stiffness within a single tissue ranged from 347 kPa to 539 kPa. The mean surface roughness of highly, moderately, and poorly differentiated OSCC and paraneoplastic tissues were 795.53 ± 47.2 nm, 598.37 ± 45.76 nm, 410.16 ± 38.44 nm, and 1010.94 ± 119.07 nm, respectively. Pearson correlation coefficient demonstrated a positive correlation between PCNP expression and tissue stiffness of OSCC (R = 0.86, P < 0.001). Conclusion The expression of PCNP was positively correlated with patient survival, tumor differentiation, and mechanical properties of tissue interfaces. PCNP is a potential biomarker for the early diagnosis and staging of OSCC. Furthermore, determination of the mechanical properties of the tissue interface could provide further useful information required for the detection and differentiation of OSCC.
Collapse
Affiliation(s)
- Leyang Zhang
- School (Hospital) of Stomatology Lanzhou University, Lanzhou, China,The First Hospital of Lanzhou University, Lanzhou, China
| | - Dingcheng Guo
- School (Hospital) of Stomatology Lanzhou University, Lanzhou, China
| | - Junjie Shen
- School (Hospital) of Stomatology Lanzhou University, Lanzhou, China
| | - Yayuan Zheng
- School (Hospital) of Stomatology Lanzhou University, Lanzhou, China
| | - Junkai Zhai
- School (Hospital) of Stomatology Lanzhou University, Lanzhou, China
| | - Ruiping Li
- School (Hospital) of Stomatology Lanzhou University, Lanzhou, China,Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou University, Lanzhou, China,*Correspondence: Ruiping Li, ; Dengqi He, ; Baoping Zhang,
| | - Dengqi He
- The First Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Ruiping Li, ; Dengqi He, ; Baoping Zhang,
| | - Baoping Zhang
- School (Hospital) of Stomatology Lanzhou University, Lanzhou, China,Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou University, Lanzhou, China,Gansu Provincial Clinical Research Center for Oral Disease, Lanzhou University, Lanzhou, China,Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, China,Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, China,*Correspondence: Ruiping Li, ; Dengqi He, ; Baoping Zhang,
| |
Collapse
|
4
|
A Water-Soluble Hydrogen Sulfide Donor Suppresses the Growth of Hepatocellular Carcinoma via Inhibiting the AKT/GSK-3 β/ β-Catenin and TGF- β/Smad2/3 Signaling Pathways. JOURNAL OF ONCOLOGY 2023; 2023:8456852. [PMID: 36925651 PMCID: PMC10014162 DOI: 10.1155/2023/8456852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is a disease with high morbidity, high mortality, and low cure rate. Hyaluronic acid (HA) is widely adopted in tissue engineering and drug delivery. 5-(4-Hydroxyphenyl)-3H-1, 2-dithiol-3-thione (ADT-OH) is one of commonly used H2S donors. In our previous study, HA-ADT was designed and synthesized via coupling of HA and ADT-OH. In this study, compared with sodium hydrosulfide (NaHS, a fast H2S-releasing donor) and morpholin-4-ium (4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137, a slow H2S-releasing donor), HA-ADT showed stronger inhibitory effect on the proliferation, migration, invasion, and cell cycle of human HCC cells. HA-ADT promoted apoptosis by suppressing the expressions of phospho (p)-protein kinase B (PKB/AKT), p-glycogen synthase kinase-3β (GSK-3β), p-β-catenin, and also inhibited autophagy via the downregulation of the protein levels of p-Smad2, p-Smad3, and transforming growth factor-β (TGF-β) in human HCC cells. Moreover, HA-ADT inhibited HCC xenograft tumor growth more effectively than both NaHS and GYY4137. Therefore, HA-ADT can suppress the growth of HCC cells by blocking the AKT/GSK-3β/β-catenin and TGF-β/Smad2/3 signaling pathways. HA-ADT and its derivatives may be developed as promising antitumor drugs.
Collapse
|
5
|
Cui X, Yao Z, Zhao T, Guo J, Ding J, Zhang S, Liang Z, Wei Z, Zoa A, Tian Y, Li J. siAKR1C3@PPA complex nucleic acid nanoparticles inhibit castration-resistant prostate cancer in vitro. Front Oncol 2022; 12:1069033. [PMID: 36591491 PMCID: PMC9800608 DOI: 10.3389/fonc.2022.1069033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction AKR1C3, as a crucial androgenic enzyme, implicates the androgen biosynthesis and promoting prostate cancer cell growth in vitro. This study provides a new gene therapy strategy for targeting AKR1C3 to treat castration-resistant prostate cancer. Methods siAKR1C3@PPA is assembled from PEG3500, PAMAM, Aptamer-PSMA, and siRNA for AKR1C3. We analyzed the relationship between AKR1C3 expression and the survival rate of prostate cancer patients based on the GEPIA online database to perform disease-free survival, and found that AKR1C3 may be an important factor leading to poor prognosis in prostate cancer. Considering AKR1C3 as a therapeutic target for castration-resistant prostate cancer, we constructed a complex nucleic acid nanoparticle, siAKR1C3@PPA to investigate the inhibitory effect on castration-resistant prostate cancer. Results Aptamer-PSMA acts as a target to guide siAKR1C3@PPA into PSMA-positive prostate cancer cells and specifically down regulate AKR1C3. Cyclin D1 was decreased as a result of siAKR1C3@PPA treatment. Changes in Cyclin D1 were consistent with decreased expression of AKR1C3 in LNCaP-AKR1C3 cells and 22RV1 cells. Furthermore, in the LNCaP-AKR1C3 group, 1070 proteins were upregulated and 1015 proteins were downregulated compared to the LNCaP group according to quantitative 4D label-free proteomics. We found 42 proteins involved in cell cycle regulation. In a validated experiment, we demonstrated that PCNP and CINP were up-regulated, and TERF2 and TP53 were down-regulated by western blotting. Conclusion We concluded that siAKR1C3@PPA may arrest the cell cycle and affect cell proliferation.
Collapse
Affiliation(s)
- Xiaoli Cui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhou Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianyu Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiahui Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jipeng Ding
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zuowen Liang
- Department of Andrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengren Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alexis Zoa
- Department of Pharmacology, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yuantong Tian
- Department of Pharmacology, School of Pharmacy, Gannan Medical University, Ganzhou, China,*Correspondence: Yuantong Tian, ; Jing Li,
| | - Jing Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China,*Correspondence: Yuantong Tian, ; Jing Li,
| |
Collapse
|
6
|
Peng W, Chen J, He R, Tang Y, Jiang J, Li Y. ID2 inhibits lung adenocarcinoma cell malignant behaviors by inhibiting the activation of the PI3K/AKT/mTOR signaling pathway. Tissue Cell 2022; 79:101950. [DOI: 10.1016/j.tice.2022.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 12/09/2022]
|
7
|
Cystathionine β-Synthase Regulates the Proliferation, Migration, and Invasion of Thyroid Carcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8678363. [PMID: 35795862 PMCID: PMC9252770 DOI: 10.1155/2022/8678363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
Thyroid cancer is considered to be one of the most common endocrine tumors worldwide. Cystathionine β-synthase (CBS) plays a crucial role in the occurrence of several types of malignancies. And yet, the mechanism of action of CBS in the growth of thyroid carcinoma cells is still unrevealed. We found that CBS level in thyroid carcinoma tissue was higher than that in adjacent normal tissue. The overexpression of CBS enhanced the proliferation, migration, and invasion of thyroid cancer cells, while the downregulation of CBS exerted reverse effects. CBS overexpression reduced the levels of cleaved caspase-3 and cleaved poly ADP-ribose polymerase in thyroid cancer cells, whereas CBS knockdown showed reverse trends. CBS overexpression decreased reactive oxygen species (ROS) levels but increased the levels of Wnt3a and phosphorylations of phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB/AKT), mammalian target of rapamycin (mTOR), β-catenin, and glycogen synthase kinase-3 beta, while CBS knockdown exerted opposite effects. In addition, CBS overexpression promoted the growth of xenografted thyroid carcinoma, whereas CBS knockdown decreased the tumor growth by modulating angiogenesis, cell cycle, and apoptosis. Furthermore, aminooxyacetic acid (an inhibitor of CBS) dose-dependently inhibited thyroid carcinoma cell growth. CBS can regulate the proliferation, migration, and invasion of human thyroid cancer cells via ROS-mediated PI3K/AKT/mTOR and Wnt/β-catenin pathways. CBS can be a potential biomarker for diagnosing or prognosing thyroid carcinoma. Novel donors that inhibit the expression of CBS can be developed in the treatment of thyroid carcinoma.
Collapse
|
8
|
Wang WT, Fan ML, Hu JN, Sha JY, Zhang H, Wang Z, Zhang JJ, Wang SH, Zheng SW, Li W. Maltol, a naturally occurring flavor enhancer, ameliorates cisplatin-induced apoptosis by inhibiting NLRP3 inflammasome activation by modulating ROS-mediated oxidative stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Xu T, Wu K, Shi J, Ji L, Song X, Tao G, Zheng S, Zhang L, Jiang B. LINC00858 promotes colon cancer progression through activation of STAT3/5 signaling by recruiting transcription factor RAD21 to upregulate PCNP. Cell Death Dis 2022; 8:228. [PMID: 35468892 PMCID: PMC9038718 DOI: 10.1038/s41420-022-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022]
Abstract
The purpose of our investigation is to explore the putative molecular mechanisms underpinning LINC00858 involvement in colon cancer. The expression of LINC00858 in TCGA data was identified using the GEPIA website. Colon cancer cancerous tissues were clinically collected. The expression of LINC00858, RAD21, and PCNP in colon tissues or cells was determined using RT-qPCR. The interactions among LINC00858, RAD21, and PCNP promoter region were determined by means of RNA pull down, RIP, and ChIP assays. Cell proliferative, apoptotic, invasive, and migrated capabilities were evaluated. Western blot was conducted to determine RAD21, PCNP, phosphorylated (p)-STAT3, STAT3, p-STAT5 and STAT5 and apoptosis related proteins. A nude mouse model of colon cancer was constructed and tumorigenesis of colon cancer cells was observed. LINC00858 was upregulated in cancerous tissues and cells. LINC00858 recruited the transcription factor RAD21. Overexpression of LINC00858 promoted the binding of RAD21 and PCNP promoter region, which increased the expression of PCNP. Silencing of RAD21 or PCNP reversed the promoting effect of LINC00858 on the disease initiation and development. PCNP silencing inhibited proliferative ability and promoted apoptotic ability of cancerous cells via STAT3/5 inhibition, which was reversed by colivelin-activated STAT3. In vivo experiments further verified that LINC00858 enhanced the tumorigenicity of colon cancer cells in vivo by regulating the RAD21/PCNP/STAT3/5 axis. It indicated the promoting role of LINC00858 in colon cancer progression though activating PCNP-mediated STAT3/5 pathway by recruiting RAD21.
Collapse
Affiliation(s)
- Ting Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Kun Wu
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Jin Shi
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Lindong Ji
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Xudong Song
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Guoquan Tao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China.
| | - Shutao Zheng
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Li Zhang
- VIP Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Baofei Jiang
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China.
| |
Collapse
|
10
|
Lu Y, Zhang P, Chen H, Tong Q, Wang J, Li Q, Tian C, Yang J, Li S, Zhang Z, Yuan H, Xiang M. Cytochalasin Q exerts anti-melanoma effect by inhibiting creatine kinase B. Toxicol Appl Pharmacol 2022; 441:115971. [PMID: 35276125 DOI: 10.1016/j.taap.2022.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Due to the pivotal role of microfilament in cancer cells, targeting microfilaments with cytochalasins is considered a promising anticancer strategy. Here, we obtained cytochalasin Q (CQ) from Xylaria sp. DO1801, the endophytic fungi from the root of plant Damnacanthus officinarum, and discovered its anti-melanoma activity in vivo and in vitro attributing to microfilament depolymerization. Mechanistically, CQ directly bound to and inactivated creatine kinase B (CKB), an enzyme phosphorylating creatine to phosphocreatine (PCr) and regenerating ATP to cope with high energy demand, and then inhibited the creatine metabolism as well as cytosolic glycolysis in melanoma cells. Preloading PCr recovered ATP generation, reversed microfilament depolymerization and blunted anti-melanoma efficacy of CQ. Knockdown of CKB resulted in reduced ATP level, perturbed microfilament, inhibited proliferation and induced apoptosis, and manifested lower sensitivity to CQ. Further, we found that either CQ or CKB depletion suppressed the PI3K/AKT/FoxO1 pathway, whereas 740Y-P, a PI3K agonist, elevated protein expression of CKB suppressed by CQ. Taken together, our study highlights the significant anti-melanoma effect and proposes a PI3K/AKT/FoxO1/ CKB feedback circuit for the activity of CQ, opening new opportunities for current chemotherapy.
Collapse
Affiliation(s)
- Yi Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongdan Chen
- Breast and Thyroid Surgical Department, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China; Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingyi Tong
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Khan NH, Chen HJ, Fan Y, Surfaraz M, Ahammad MD, Qin YZ, Shahid M, Virk R, Jiang E, Wu DD, Ji XY. Biology of PEST‐Containing Nuclear Protein: A Potential Molecular Target for Cancer Research. Front Oncol 2022; 12:784597. [PMID: 35186732 PMCID: PMC8855108 DOI: 10.3389/fonc.2022.784597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
PEST-containing nuclear protein (PCNP), a novel nuclear protein, is involved in vital cellular processes like cell proliferation and mediates tumorigenesis. PCNP is a short-living, small nuclear protein of only 178 amino acids with two remarkable PEST sequences that are rich in proline (P), glutamic acid (E), serine (S), and threonine (T). The current understanding of PCNP reveals that PCNP has the ability to interact with cell cycle regulatory proteins; tumor suppressors (p53 and pRB), and promoters (cyclin E and cyclin D) to determine the fate of tissues to facilitate the process of either apoptosis or cell proliferation. In many preclinical studies, it has been evaluated that PCNP expression has associations with the development and progression of various cancers like neuroblastoma, lung adenocarcinoma, and ovarian cancer. Based on these depicted novel roles of PCNP in cell cycleregulation and of PCNP in tumorigenesis, it is logical to consider PCNP as a potential molecular target for cancer research. The aim of the current communication is to present an update on PCNP research and discussion on the potential role of PCNP in cancer development with challenges and opportunities perspectives. Considering the available evidence as a baseline for our statement, we anticipate that in the future, new research insights will strengthen the aim to develop PCNP-based diagnostic and therapeutic approaches that will move the PCNP from the laboratory to the cancer clinic.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Fan
- School of Life Sciences, Henan University, Kaifeng, China
| | | | - MD.Faysal Ahammad
- Key Laboratory of Natural Medicine and Immune Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Razia Virk
- Department of Bio-Sciences, University Wah, Rawalpindi, Pakistan
| | - Enshe Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute of Nursing and Health, Henan University, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, Henan University College of Medicine, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
12
|
Epigallocatechin-3-Gallate Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease via Inhibition of Apoptosis and Promotion of Autophagy through the ROS/MAPK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5599997. [PMID: 33953830 PMCID: PMC8068552 DOI: 10.1155/2021/5599997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents one of the most common chronic liver diseases in the world. It has been reported that epigallocatechin-3-gallate (EGCG) plays important biological and pharmacological roles in mammalian cells. Nevertheless, the mechanism underlying the beneficial effect of EGCG on the progression of NAFLD has not been fully elucidated. In the present study, the mechanisms of action of EGCG on the growth, apoptosis, and autophagy were examined using oleic acid- (OA-) treated liver cells and the high-fat diet- (HFD-) induced NAFLD mouse model. Administration of EGCG promoted the growth of OA-treated liver cells. EGCG could reduce mitochondrial-dependent apoptosis and increase autophagy possibly via the reactive oxygen species- (ROS-) mediated mitogen-activated protein kinase (MAPK) pathway in OA-treated liver cells. In line with in vitro findings, our in vivo study verified that treatment with EGCG attenuated HFD-induced NAFLD through reduction of apoptosis and promotion of autophagy. EGCG can alleviate HFD-induced NAFLD possibly by decreasing apoptosis and increasing autophagy via the ROS/MAPK pathway. EGCG may be a promising agent for the treatment of NAFLD.
Collapse
|
13
|
He Y, Su Y, Zhou L. Expression of HER2 and BRCA1 Correlates with Prognosis in Patients with Breast Cancer After Radiotherapy: A Case-Control Study. Cancer Biother Radiopharm 2020; 37:603-611. [PMID: 33112672 DOI: 10.1089/cbr.2020.3607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: This study aims to explore the associations of human epidermal growth factor receptor 2 (HER2) and breast cancer susceptibility gene 1 (BRCA1) expression levels with prognosis and radiation sensitivity in patients with breast cancer. Methods: Breast cancer tissues, adjacent normal breast tissues, and benign breast lesions were initially obtained from 256 breast cancer patients as well as an additional 245 patients with breast lesions. Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was conducted to assess the expression of HER2 and BRCA1 in the collected tissues. Immunohistochemistry was performed to examine HER2 and BRCA1-positive expression levels in the tissues. The relationship between HER2 and BRCA1 expression levels and radiation sensitivity as well breast cancer prognosis was assessed by the Spearman correlation analysis and Kaplan-Meier survival analysis. Results: Compared with adjacent normal breast tissues and benign breast lesions, the breast cancer tissues exhibited high expression of HER2 mRNA and protein and low expression of BRCA1 mRNA and protein. Patients with positive HER2 expression had a significantly shorter survival time, and survival time of patients with positive BRCA1 expression was markedly longer, which were consistent with RT-qPCR results. After radiotherapy, the local failure rate of HER2-positive patients was higher than that of the negative ones, while that of BRCA1-positive patients was lower than that of the negative ones. Conclusions: This study suggested that breast cancer patients with high HER2 expression and low BRCA1 expression were less sensitive to radiotherapy with poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Ye He
- The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yanna Su
- The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Liping Zhou
- Graduate Faculty, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
14
|
Sarfraz M, Afzal A, Khattak S, Saddozai UAK, Li HM, Zhang QQ, Madni A, Haleem KS, Duan SF, Wu DD, Ji SP, Ji XY. Multifaceted behavior of PEST sequence enriched nuclear proteins in cancer biology and role in gene therapy. J Cell Physiol 2020; 236:1658-1676. [PMID: 32841373 DOI: 10.1002/jcp.30011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023]
Abstract
The amino acid sequence enriched with proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) is a signal-transducing agent providing unique features to its substrate nuclear proteins (PEST-NPs). The PEST motif is responsible for particular posttranslational modifications (PTMs). These PTMs impart distinct properties to PEST-NPs that are responsible for their activation/inhibition, intracellular localization, and stability/degradation. PEST-NPs participate in cancer metabolism, immunity, and protein transcription as oncogenes or as tumor suppressors. Gene-based therapeutics are getting the attention of researchers because of their cell specificity. PEST-NPs are good targets to explore as cancer therapeutics. Insights into PTMs of PEST-NPs demonstrate that these proteins not only interact with each other but also recruit other proteins to/from their active site to promote/inhibit tumors. Thus, the role of PEST-NPs in cancer biology is multivariate. It is hard to obtain therapeutic objectives with single gene therapy. An especially designed combination gene therapy might be a promising strategy in cancer treatment. This review highlights the multifaceted behavior of PEST-NPs in cancer biology. We have summarized a number of studies to address the influence of structure and PEST-mediated PTMs on activation, localization, stability, and protein-protein interactions of PEST-NPs. We also recommend researchers to adopt a pragmatic approach in gene-based cancer therapy.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Umair A K Saddozai
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Hui-Min Li
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Department of Histology and Embryology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Bioinformatics Centre, Institute of Biomedical Informatics, Henan University, Kaifeng, Henan, China
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Asadullah Madni
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Kashif S Haleem
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, Henan, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Shao-Ping Ji
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| |
Collapse
|
15
|
Dong P, Fu H, Chen L, Zhang S, Zhang X, Li H, Wu D, Ji X. PCNP promotes ovarian cancer progression by accelerating β-catenin nuclear accumulation and triggering EMT transition. J Cell Mol Med 2020; 24:8221-8235. [PMID: 32548978 PMCID: PMC7348179 DOI: 10.1111/jcmm.15491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Ever reports showed that PCNP is associated with human cancers including neuroblastoma and lung cancer. However, the role and underlying molecular mechanism of PCNP in ovarian cancer have not been plenty elucidated. Herein, we first investigated the expression of PCNP in ovarian cancer tissues and cells, the effects of PCNP in ovarian cancer proliferation, apoptosis, migration and invasion, and determined the molecular mechanism of PCNP in ovarian cancer progression. The results indicated that PCNP was significantly overexpressed in human ovarian cancer tissues and cells, and related to poor prognosis in ovarian cancer patients. In addition, we also detected that PCNP promoted ovarian cancer cells growth, migration and invasion, as well as inhibited ovarian cancer cells apoptosis. Mechanistically, PCNP binding to β-catenin promoted β-catenin nuclear translocation and further activated Wnt/β-catenin signalling pathway. Moreover, PCNP regulated the expression of genes involved in EMT and further triggered EMT occurrence. Conclusionally, PCNP may promote ovarian cancer progression through activating Wnt/β-catenin signalling pathway and EMT, acting as a novel and promising target for treating ovarian cancer.
Collapse
Affiliation(s)
- Pengzhen Dong
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Hao Fu
- Huaihe Hospital, Henan University, Kaifeng, China
| | - Lin Chen
- Department of Histology and Embryology, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shihui Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Huimin Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Department of Histology and Embryology, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dongdong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Stomatology, Henan University, Kaifeng, China
| | - Xinying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, Henan University College of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
16
|
Afzal A, Sarfraz M, Li GL, Ji SP, Duan SF, Khan NH, Wu DD, Ji XY. Taking a holistic view of PEST-containing nuclear protein (PCNP) in cancer biology. Cancer Med 2019; 8:6335-6343. [PMID: 31487123 PMCID: PMC6797571 DOI: 10.1002/cam4.2465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polypeptide sequences enriched with proline (P), glutamic acid (E), aspartic acid (D) and serine (S)/ threonine (T) (PEST) have been reported to be the most abundant and frequently distributed at the cellular level. There is growing evidence that PEST sequences act as proteolytic recognition signals for degradation of residual proteins which is critical for activation or deactivation of regulatory proteins involved in cellular signaling pathways of cell growth, differentiation, stress responses and physiological death. A PEST containing nuclear protein (PCNP) was demonstrated as a tumor suppressor in a neuroblastoma cancer model and tumor promoter in lung adenocarcinoma cancer model. Its unique properties like ubiquitination by NIRF, co‐localization with NIRF in nucleus and tumor progression attract the attention of researchers. PCNP was reported to be ubiquitinated by ring finger protein NIRF in E3 ligase manner and as modulator of MAPK and PI3K/AKT/mTOR signaling pathways. In this review, we summarize PCNP linked DNA damage response, Post translational modifications, and transportation to address initiation, prognosis, and resistance of tumor cells in terms of cell cycle regulation, transcription and apoptosis. Hence, we demonstrate PCNP as a novel target in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.,Muncipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Guang-Lei Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Ping Ji
- Muncipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety (KLIBS), Henan University College of Medicine, Kaifeng, China
| |
Collapse
|