1
|
Duan Y, Fang H, Wang J, Ruan B, Yang J, Liu J, Gou S, Li Y, Cheng Z. DcR3-associated risk score: correlating better prognosis and enhanced predictive power in colorectal cancer. Discov Oncol 2024; 15:233. [PMID: 38890197 PMCID: PMC11189376 DOI: 10.1007/s12672-024-01082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Decoy receptor 3 (DcR3), a novel soluble protein belonging to the tumor necrosis factor receptor (TNFR) family, has been previously associated with tumorigenesis in various cancers. However, in our study, we unexpectedly found that DcR3 may promote patient survival time in colorectal cancer (CRC). Through an analysis of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, we discovered that high levels of DcR3 are associated with improved overall survival (OS) and disease-free survival (DFS) in CRC patients. Further investigation revealed that DcR3 is correlated with favorable clinical features in Metastasis 0 (M0) and stage I/II CRC patients, suggesting it may act as a suppressive factor in CRC. Gene Set Enrichment Analysis (GSEA) demonstrated that the high DcR3 group is enriched in the IL-17 signaling pathway and other immune-related pathways, and Single Sample Gene Set Enrichment Analysis (ssGSEA) revealed a higher abundance of Tumor Infiltrating Lymphocytes (TIL) in the DcR3 high group. To better understand the function of DcR3, we constructed a DcR3-associated riskscore (DARS) model using machine learning, comprising three genes (DPP7, KDM3A, and TMEM86B). The DARS model indicated that high riskscore patients have an unfavorable prognosis, and it is associated with advanced stages (III/IV), T3/4 tumors, and N1/2 lymph node involvement. Additionally, high riskscore group exhibited more frequent gene mutations, such as TTN, MUC16, and SYNE1, with SYNE1 mutation being related to poor prognosis. Intriguingly, DcR3 showed higher expression in the low riskscore group. These results suggest that DcR3 could serve as a potential prognostic biomarker in CRC and may play a crucial role in favorably modulating the immune response in this malignancy.
Collapse
Affiliation(s)
- Ying Duan
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China.
| | - Hangrong Fang
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Juanhong Wang
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Banlai Ruan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China
| | - Juan Yang
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Jie Liu
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Siqi Gou
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Yijie Li
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Zhengyi Cheng
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Augustin RC, Newman S, Li A, Joy M, Lyons M, Pham MP, Lucas P, Smith K, Sander C, Isett B, Davar D, Najjar YG, Zarour HM, Kirkwood JM, Luke JJ, Bao R. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. J Immunother Cancer 2023; 11:e007567. [PMID: 37857525 PMCID: PMC10603348 DOI: 10.1136/jitc-2023-007567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Acral melanoma (AM) has distinct characteristics as compared with cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICIs). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3+CD8+PD1+ intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low versus high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared with responders across cancers, including AM, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.
Collapse
Affiliation(s)
- Ryan C Augustin
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Newman
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Aofei Li
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Maureen Lyons
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Mary P Pham
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Peter Lucas
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katelyn Smith
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Brian Isett
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hassane M Zarour
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John M Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason John Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Augustin RC, Newman S, Li A, Joy M, Lyons M, Pham M, Lucas PC, Smith K, Sander C, Isett B, Davar D, Najjar YG, Zarour HM, Kirkwood JM, Luke JJ, Bao R. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554717. [PMID: 37662409 PMCID: PMC10473736 DOI: 10.1101/2023.08.24.554717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Acral melanoma (AM) has distinct characteristics as compared to cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICI). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. Methods We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. Results 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3 + CD8 + PD1 + intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low vs high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared to responders across cancers, including acral melanoma, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. Conclusions A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.
Collapse
|
4
|
Su J, Tong Z, Wu S, Zhou F, Chen Q. Research Progress of DcR3 in the Diagnosis and Treatment of Sepsis. Int J Mol Sci 2023; 24:12916. [PMID: 37629097 PMCID: PMC10454171 DOI: 10.3390/ijms241612916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Decoy receptor 3 (DcR3), a soluble glycosylated protein in the tumor necrosis factor receptor superfamily, plays a role in tumor and inflammatory diseases. Sepsis is a life-threatening organ dysfunction caused by the dysregulation of the response to infection. Currently, no specific drug that can alleviate or even cure sepsis in a comprehensive and multi-level manner has been found. DcR3 is closely related to sepsis and considerably upregulated in the serum of those patients, and its upregulation is positively correlated with the severity of sepsis and can be a potential biomarker for diagnosis. DcR3 alone or in combination with other markers has shown promising results in the early diagnosis of sepsis. Furthermore, DcR3 is a multipotent immunomodulator that can bind FasL, LIGHT, and TL1A through decoy action, and block downstream apoptosis and inflammatory signaling. It also regulates T-cell and macrophage differentiation and modulates immune status through non-decoy action; therefore, DcR3 could be a potential drug for the treatment of sepsis. The application of DcR3 in the treatment of a mouse model of sepsis also achieved good efficacy. Here, we introduce and discuss the progress in, and suggest novel ideas for, research regarding DcR3 in the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Z.T.); (S.W.); (F.Z.)
| |
Collapse
|
5
|
Tang J, Cao Y, Zhang H, Wang R. Oxymatrine inhibits the development of radioresistance in NSCLC cells by reversing EMT through the DcR3/AKT/GSK-3β pathway. Arch Med Sci 2023; 20:1631-1654. [PMID: 39649262 PMCID: PMC11623166 DOI: 10.5114/aoms/158533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/24/2022] [Indexed: 12/10/2024] Open
Abstract
Introduction Lung cancer is the leading cause of cancer-associated mortality globally. In particular, non-small cell lung cancer (NSCLC) constitutes the largest percentage of all cases of lung cancer. In clinical practice, radioresistance contributes to poor responses to radiotherapy. Therefore, the demand remains to explore potential novel and effective mechanism underlying radioresistance to improve the efficacy of radiotherapy for NSCLC. Material and methods Western blotting was conducted to quantify the protein expression of epithelial-mesenchymal transition markers E-cadherin and vimentin in the A549 cell line. The proliferation of A549 cells was measured using the Cell Counting Kit-8 and colony forming assays. In addition, the apoptosis of A549 cells was analyzed by flow cytometry. Invasion and migration by NSCLC cells were quantified using Transwell and wound healing assays. Plasmids were used to overexpress decoy receptor 3 (DcR3) in A549 cells. Xenograft models were established to measure the extent of NSCLC tumor growth in vivo. Results Our study clarified the activation of the DcR3/protein kinase B (AKT)/glycogen synthase kinase 3β (GSK-3β) pathway in radioresistant NSCLC cells. Oxymatrine (OMT) treatment restored radiosensitivity and inhibited irradiation-induced epithelial-mesenchymal transition (EMT), invasion and migration in NSCLC cells through the DcR3/AKT/GSK-3β pathway in vitro. By contrast, OMT treatment promoted the suppressive effects of radiation on the weight and volume of the xenograft tumors in animal models. Conclusions OMT suppressed the development of radioresistance in NSCLC cells by promoting radiosensitivity, through the reversal of EMT process by inhibiting the DcR3/AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Jianming Tang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Cao
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Zhang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Tabakhiyan F, Mir A, Vahedian V. Potential tumor marker for hepatocellular carcinoma identification: PI3K and pro-inflammatory cytokines (TGF-β, IL-1, and IL-6). Horm Mol Biol Clin Investig 2022; 43:389-396. [PMID: 35709206 DOI: 10.1515/hmbci-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC), the most common form of liver cancer, is a leading cause of tumor-associated mortality worldwide. Diagnosis based upon non-invasive criteria is currently challenged by the need for molecular information that requires tissue or liquid biopsies. The progression of HCC is often associated with chronic inflammation, expression levels of inflammatory mediators, chemokine, and cytokines. In this study, we try to evaluate the PI3K and pro-inflammatory cytokines, TGF-β, IL-1, and IL-6 expression level in patients with liver cancer. MATERIALS AND METHODS The kupffer cells were isolated from patient's specimens. Real-time PCR was applied to evaluate the expression level of PI3K in cell lines or tumors. The concentrations of TGF-β, IL-1, and IL-6 were measured by the quantitative ELISA kit. RESULTS PI3K mRNA expression in cancer cells was increased markedly vs. normal cells. The ELISA results demonstrated over expression of TGF-β, IL-1, and IL-6 in patients and positive correlation between tumor size and stage. DISCUSSION This study suggests that targeting the expression level of PI3K and pro-inflammatory chemokine and cytokines, TGF-β, IL-1, and IL-6, may be a potential diagnostic strategy in HCC patients.
Collapse
Affiliation(s)
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Islamic Republic of Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Sao Paulo, Brazil
| |
Collapse
|
7
|
A Lamin Family-Based Signature Predicts Prognosis and Immunotherapy Response in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:4983532. [DOI: 10.1155/2022/4983532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background. Lamin family members play crucial roles in promoting oncogenesis and cancer development. The values of lamin family in predicting prognosis and immunotherapy response remain largely unclarified. Our research is aimed at comprehensively estimating the clinical significance of lamin family in hepatocellular carcinoma and constructing a novel lamin family-based signature to predict prognosis and guide the precise immunotherapy. Methods. The expression features and prognostic value of LMNA, LMNB1, and LMNB2 were explored in the TCGA and GEO databases. The biological functions of LMNB1 and LMNB2 were validated by in vitro assays. A lamin family-based signature was built using the TCGA training set. The TCGA test set, entire TCGA set, and GSE14520 set were used to validate its predictive power. Univariate and multivariate analyses were performed to evaluate the independence of the lamin family-based signature from other clinicopathological characteristics. A nomogram was constructed using the lamin family-based signature and TNM stage. The associations of this signature with molecular pathways, clinical characteristics, immune cell infiltration, and immunotherapy response were analyzed. Results. Lamin family members were upregulated in HCC. Upregulation of LMNB1 and LMNB2 promoted HCC proliferation, migration, and invasion. The predictive signature was initially established based on LMNB1 and LMNB2 which could effectively identify differences in overall survival, immune cell infiltration, and clinicopathological characteristics of high- and low-risk patients. The nomogram showed high prognostic predictive accuracy. Importantly, the lamin family-based signature was correlated with immune suppression and expression of immune checkpoint molecules. Conclusions. The lamin family-based signature is a robust biomarker to predict overall survival and immunotherapy response in HCC. High-risk score patients have a poorer overall survival and might be more sensitive to immunotherapy. This signature may contribute to improving individualized prognosis prediction and precision immunotherapy for HCC patients.
Collapse
|
8
|
Kim SY, Ban HJ, Lee S, Jin HJ. Regulation of CIRP by genetic factors of SP1 related to cold sensitivity. Front Immunol 2022; 13:994699. [PMID: 36189232 PMCID: PMC9524288 DOI: 10.3389/fimmu.2022.994699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cold-inducible RNA-binding-protein (CIRP) is a cold shock protein that plays a protective role in genotoxic stress response. CIRP modulates inflammation in human diseases, inhibits cell proliferation, and protects cells from genotoxic damage during cellular stress. The mild cold responsive element and specificity protein 1 (SP1) play a role in Cirp expression at low temperatures. Although previous studies have provided insights into the immune functions of SP1 or CIRP, the mechanisms by which CIRP and SP1 me diate inflammatory responses remain largely unknown. Therefore, in the current study, we examined whether Cirp expression is affected by genetic factors related to temperature sensitivity as well as under low temperature. We performed a genome-wide association study on cold sensitivity in 2,000 participants. Fifty-six genome-wide significant trait-locus pairs were identified (p<1×10-5, false discovery rate < 0.05). Among these variants, rs1117050 and rs11170510 had a strong linkage disequilibrium (r2 > 0.8) relationship and expression quantitative trait locus-associated signals with the nearest Sp1 gene. We confirmed that the minor alleles of rs11170510 and rs58123204 were associated with increased Sp1 expression. Additionally, Sp1 overexpression led to CIRP translocation from the nucleus to the cytoplasm. CIRP protein levels increased in serum samples that had minor alleles of rs11170510 and rs58123204. Levels of various pro-inflammatory cytokines were also significantly increased in human peripheral blood mononuclear cells with minor alleles of rs11170510 and rs58123204. These results suggest that genetic factors related to cold sensitivity regulate CIRP expression and function and provide valuable insights into prediction of potential diseases through analysis of inherent genetic factors in humans.
Collapse
|
9
|
Yin T, Zhao H. miR-152-3p impedes the malignant phenotypes of hepatocellular carcinoma by repressing roundabout guidance receptor 1. Cell Mol Biol Lett 2022; 27:22. [PMID: 35236289 PMCID: PMC8903719 DOI: 10.1186/s11658-022-00322-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND miR-152-3p functions as a tumour suppressor in the progression of hepatic tumorigenesis. Herein, we further discussed the prognostic significance and immune infiltration of miR-152-3p and its potential gene target in hepatocellular carcinoma (HCC). METHODS The Cancer Genome Atlas (TCGA), Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB), Human Protein Atlas (HPA) and Kaplan-Meier Plotter databases were used to evaluate miR-152-3p and roundabout guidance receptor 1 (ROBO1) expression, prognosis and immune infiltration. In vitro cell experiments, including cell proliferation and apoptosis, were evaluated using Cell Counting Kit 8 (CCK8) and terminal-deoxynucleotidyl transferase-mediated nick end labelling (TUNEL) assays. RESULTS Up-regulation of ROBO1 functioned as an oncogene associated with poor prognosis, immune cell enrichment and cell proliferation in HCC. ROBO1 was significantly positively correlated with the enrichment of multiple immune cells and their biomarkers. Enrichment of type-2 T-helper (Th2) cells is an unfavourable biomarker of HCC prognosis. GSEA revealed that ROBO1 correlated with apoptosis, mitosis and carcinogenic signalling pathways. Suppression of cell proliferation and the enhancement of cell apoptosis by miR-152-3p mimics were counteracted by overexpression of ROBO1 in HCC cells. CONCLUSION ROBO1 expression is positively correlated with multiple immune checkpoint molecules, suggesting that ROBO1 may be a potential drug target to enhance the potency of immunotherapy. The miR-152-3p/ROBO1 signalling axis contributes to malignant progression and provides a prospective immunotherapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Yin
- Department of General Surgery, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, Songshan, Chifeng, 024005, China.
| | - Haonan Zhao
- Department of General Surgery, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, Songshan, Chifeng, 024005, China
| |
Collapse
|
10
|
Hao X, Sun G, Zhang Y, Kong X, Rong D, Song J, Tang W, Wang X. Targeting Immune Cells in the Tumor Microenvironment of HCC: New Opportunities and Challenges. Front Cell Dev Biol 2021; 9:775462. [PMID: 34869376 PMCID: PMC8633569 DOI: 10.3389/fcell.2021.775462] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Immune associated cells in the microenvironment have a significant impact on the development and progression of hepatocellular carcinoma (HCC) and have received more and more attention. Different types of immune-associated cells play different roles, including promoting/inhibiting HCC and several different types that are controversial. It is well known that immune escape of HCC has become a difficult problem in tumor therapy. Therefore, in recent years, a large number of studies have focused on the immune microenvironment of HCC, explored many mechanisms worth identifying tumor immunosuppression, and developed a variety of immunotherapy methods as targets, laying the foundation for the final victory in the fight against HCC. This paper reviews recent studies on the immune microenvironment of HCC that are more reliable and important, and provides a more comprehensive view of the investigation of the immune microenvironment of HCC and the development of more immunotherapeutic approaches based on the relevant summaries of different immune cells.
Collapse
Affiliation(s)
- Xiaopei Hao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Xie Q, Chu H, Yi J, Yu H, Gu T, Guan Y, Liu X, Liang J, Li Y, Wang J. Identification of a prognostic immune-related signature for small cell lung cancer. Cancer Med 2021; 10:9115-9128. [PMID: 34741430 PMCID: PMC8683526 DOI: 10.1002/cam4.4402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose As a subgroup of lung cancer, small cell lung cancer (SCLC) is characterized by a short tumor doubling time, high rates of early occurred distant cancer spread, and poor outcomes. Despite its exquisite sensitivity to chemotherapy and radiotherapy, acquired drug resistance and tumor progression are typical. This study aimed to develop a robust signature based on immune‐related genes to predict the outcome of patients with SCLC. Methods The expression data of 77 SCLC patients from George's cohort were divided into training set and testing set, and 1534 immune‐related genes from ImmPort database were used to generate and validate the signature. Cox proportional hazards and the Kaplan–Meier analysis were used for developing and testing the prognostic signature. Single‐sample gene set enrichment analysis was used to determine immune cell infiltration phenotypes. Results A 10‐gene model comprising NR3C1, NR1D2, TANK, ARAF, HDGF, INHBE, LRSAM1, PLXNA1, PML, and SP1 with the highest frequency after 1000 interactions, was chosen to construct immune‐related signature. This signature showed robust predictive value for SCLC patients’ survival in both training and testing sets. This signature was weakly associated with the clinic pathological values like TNM stage. Furthermore, patients with low risk presented with activation of immune signal pathways, and specific immune cell infiltration with high levels of CD56bright NK cells but low levels of CD8+ T cells, mast cells, and helper T cells. Conclusion The present study developed immune‐related signature that may help predict the prognosis of SCLC patients, which reflects an unappreciated level of heterogeneity of immunophenotype associated with diverse prognosis for specific subsets in this highly lethal cancer type.
Collapse
Affiliation(s)
- Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Huili Chu
- Department of Oncology, No. 960 Hospital, The People's Liberation Army of China, Jinan, China
| | - Jian Yi
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Hui Yu
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Tiantian Gu
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Yaping Guan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
12
|
Lindblad KE, Ruiz de Galarreta M, Lujambio A. Tumor-Intrinsic Mechanisms Regulating Immune Exclusion in Liver Cancers. Front Immunol 2021; 12:642958. [PMID: 33981303 PMCID: PMC8107356 DOI: 10.3389/fimmu.2021.642958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Representing the fourth leading cause of cancer-related mortality worldwide, liver cancers constitute a major global health concern. Hepatocellular carcinoma (HCC), the most frequent type of liver cancer, is associated with dismal survival outcomes and has traditionally had few treatment options available. In fact, up until 2017, treatment options for advanced HCC were restricted to broad acting tyrosine kinase inhibitors, including Sorafenib, which has been the standard of care for over a decade. Since 2017, a multitude of mono- and combination immunotherapies that include pembrolizumab, nivolumab, ipilumumab, atezolizumab, and bevacizumab have been FDA-approved for the treatment of advanced HCC with unprecedented response rates ranging from 20 to 30% of patients. However, this also means that ~70% of patients do not respond to this treatment and currently very little is known regarding mechanisms of action of these immunotherapies as well as predictors of response to facilitate patient stratification. With the recent success of immunotherapies in HCC, there is a pressing need to understand mechanisms of tumor immune evasion and resistance to these immunotherapies in order to identify biomarkers of resistance or response. This will enable better patient stratification as well as the rational design of combination immunotherapies to restore sensitivity in resistant patients. The aim of this review is to summarize the current knowledge to date of tumor-intrinsic mechanisms of immune escape in liver cancer, specifically in the context of HCC.
Collapse
Affiliation(s)
- Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
13
|
MiR-139-5p influences hepatocellular carcinoma cell invasion and proliferation capacities via decreasing SLITRK4 expression. Biosci Rep 2021; 40:222640. [PMID: 32285917 PMCID: PMC7199452 DOI: 10.1042/bsr20193295] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/29/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
The microRNA, miR-139-5p, has been proved to play important roles in regulating tumor progression, including prostate cancer, osteosarcoma, esophageal cancer, and so on, but its correlation of hepatocellular carcinoma (HCC) still remains unclear. Here we found that hsa-miR-139-5p (miR-139-5p) was decreased in HCC samples compared with normal liver tissues, and a lower expression of miR-139-5p was connected to a poorer prognosis. Mechanism study indicated that a decreased/increased miR-139-5p could increase/decrease HCC cells invasion and proliferation capacities via increasing SLITRK4 expression, what’s more, the reverse assays also confirmed the conclusion when we knocked down SLITRK4 in the miR-139-5p low-expression cells. Luciferase assay confirmed that miR-139-5p could directly bind to the 3′UTR of SLITRK4 mRNA to regulate its expression. Together, these findings show the importance of miR-139-5p/SLITRK4 pathway in HCC growth and progression and may provide new targets for us to better arrange the progression of HCC.
Collapse
|
14
|
Meng Q, Tian J, Qin F, Huang X, Zhu D, Xiang B, Dong M. Protein tyrosine phosphatase receptor type delta (PTPRD) suppresses the expression of PD-L1 in human hepatocellular carcinoma by down-regulating STAT3. Transl Cancer Res 2020; 9:5574-5584. [PMID: 35117921 PMCID: PMC8798851 DOI: 10.21037/tcr-20-2425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Protein tyrosine phosphatase receptor type delta (PTPRD) is a tumor suppressor that is often inactivated in hepatocellular carcinoma (HCC). However, the mechanisms of how PTPRD inhibits HCC are not well understood. Programmed cell death ligand 1 (PD-L1), an immune checkpoint, plays a seminal role in the regulation of carcinogenesis of HCC. The sustained activation of STAT3 is closely related to PTPRD deletion and PD-L1 overexpression; however, whether there is a relationship between PTPRD and PD-L1 expression in HCC has not been investigated. This study aims to investigate the relationship between PTPRD and PD-L1 in HCC samples and illuminate potential new molecular mechanisms of PTPRD effects on PD-L1 in HepG2 cells. METHODS We collected 16 pairs of tumorous tissues and adjacent normal tissues from HCC patients. The mRNA and protein expression levels of PTPRD and PD-L1 in the HCC tissues were detected by RT-PCR and Western blot analysis. Next, Spearman's correlation analysis was performed to evaluate the relationship between PTPRD and PD-L1. Then, we transfected the overexpressed or knocked-down PTPRD genes into the HepG2 cell line, and the effects of PTPRD on PD-L1 in HCC cells were evaluated. The activity from the STAT3 and p-STAT3 in the HepG2 cells transfected with PTPRD gene overexpression and knockdown was determined by Western blotting tests. RESULTS The expression of PTPRD was significantly down-regulated in the HCC tissues compared with the adjacent control tissues; however, PD-L1 was significantly higher in the HCC tissues. There was a negative correlation between PTPRD and PD-L1 expression in the HCC tissues. PTPRD over-expression significantly inhibited PD-L1 expression; meanwhile, PTPRD depletion promoted PD-L1 expression in the HepG2 cells. Furthermore, PTPRD over-expression significantly inhibited the expression of STAT3 and p-STAT3, while PTPRD depletion promoted these cytokines. Our studies revealed that PTPRD repressed PD-L1 expression in the HepG2 cells, which might occur via the STAT3 pathway. CONCLUSIONS The results from our study show that PTPRD and PD-L1 are negatively correlated in HCC tissues. PTPRD suppresses PD-L1 expression in HepG2 cells by down-regulating STAT3. These findings are expected to become a new target for the immunotherapy of HCC.
Collapse
Affiliation(s)
- Qiuhua Meng
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Jing Tian
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Feizhang Qin
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xuejing Huang
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Dan Zhu
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Bangde Xiang
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Min Dong
- School of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Zhang R, Xu L, An X, Sui X, Lin S. Astragalus polysaccharides attenuate pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition and NF-κB pathway activation. Int J Mol Med 2020; 46:331-339. [PMID: 32319542 PMCID: PMC7255476 DOI: 10.3892/ijmm.2020.4574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Astragalus polysaccharides (APS), the active ingredients isolated from the plant Astragalus, have been reported to have numerous biological activities, including anti‑inflammatory and antitumor activities. However, the effect of APS on pulmonary fibrosis (PF) remains unknown. The present study aimed to evaluate the protective effect of APS against PF and to explore its underlying mechanisms by using in vivo and in vitro models. A mouse in vivo model of bleomycin‑induced PF and an in vitro model of transforming growth factor β1 (TGF‑β1)‑stimulated human lung epithelial A549 cells were established. Histopathologic examination and collagen deposition were investigated by hematoxylin and eosin staining and Masson staining, and by detecting the hydroxyproline content. The expression of related genes was analyzed by western blotting, reverse transcription‑quantitative (RT‑q) PCR, immunofluorescence and immunohistochemistry. The results from the in vivo mouse model demonstrated that treatment with APS could ameliorate collagen deposition and reduce fibrotic area and hydroxyproline content in the matrix. Furthermore, APS significantly inhibited the epithelial‑mesenchymal transition (EMT), as evidenced by an increased level of E‑cadherin and a decreased expression of vimentin and alpha smooth muscle actin. Furthermore, APS treatment significantly decreased TGF‑β1‑induced EMT and NF‑κB pathway activation in vitro. The results from the present study provided new insights on PF regression via the anti‑fibrotic effects of APS.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Internal Medicine, The Wuyun Mountain Sanatorium of Hangzhou
| | - Liming Xu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xiaoxia An
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University
| | - Shuang Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
16
|
Feng Y, Su H, Li Y, Luo C, Xu H, Wang Y, Sun H, Wan G, Zhou B, Bu X. Degradation of intracellular TGF-β1 by PROTACs efficiently reverses M2 macrophage induced malignant pathological events. Chem Commun (Camb) 2020; 56:2881-2884. [PMID: 32037404 DOI: 10.1039/c9cc08391j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first proteolysis targeting chimeras for the intracellular elimination of transforming growth factor-β1 (TGF-β1), which contributes to various diseases, are described. The appropriately designed DT-6 could efficiently degrade intracellular TGF-β1, and inhibit M2 macrophage induced epithelial to mesenchymal transition and invasive migration of cancer cells.
Collapse
Affiliation(s)
- Yanqiao Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | - Hui Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | - Yunzhi Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | - Chunxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | - Huiying Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | - Youqiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | - Haixia Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | - Guohui Wan
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | - Binhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China. and School of Chinese Pharmacy, Guizhou Minzu University, Guiyang 550025, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| |
Collapse
|