1
|
Chen L, Xu YX, Wang YS, Zhou JL. Lipid metabolism, amino acid metabolism, and prostate cancer: a crucial metabolic journey. Asian J Androl 2024; 26:123-134. [PMID: 38157428 PMCID: PMC10919422 DOI: 10.4103/aja202363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/08/2023] [Indexed: 01/03/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in males worldwide, and its development and progression involve the regulation of multiple metabolic pathways. Alterations in lipid metabolism affect the proliferation and metastatic capabilities of PCa cells. Cancer cells increase lipid synthesis and regulate fatty acid oxidation to meet their growth and energy demands. Similarly, changes occur in amino acid metabolism in PCa. Cancer cells exhibit an increased demand for specific amino acids, and they regulate amino acid transport and metabolic pathways to fulfill their proliferation and survival requirements. These changes are closely associated with disease progression and treatment response in PCa cells. Therefore, a comprehensive investigation of the metabolic characteristics of PCa is expected to offer novel insights and approaches for the early diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Deng C, Ye C, Liao X, Zhou F, Shi Y, Zhong H, Huang J. KMT2A maintains stemness of gastric cancer cells through regulating Wnt/β-catenin signaling-activated transcriptional factor KLF11. Open Med (Wars) 2023; 18:20230764. [PMID: 38025523 PMCID: PMC10655684 DOI: 10.1515/med-2023-0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
The molecular mechanisms of epigenetic regulation in gastric cancer development are not yet well established. In this study, we demonstrated that KMT2A was highly expressed in gastric cancer and associated with poor outcomes of patients and revealed that KMT2A was significantly associated with stemness and increased nuclear β-catenin in gastric cancer. Mechanistically, KMT2A activated the translocation of β-catenin into the nucleus of gastric cancer cells, and then, β-catenin served as a coactivator of KLF11, which promoted the expression of specific gastric cancer stemness-related molecules, including SOX2 and FOXM1. Together, KMT2A is an important epigenetic regulator of gastric cancer stemness, which provides a novel insight to the potential application of targeting against KMT2A in treating gastric cancer.
Collapse
Affiliation(s)
- Chongwen Deng
- Department of General Surgery, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People’s Republic of China
| | - Chunhua Ye
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Xiwang Liao
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Fuyin Zhou
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Youxiong Shi
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Hong Zhong
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Junbiao Huang
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| |
Collapse
|
3
|
Chen Y, Wu XL, Hu HB, Yang SN, Zhang ZY, Fu GL, Zhang CT, Li ZM, Wu F, Si KW, Ma YB, Ji SF, Zhou JS, Ren XY, Xiao XL, Liu JX. Neuronal MeCP2 in the dentate gyrus regulates mossy fiber sprouting of mice with temporal lobe epilepsy. Neurobiol Dis 2023; 188:106346. [PMID: 37931884 DOI: 10.1016/j.nbd.2023.106346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Xiao-Lin Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China
| | - Hai-Bo Hu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China
| | - Shu-Nan Yang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Zi-Yi Zhang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Guan-Ling Fu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China
| | - Chu-Tong Zhang
- Qide College, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zi-Meng Li
- Zonglian College, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feng Wu
- Center of Teaching and Experiment for Medical Postgraduates, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Kai-Wei Si
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Yan-Bing Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China
| | - Sheng-Feng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China
| | - Jin-Song Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China
| | - Xiao-Yong Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xin-Li Xiao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China.
| | - Jian-Xin Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China.
| |
Collapse
|
4
|
Chen Y, Tu MJ, Han F, Liu Z, Batra N, Lara PN, Chen HW, Bi H, Yu AM. Use of recombinant microRNAs as antimetabolites to inhibit human non-small cell lung cancer. Acta Pharm Sin B 2023; 13:4273-4290. [PMID: 37799388 PMCID: PMC10547963 DOI: 10.1016/j.apsb.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
During the development of therapeutic microRNAs (miRNAs or miRs), it is essential to define their pharmacological actions. Rather, miRNA research and therapy mainly use miRNA mimics synthesized in vitro. After experimental screening of unique recombinant miRNAs produced in vivo, three lead antiproliferative miRNAs against human NSCLC cells, miR-22-3p, miR-9-5p, and miR-218-5p, were revealed to target folate metabolism by bioinformatic analyses. Recombinant miR-22-3p, miR-9-5p, and miR-218-5p were shown to regulate key folate metabolic enzymes to inhibit folate metabolism and subsequently alter amino acid metabolome in NSCLC A549 and H1975 cells. Isotope tracing studies further confirmed the disruption of one-carbon transfer from serine to folate metabolites by all three miRNAs, inhibition of glucose uptake by miR-22-3p, and reduction of serine biosynthesis from glucose by miR-9-5p and -218-5p in NSCLC cells. With greater activities to interrupt NSCLC cell respiration, glycolysis, and colony formation than miR-9-5p and -218-5p, recombinant miR-22-3p was effective to reduce tumor growth in two NSCLC patient-derived xenograft mouse models without causing any toxicity. These results establish a common antifolate mechanism and differential actions on glucose uptake and metabolism for three lead anticancer miRNAs as well as antitumor efficacy for miR-22-3p nanomedicine, which shall provide insight into developing antimetabolite RNA therapies.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Fangwei Han
- School of Public Health, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Primo N. Lara
- Department of Internal Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Li J, Huang X, Chen H, Gu C, Ni B, Zhou J. LINC01088/miR-22/CDC6 Axis Regulates Prostate Cancer Progression by Activating the PI3K/AKT Pathway. Mediators Inflamm 2023; 2023:9207148. [PMID: 37501932 PMCID: PMC10371595 DOI: 10.1155/2023/9207148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 07/29/2023] Open
Abstract
Background Prostate cancer (PCa) harms the male reproductive system, and lncRNA may play an important role in it. Here, we report that the LINC01088/microRNA- (miRNA/miR-) 22/cell division cycle 6 (CDC6) axis regulated through the phosphatidylinositide 3-kinases- (PI3K-) protein kinase B (AKT) signaling pathway controls the development of PCa. Methods lncRNA/miRNA/mRNA associated with PCa was downloaded and analyzed by Gene Expression Omnibus. The expression and correlation of LINC01088/miR-22/CDC6 in PCa were analyzed and verified by RT-qPCR. Dual-luciferase was used to analyze the binding between miR-22 and LINC01088 or CDC6. Cell Counting Kit-8 and Transwell were used to analyze the effects of LINC01088/miR-22/CDC6 interactions on PCa cell viability or migration/invasion ability. Localization of LINC01088 in cells was analyzed by nuclear cytoplasmic separation. The effect of LINC01088/miR-22/CDC6 interaction on downstream PI3K/AKT signaling was analyzed by Western blot. Results LINC01088 or CDC6 was upregulated in prostate tumor tissues or cells, whereas miR-22 was downregulated, miR-22 directly targets both LINC01088 and CDC6. si-LINC01088 inhibits the PCa process by suppressing the PI3K/AKT pathway. CDC6 reverses si-linc01088-mediated cell growth inhibition and reduction of PI3K and AKT protein levels. Conclusion Our results demonstrate that the LINC01088/miR-22/CDC6 axis functions in PCa progression and provide a promising diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Jianwei Li
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Xinghua Huang
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Haodong Chen
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Caifu Gu
- Department of Thyroid and Breast Surgery, Longgang Central Hospital, Shenzhen, Guangdong 518000, China
| | - Binyu Ni
- Department of Pediatrics, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, China
| | - Jianhua Zhou
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| |
Collapse
|
6
|
Nejati-Koshki K, Roberts CT, Babaei G, Rastegar M. The Epigenetic Reader Methyl-CpG-Binding Protein 2 (MeCP2) Is an Emerging Oncogene in Cancer Biology. Cancers (Basel) 2023; 15:2683. [PMID: 37345019 PMCID: PMC10216337 DOI: 10.3390/cancers15102683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Epigenetic mechanisms are gene regulatory processes that control gene expression and cellular identity. Epigenetic factors include the "writers", "readers", and "erasers" of epigenetic modifications such as DNA methylation. Accordingly, the nuclear protein Methyl-CpG-Binding Protein 2 (MeCP2) is a reader of DNA methylation with key roles in cellular identity and function. Research studies have linked altered DNA methylation, deregulation of MeCP2 levels, or MECP2 gene mutations to different types of human disease. Due to the high expression level of MeCP2 in the brain, many studies have focused on its role in neurological and neurodevelopmental disorders. However, it is becoming increasingly apparent that MeCP2 also participates in the tumorigenesis of different types of human cancer, with potential oncogenic properties. It is well documented that aberrant epigenetic regulation such as altered DNA methylation may lead to cancer and the process of tumorigenesis. However, direct involvement of MeCP2 with that of human cancer was not fully investigated until lately. In recent years, a multitude of research studies from independent groups have explored the molecular mechanisms involving MeCP2 in a vast array of human cancers that focus on the oncogenic characteristics of MeCP2. Here, we provide an overview of the proposed role of MeCP2 as an emerging oncogene in different types of human cancer.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 85991-56189, Iran;
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 57157-89400, Iran;
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
7
|
Sun W, Liu R, Gao X, Lin Z, Tang H, Cui H, Zhao E. Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers. Biomark Res 2023; 11:48. [PMID: 37147729 PMCID: PMC10161514 DOI: 10.1186/s40364-023-00487-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
The serine-glycine-one-carbon (SGOC) metabolic pathway is critical for DNA methylation, histone methylation, and redox homeostasis, in addition to protein, lipid, and nucleotide biosynthesis. The SGOC pathway is a crucial metabolic network in tumorigenesis, wherein the outputs are required for cell survival and proliferation and are particularly likely to be co-opted by aggressive cancers. SGOC metabolism provides an integration point in cell metabolism and is of crucial clinical significance. The mechanism of how this network is regulated is the key to understanding tumor heterogeneity and overcoming the potential mechanism of tumor recurrence. Herein, we review the role of SGOC metabolism in cancer by focusing on key enzymes with tumor-promoting functions and important products with physiological significance in tumorigenesis. In addition, we introduce the ways in which cancer cells acquire and use one-carbon unit, and discuss the recently clarified role of SGOC metabolic enzymes in tumorigenesis and development, as well as their relationship with cancer immunotherapy and ferroptosis. The targeting of SGOC metabolism may be a potential therapeutic strategy to improve clinical outcomes in cancers.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Zini Lin
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongao Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
8
|
Shang M, Ni L, Shan X, Cui Y, Hu P, Ji Z, Shen L, Zhang Y, Zhou J, Wang T, Yu Q. MTHFD2 reprograms macrophage polarization by inhibiting PTEN. Cell Rep 2023; 42:112481. [PMID: 37149861 DOI: 10.1016/j.celrep.2023.112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is involved in the regulation of tumor oncogenesis and immune cell functions, but whether it can contribute to macrophage polarization remains elusive. Here, we show that MTHFD2 suppresses polarization of interferon-γ-activated macrophages (M(IFN-γ)) but enhances that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, MTHFD2 interacts with phosphatase and tensin homolog (PTEN) to suppress PTEN's phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase activity and enhance downstream Akt activation, independent of the N-terminal mitochondria-targeting signal of MTHFD2. MTHFD2-PTEN interaction is promoted by IL-4 but not IFN-γ. Furthermore, amino acid residues (aa 215-225) of MTHFD2 directly target PTEN catalytic center (aa 118-141). Residue D168 of MTHFD2 is also critical for regulating PTEN's PIP3 phosphatase activity by affecting MTHFD2-PTEN interaction. Our study suggests a non-metabolic function of MTHFD2 by which MTHFD2 inhibits PTEN activity, orchestrates macrophage polarization, and alters macrophage-mediated immune responses.
Collapse
Affiliation(s)
- Man Shang
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Lina Ni
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao Shan
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Cui
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Penghui Hu
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Zemin Ji
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Long Shen
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanan Zhang
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China.
| | - Qiujing Yu
- Tianjin Institute of Immunology, Division of Infectious Disease, Second Hospital of Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
9
|
Tomeva E, Krammer UDB, Switzeny OJ, Haslberger AG, Hippe B. Sex-Specific miRNA Differences in Liquid Biopsies from Subjects with Solid Tumors and Healthy Controls. EPIGENOMES 2023; 7:epigenomes7010002. [PMID: 36648863 PMCID: PMC9844450 DOI: 10.3390/epigenomes7010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of epigenetic mechanisms has been recognized to play a crucial role in cancer development, but these mechanisms vary between sexes. Therefore, we focused on sex-specific differences in the context of cancer-based data from a recent study. A total of 12 cell-free DNA methylation targets in CpG-rich promoter regions and 48 miRNAs were analyzed by qPCR in plasma samples from 8 female and 7 male healthy controls as well as 48 female and 80 male subjects with solid tumors of the bladder, brain, colorectal region (CRC), lung, stomach, pancreas, and liver. Due to the small sample size in some groups and/or the non-balanced distribution of men and women, sex-specific differences were evaluated statistically only in healthy subjects, CRC, stomach or pancreas cancer patients, and all cancer subjects combined (n female/male-8/7, 14/14, 8/15, 6/6, 48/80, respectively). Several miRNAs with opposing expressions between the sexes were observed for healthy subjects (miR-17-5p, miR-26b-5p); CRC patients (miR-186-5p, miR-22-3p, miR-22-5p, miR-25-3p, miR-92a-3p, miR-16-5p); stomach cancer patients (miR-133a-3p, miR-22-5p); and all cancer patients combined (miR-126-3p, miR-21-5p, miR-92a-3p, miR-183-5p). Moreover, sex-specific correlations that were dependent on cancer stage were observed in women (miR-27a-3p) and men (miR-17-5p, miR-20a-5p). Our results indicate the complex and distinct role of epigenetic regulation, particularly miRNAs, depending not only on the health status but also on the sex of the patient. The same miRNAs could have diverse effects in different tissues and opposing effects between the biological sexes, which should be considered in biomarker research.
Collapse
Affiliation(s)
| | - Ulrike D. B. Krammer
- HealthBioCare GmbH, A-1090 Vienna, Austria
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria
| | | | | | - Berit Hippe
- HealthBioCare GmbH, A-1090 Vienna, Austria
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
10
|
Luo J, Chen X, Yang Y, Liu Y, Feng Y, Chen G. Association of MTHFR C667T Polymorphism, Homocysteine, and B Vitamins with Senile Cataract. J Nutr Sci Vitaminol (Tokyo) 2023; 69:136-144. [PMID: 37121723 DOI: 10.3177/jnsv.69.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Senile cataract has become the leading cause of visual impairment and even blindness in the world, but there are few reports on its relationship with methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms. This study is aimed to investigate the correlation between MTHFR gene polymorphisms or its enzyme metabolites and senile cataract. From January 2019 to June 2020, 663 patients with senile cataract at the Mianyang Central Hospital were enrolled as the observation group, and 646 healthy subjects were randomly selected as the control group. MTHFR gene polymorphisms (i.e., CC, CT, or TT genotypes) and serum homocysteine (HCY), folic acid (FOL), vitamin B12 (VitB12), and vitamin B6 (VitB6) levels were detected. The mutation rate of MTHFR C677T and HCY levels in the observation group were significantly higher than those in the control group, whereas FOL, VitB12, and VitB6 were significantly lower. With an increase in the MTHFR C677T mutation, HCY showed an upward trend, whereas FOL and VitB12 showed a decreasing trend in both the observation and control groups. Multiple logistic regression analysis showed that HCY and FOL were associated with senile cataract and MTHFR mutations; VitB12 was only associated with senile cataract. Compared to that with the CC genotype, CT and TT genotypes were associated with an increased senile cataract risk. Monitoring MTHFR gene polymorphisms and changes in serum HCY, FOL, and VitB12 levels could provide references in predicting senile cataract.
Collapse
Affiliation(s)
- Jun Luo
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Xiaohong Chen
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Yuwei Yang
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Yunbing Liu
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Yue Feng
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Gang Chen
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| |
Collapse
|
11
|
Association of H-Type Hypertension with miR-21, miR-29, and miR-199 in Kazahks of Xinjiang, China. Int J Hypertens 2022; 2022:4632087. [PMID: 36200021 PMCID: PMC9529513 DOI: 10.1155/2022/4632087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/30/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This study aims to analyze the expressions of miR-21, miR-29, and miR-199 in the serum of the patients with H-type hypertension among Kazakhs. Then, we analyzed the effect of MTHFR 677C > T polymorphism on the association between the above miRNA and H-type hypertension. Method In this study, the expression of miR-21, miR-29, and miR-199 was quantitatively measured in 120 serum samples and then stratified according to the C677T polymorphism to analyze the relationship between target miRNAs and HHcy. Results The expression of miR-21/-29 in the hypertension group was higher than the normal group (P < 0.001). And the expression of miR-199 was higher in the hcy group than in the normal group (P < 0.001). In the CC and CT genotypes of MTHFR 677C > T, the expression of miR-21 was lower in the HHcy patients than in the normal individuals (P = 0.005 and P = 0.001) and miR-199 was significantly higher in the HHcy patients than in the normal ones (P = 0.002 and P = 0.048). No such difference was found in the TT genotype. Logistic regression analysis showed that after adjusting for sex, age, BMI, systolic blood pressure, diastolic blood pressure, and MTHFRC677 T gene polymorphism, miR-21 was negatively correlated with hcy (OR = 0.222, 95% CI (0.101–0.485), P < 0.001) and miR-199 was positively correlated with hcy (OR = 1.823,95%CI (1.272∼2.614), P = 0.001). Conclusion miR-21, miR-29, and miR-199 are associated with H-type hypertension in the Kazakhs, especially hyperhomocysteinemia. And these three miRNAs may serve as biomarkers to provide clues to the potential pathogenesis of H-type hypertension.
Collapse
|
12
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Li Z, Zhang W, Bai J, Li J, Li H. Emerging Role of Helicobacter pylori in the Immune Evasion Mechanism of Gastric Cancer: An Insight Into Tumor Microenvironment-Pathogen Interaction. Front Oncol 2022; 12:862462. [PMID: 35795038 PMCID: PMC9252590 DOI: 10.3389/fonc.2022.862462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is the strongest causative factor of gastric cancer. Growing evidence suggests that the complex crosstalk of H. pylori and the tumor microenvironment (TME) exerts a profound influence on gastric cancer progression. Hence, there is emerging interest to in-depth comprehension of the mechanisms of interplay between H. pylori and the TME. This review discusses the regulatory mechanisms underlying the crosstalk between H. pylori infection and immune and stromal cells, including tumor-associated macrophages (TAMs), neutrophils, dendritic cells, myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, B and T cells, cancer associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs), within the TME. Such knowledge will deepen the understanding about the roles of H. pylori in the immune evasion mechanism in gastric cancer and contribute to the development of more effective treatment regimens against H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Zhifang Li
- Shanxi Medical University, Taiyuan, China
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenqing Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinyang Bai
- Shanxi Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Jing Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Hong Li,
| |
Collapse
|
14
|
Qin Y, Ma X, Guo C, Cai S, Ma H, Zhao L. MeCP2 confers 5-fluorouracil resistance in gastric cancer via upregulating the NOX4/PKM2 pathway. Cancer Cell Int 2022; 22:86. [PMID: 35180871 PMCID: PMC8857846 DOI: 10.1186/s12935-022-02489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Increasing evidence suggests that aberrant methylation is involved in 5-fluorouracil (5-FU) resistance in gastric cancer (GC). Our previous work has identified that Methyl-CpG binding protein 2 (MeCP2) promotes GC progression by binding to the methylation sites of promoter regions of specific genes to affect the downstream signaling pathways. However, the function and molecular mechanisms of MeCP2 in GC 5-FU resistance remain unclear. Methods We detected the expression of MeCP2 in 5-FU-resistant GC cells and examined cell behaviors when MeCP2 was silenced. The molecular mechanisms were explored through chromatin immunoprecipitation (ChIP)-qRT-PCR, luciferase reporter assay, clinical tissue samples analysis, and in vivo tumorigenicity assay. Results MeCP2 was up-regulated in 5-FU-resistant GC cells. Knockdown of MeCP2 enhanced the sensitivity of the cells to 5-FU. Moreover, MeCP2 promoted NOX4 transcription in the cells by binding to the promoter of NOX4. Silencing NOX4 rescued the inductive effect of MeCP2 overexpression on 5-FU sensitivity of GC cells and reduced the expression of NOX4 and PKM2 in MeCP2 overexpressed 5-FU-resistant GC cells. In addition, our in vivo experiments demonstrated that MeCP2 knockdown enhanced 5-FU sensitivity in tumors. Conclusion MeCP2 confers 5-FU resistance in GC cells via upregulating the NOX4/PKM2 pathway, which may lead to a promising therapeutic strategy for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02489-y.
Collapse
Affiliation(s)
- Yannan Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Chen Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Shuang Cai
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hailin Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
15
|
NF- κB-Related Metabolic Gene Signature Predicts the Prognosis and Immunotherapy Response in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5092505. [PMID: 35036435 PMCID: PMC8753254 DOI: 10.1155/2022/5092505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022]
Abstract
Background Sufficient evidence indicated the crucial role of NF-κB family played in gastric cancer (GC). The novel discovery that NF-κB could regulate cancer metabolism and immune evasion greatly increased its attraction in cancer research. However, the correlation among NF-κB, metabolism, and cancer immunity in GC still requires further improvement. Methods TCGA, hTFtarget, and MSigDB databases were employed to identify NF-κB-related metabolic genes (NFMGs). Based on NFMGs, we used consensus clustering to divide GC patients into two subtypes. GSVA was employed to analyze the enriched pathway. ESTIMATE, CIBERSORT, ssGSEA, and MCPcounter algorithms were applied to evaluate immune infiltration in GC. The tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict patients' response to immunotherapy. We also established a NFMG-related risk score by using the LASSO regression model and assessed its efficacy in TCGA and GSE62254 datasets. Results We used 27 NFMGs to conduct an unsupervised clustering on GC samples and classified them into two clusters. Cluster 1 was characterized by high active metabolism, tumor mutant burden, and microsatellite instability, while cluster 2 was featured with high immune infiltration. Compared to cluster 2, cluster 1 had a better prognosis and higher response to immunotherapy. In addition, we constructed a 12-NFMG (ADCY3, AHCY, CHDH, GUCY1A2, ITPA, MTHFD2, NRP1, POLA1, POLR1A, POLR3A, POLR3K, and SRM) risk score. Followed analysis indicated that this risk score acted as an effectively prognostic factor in GC. Conclusion Our data suggested that GC subtypes classified by NFMGs may effectively guide prognosis and immunotherapy. Further study of these NFMGs will deepen our understanding of NF-κB-mediated cancer metabolism and immunity.
Collapse
|
16
|
Otmani K, Lewalle P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front Oncol 2021; 11:708765. [PMID: 34722255 PMCID: PMC8554338 DOI: 10.3389/fonc.2021.708765] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that have been identified as important posttranscriptional regulators of gene expression. miRNAs production is controlled at multiple levels, including transcriptional and posttranscriptional regulation. Extensive profiling studies have shown that the regulation of mature miRNAs expression plays a causal role in cancer development and progression. miRNAs have been identified to act as tumor suppressors (TS) or as oncogenes based on their modulating effect on the expression of their target genes. Upregulation of oncogenic miRNAs blocks TS genes and leads to tumor formation. In contrast, downregulation of miRNAs with TS function increases the translation of oncogenes. Several miRNAs exhibiting TS properties have been studied. In this review we focus on recent studies on the role of TS miRNAs in cancer cells and the tumor microenvironment (TME). Furthermore, we discuss how TS miRNA impacts the aggressiveness of cancer cells, with focus of the mechanism that regulate its expression. The study of the mechanisms of miRNA regulation in cancer cells and the TME may paved the way to understand its critical role in the development and progression of cancer and is likely to have important clinical implications in a near future. Finally, the potential roles of miRNAs as specific biomarkers for the diagnosis and the prognosis of cancer and the replacement of tumor suppressive miRNAs using miRNA mimics could be promising approaches for cancer therapy.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Jules Bordet Institute, Université libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
17
|
Miao YD, Mu LJ, Mi DH. Metabolism-associated genes in occurrence and development of gastrointestinal cancer: Latest progress and future prospect. World J Gastrointest Oncol 2021; 13:758-771. [PMID: 34457185 PMCID: PMC8371517 DOI: 10.4251/wjgo.v13.i8.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/27/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the most prevalent cancers in the world. The occurrence and progression of GI cancer involve multiple events. Metabolic reprogramming is one of the hallmarks of cancer and is intricately related to tumorigenesis. Many metabolic genes are involved in the occurrence and development of GI cancer. Research approaches combining tumor genomics and metabolomics are more likely to provide deeper insights into this field. In this paper, we review the roles of metabolism-associated genes, especially those involved in the regulation pathways, in the occurrence and progression of GI cancer. We provide the latest progress and future prospect into the different molecular mechanisms of metabolism-associated genes involved in the occurrence and development of GI cancer.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lin-Jie Mu
- The First Affiliated Hospital, Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Deng-Hai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Dean’s Office, Gansu Academy of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
18
|
Rinaldi F, Marchesi F, Palombi F, Pelosi A, Di Pace AL, Sacconi A, Terrenato I, Annibali O, Tomarchio V, Marino M, Cantonetti M, Vaccarini S, Papa E, Moretta L, Bertoni F, Mengarelli A, Regazzo G, Rizzo MG. MiR-22, a serum predictor of poor outcome and therapy response in diffuse large B-cell lymphoma patients. Br J Haematol 2021; 195:399-404. [PMID: 34318932 DOI: 10.1111/bjh.17734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive, heterogeneous neoplasm where prognostication and therapeutic decision are challenging. The available prognostic tools are not able to identify all patients refractory to treatment. MicroRNAs, small RNAs frequently deregulated in cancer, stably circulate in biofluids, representing interesting candidates for non-invasive biomarkers. Here we validated serum miR-22, an evolutionarily conserved microRNA, as a prognostic/predictive biomarker in DLBCL. Moreover, we found that its expression and release from DLBCL cells are related to therapy response and adversely affect cell proliferation. These results suggest that miR-22 is a promising complementary or even independent non-invasive biomarker for DLBCL management.
Collapse
Affiliation(s)
- Federica Rinaldi
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Marchesi
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Palombi
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pelosi
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Andrea Sacconi
- Department of Research, Advanced Diagnostics and Technological Innovation, Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Department of Research, Advanced Diagnostics and Technological Innovation, Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplantation Unit, University Campus Bio-Medico, Rome, Italy
| | - Valeria Tomarchio
- Hematology and Stem Cell Transplantation Unit, University Campus Bio-Medico, Rome, Italy
| | - Mirella Marino
- Department of Research, Advanced Diagnostics and Technological Innovation, Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Cantonetti
- Hematology Unit of Lymphoproliferative Disorders, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| | - Sara Vaccarini
- Hematology Unit of Lymphoproliferative Disorders, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| | - Elena Papa
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Moretta
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Bertoni
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Mengarelli
- Department of Clinical and Experimental Oncology, Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria G Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
19
|
Mutual Correlation between Non-Coding RNA and S-Adenosylmethionine in Human Cancer: Roles and Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13133264. [PMID: 34209866 PMCID: PMC8268931 DOI: 10.3390/cancers13133264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Non-coding RNAs and S-adenosylmethionine, the methyl donor required in all epigenetic methylation reactions, have emerged in recent years as crucial players in the modulation of gene expression in different types of human cancers. This review summarizes the most recent findings on reciprocal regulation between AdoMet and non-coding RNAs. AdoMet was found to exert anticancer activity through epigenetic regulation of non-coding RNAs, including microRNAs, long non-coding RNAs and circular RNAs. On the other hand, several microRNAs and long non-coding RNAs have been reported to display regulatory effects on the expression of genes involved in AdoMet synthesis and metabolism. Increasing knowledge on the relationship between AdoMet and non-coding RNAs will provide insights for further development of diagnostic and therapeutic strategies for cancer treatments. Abstract Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.
Collapse
|
20
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|