1
|
Wang X, Wang X, Gu J, Wei Y, Wang Y. circUBR5 promotes ribosome biogenesis and induces docetaxel resistance in triple-negative breast cancer cell lines via the miR-340-5p/CMTM6/c-MYC axis. Neoplasia 2025; 59:101062. [PMID: 39672097 PMCID: PMC11697786 DOI: 10.1016/j.neo.2024.101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE Docetaxel (DTX) represents an effective chemotherapeutic agent for treating triple-negative breast cancer (TNBC), but the efficacy is strongly limited by drug resistance. c-MYC-mediated ribosome biogenesis is considered a feasible strategy to confront chemoresistance in BC. We elucidated the impact of CMTM6 on TNBC DTX chemoresistance by governing c-MYC-mediated ribosome biogenesis, and its upstream ceRNA regulatory pathways. METHODS DTX-resistant TNBC cells MDA-MB-231R and HCC1937R were generated by exposing sensitive cells MDA-MB-231 and HCC1937 to escalating doses of DTX. The expression patterns of CMTM6 and c-MYC were assessed by Western blot. The relationships between CMTM6 and miR-340-5p, circUBR5 and miR-340-5p were determined using bioinformatics analysis, luciferase assay, RIP, RNA in situ hybridization and biotin-labeled miR co-precipitation assay. Following ectopic expression and depletion experiments in DTX-resistant cells, cell chemoresistance, apoptosis, colony formation and nascent protein synthesis were evaluated. RESULTS CMTM6 expression was elevated in DTX-resistant TNBC cells. CMTM6 knockdown enhanced apoptosis of DTX-resistant TNBC cells and increased their sensitivity to DTX by blocking c-MYC-mediated ribosome biogenesis. Mechanistically, miR-340-5p targeted CMTM6 and negatively regulated the expression of CMTM6 in DTX-resistant TNBC cells. Moreover, circUBR5 attenuated the repression on CMTM6 expression as a ceRNA for miR-340-5p. circUBR5 knockdown inactivated c-MYC-mediated ribosome biogenesis, and therefore enhanced DTX efficacy by promoting miR-340-5p binding to CMTM6. CONCLUSION circUBR5 knockdown facilitated miR-340-5p-targeted CMTM6 via a ceRNA mechanism, thereby reducing c-MYC-mediated ribosome biogenesis and accelerating chemosensitization of DTX-resistant TNBC cells, which offered a theoretical guideline for clinical research on the feasibility of inhibiting ribosome biogenesis to reduce TNBC chemoresistance.
Collapse
Affiliation(s)
- Xuedong Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Xinping Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Juan Gu
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Yilei Wei
- Lingbi Hospital, Anhui No.2 Provincial People's Hospital, Lingbi, Anhui, 234200, China
| | - Yueping Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
- Lingbi Hospital, Anhui No.2 Provincial People's Hospital, Lingbi, Anhui, 234200, China
| |
Collapse
|
2
|
Yue P, He Y, Zuo R, Gong W, Wang Y, Chen L, Luo Y, Feng Y, Gao Y, Liu Z, Chen P, Guo H. CCDC34 maintains stemness phenotype through β-catenin-mediated autophagy and promotes EGFR-TKI resistance in lung adenocarcinoma. Cancer Gene Ther 2024:10.1038/s41417-024-00843-y. [PMID: 39587349 DOI: 10.1038/s41417-024-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Despite recent advances in treatment strategy, lung cancer remains the leading cause of cancer-related mortality worldwide, and it is a serious threat to human health. Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer, and approximately 40-50% of patients with LUAD in Asian populations have epidermal growth factor receptor (EGFR) mutations. The use of EGFR tyrosine kinase inhibitors (EGFR-TKIs) has revolutionarily improved the prognosis of patients with EGFR-mutated LUAD. However, acquired drug resistance is the main cause of treatment failure. Therefore, new therapeutic strategies are necessary to address the resistance to EGFR-TKIs in patients with LUAD. Cancer stemness-related factors lead to multiple-drug resistance in cancer treatment, including EGFR-TKI resistance. Coiled-coil domain-containing 34 (CCDC34) serves as an oncogene in several types of cancer. However, the role and molecular mechanism of CCDC34 in the malignant progression of LUAD have not been reported to date. In the present study, we found that CCDC34 may be associated with LUAD stemness through weighted gene co-expression network analysis (WGCNA). Furthermore, we demonstrated that CCDC34 promoted LUAD stemness properties through β-catenin-mediated regulation of ATG5-induced autophagy, which was conducive to acquired EGFR-TKI resistance in LUAD in vitro and in vivo. Knockdown CCDC34 can synergistically inhibit tumor growth when combined with EGFR-TKIs. This study reveals a positive association between CCDC34 and the stemness phenotype of LUAD, providing new insights into overcoming EGFR-TKI resistance in LUAD by inhibiting CCDC34 expression.
Collapse
Affiliation(s)
- Ping Yue
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuanying Feng
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuan Gao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
3
|
Fang Y, Wu Y, Zhang X, Wei L, Liu L, Chen Y, Chen D, Xu N, Cao L, Zhu J, Chen M, Cheng Y, Sferra TJ, Yao M, Shen A, Peng J. miR-326 overexpression inhibits colorectal cancer cell growth and proteasome activity by targeting PNO1: unveiling a novel therapeutic intervention strategy. Sci Rep 2024; 14:24284. [PMID: 39414903 PMCID: PMC11484865 DOI: 10.1038/s41598-024-75746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Proteasome inhibition emerges as a promising strategy for cancer prevention. PNO1, pivotal for colorectal cancer (CRC) progression, is involved in proteasome assembly in Saccharomyces cerevisiae. Hence, we aimed to explore the role of PNO1 in proteasome assembly and its up- and down-streams in CRC. Here, we demonstrated that PNO1 knockdown suppressed CRC cells growth, proteasome activities and assembly, as well as CDKN1B/p27Kip1 (p27) degradation. Moreover, p27 knockdown partially attenuated the inhibition of HCT116 cells growth by PNO1 knockdown. The up-stream studies of PNO1 identified miR-326 as a candidate miRNA directly targeting to CDS-region of PNO1 and its overexpression significantly down-regulated PNO1 protein expression, resulting in suppression of cell growth, decrease of proteasome activities and assembly, as well as increasing the stability of p27 in CRC cells. These findings indicated that miR-326 overexpression can suppress CRC cell growth, acting as an endogenous proteasome inhibitor by targeting PNO1.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Yulun Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Xinran Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Nanhui Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Liujin Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Jie Zhu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Mian Chen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
4
|
Qin Y, Li Z, Zhang X, Li J, Teng Y, Zhang N, Zhao S, Kong L, Niu W. Pan-cancer exploration of PNO1: A prospective prognostic biomarker with ties to immune infiltration. Heliyon 2024; 10:e36819. [PMID: 39263087 PMCID: PMC11387552 DOI: 10.1016/j.heliyon.2024.e36819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
The partner of NOB1 homolog (PNO1) is an RNA-binding protein that participates in ribosome biogenesis and protein modification. The functions of this molecule are largely unknown in cancers, particularly breast cancer. We employed bioinformatics methods to probe the putative oncogenic functions of PNO1 based on expression profiles and clinical data from the cancer genome atlas (TCGA), genotype-tissue expression project (GTEx), human protein atlas (HPA), cancer cell line encyclopedia (CCLE), UALCAN, drug sensitivity in cancer (GDSC) and UCSC XENA databases. Our analyses revealed that PNO1 was overexpressed in 31 malignancies, which excluded kidney chromophobe (KICH) and acute myeloid leukemia (LAML). Prognostic assessments have demonstrated that high PNO1 expression was significantly correlated with poor overall and disease-specific survival in various cancers. The promoter methylation level of PNO1 is significantly decreased in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), kidney renal papillary cell carcinoma (KIRP), prostate adenocarcinoma (PRAD), thyroid carcinoma (THCA) and uterine corpus endometrial carcinoma (UCEC). Furthermore, inhibition of PNO1 decreased the viability, migration and invasion of breast cancer cells, and these results were confirmed by mouse xenograft models of breast cancer. In addition, we discovered that tumor microenvironment (TME), immune infiltration, and chemotherapy sensitivity were influenced by PNO1 expression. Concordantly, our analyses revealed a significant positive correlation between PNO1 and programmed cell death ligand 1 (PD-L1) expression across breast carcinoma samples. In conclusion, these findings indicate that PNO1 could act as a promising prognostic biomarker and adjunct diagnostic indicator, because it affects tumor growth and invasion. Our study offers valuable new perspectives on the oncogenic role of PNO1 in various types of cancers.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhen Li
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xianwei Zhang
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Junjun Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1 Shangcheng Avenue, Hangzhou, 310058, Zhejiang, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, 250102, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Shengyu Zhao
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingfei Kong
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| |
Collapse
|
5
|
Altinok Gunes B, Ozkan T, Karadag Gurel A, Dalkilic S, Belder N, Ozkeserli Z, Ozdag H, Beksac M, Sayinalp N, Yagci AM, Sunguroglu A. Transcriptome Analysis of Beta-Catenin-Related Genes in CD34+ Haematopoietic Stem and Progenitor Cells from Patients with AML. Mediterr J Hematol Infect Dis 2024; 16:e2024058. [PMID: 38984092 PMCID: PMC11232677 DOI: 10.4084/mjhid.2024.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Background Acute myeloid leukaemia (AML) is a disease of the haematopoietic stem cells(HSCs) that is characterised by the uncontrolled proliferation and impaired differentiation of normal haematopoietic stem/progenitor cells. Several pathways that control the proliferation and differentiation of HSCs are impaired in AML. Activation of the Wnt/beta-catenin signalling pathway has been shown in AML and beta-catenin, which is thought to be the key element of this pathway, has been frequently highlighted. The present study was designed to determine beta-catenin expression levels and beta-catenin-related genes in AML. Methods In this study, beta-catenin gene expression levels were determined in 19 AML patients and 3 controls by qRT-PCR. Transcriptome analysis was performed on AML grouped according to beta-catenin expression levels. Differentially expressed genes(DEGs) were investigated in detail using the Database for Annotation Visualisation and Integrated Discovery(DAVID), Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG), STRING online tools. Results The transcriptome profiles of our AML samples showed different molecular signature profiles according to their beta-catenin levels(high-low). A total of 20 genes have been identified as hub genes. Among these, TTK, HJURP, KIF14, BTF3, RPL17 and RSL1D1 were found to be associated with beta-catenin and poor survival in AML. Furthermore, for the first time in our study, the ELOV6 gene, which is the most highly up-regulated gene in human AML samples, was correlated with a poor prognosis via high beta-catenin levels. Conclusion It is suggested that the identification of beta-catenin-related gene profiles in AML may help to select new therapeutic targets for the treatment of AML.
Collapse
Affiliation(s)
- B Altinok Gunes
- Vocational School of Health Services, Ankara University, Ankara, Turkey
| | - T Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - A Karadag Gurel
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey
| | - S Dalkilic
- Department of Molecular Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - N Belder
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - Z Ozkeserli
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - H Ozdag
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - M Beksac
- Department of Hematology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - N Sayinalp
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - A M Yagci
- Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - A Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Cao LJ, Liu LY, Chen YQ, Han YY, Wei LH, Yao MY, Fang Y, Wu MZ, Cheng Y, Sferra TJ, Liu HX, Li L, Peng J, Shen AL. Pien Tze Huang Inhibits Proliferation of Colorectal Cancer Cells through Suppressing PNO1 Expression and Activating p53/p21 Signaling Pathway. Chin J Integr Med 2024; 30:515-524. [PMID: 38216838 DOI: 10.1007/s11655-024-3709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVE To explore the regulatory effect of Pien Tze Huang (PZH) on targeting partner of NOB1 (PNO1) and it's down-stream mediators in colorectal cancer (CRC) cells. METHODS Quantitative polymerase chain reaction was performed to determine mRNA levels of PNO1, TP53, and CDKN1A. Western blotting was performed to determine protein levels of PNO1, p53, and p21. HCT-8 cells were transduced with a lentivirus over-expressing PNO1. Colony formation assay was used to detect cell survival in PNO1 overexpression of HCT-8 cells after PZH treatment. Cell-cycle distribution, cell viability and cell apoptosis were performed to identify the effect of PNO1 overexpression on cell proliferation and apoptosis of HCT-8 cells after PZH treatment. Xenograft BALB/c nude mice bearing HCT116 cells transduced with sh-PNO1 or sh-Ctrl lentivirus were evaluated. Western blot assay was performed to detect PNO1, p53, p21 and PCNA expression in tumor sections. Terminal deoxynucleotidyl transferase dUTP nick end labling (TUNEL) assay was used to determine the apoptotic cells in tissues. RESULTS PZH treatment decreased cell viability, down-regulated PNO1 expression, and up-regulated p53 and p21 expressions in HCT-8 cells (P<0.05). PNO1 overexpression attenuated the effects of PZH treatment, including the expression of p53 and p21, cell growth, cell viability, cell cycle arrest and cell apoptosis in vitro (P<0.05). PNO1 knockdown eliminated the effects of PZH treatment on tumor growth, inhibiting cell proliferation inhibition and apoptosis induction in vivo (P<0.05). Similarly, PNO1 knockdown attenuated the effects of PZH treatment on the down-regulation of PNO1 and up-regulation of p53 and p21 in vivo (P<0.05). CONCLUSION The mechanism by which PZH induces its CRC anti-proliferative effect is at least in part by regulating the expression of PNO1 and its downstream targets p53 and p21.
Collapse
Affiliation(s)
- Liu-Jing Cao
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Li-Ya Liu
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - You-Qin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Yu-Ying Han
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Li-Hui Wei
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Meng-Ying Yao
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yi Fang
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Mei-Zhu Wu
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ying Cheng
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Hui-Xin Liu
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Li Li
- Department of Health Management, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, 000000, China
| | - Jun Peng
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - A-Ling Shen
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Liu D, Zuo R, Liu W, He Y, Wang Y, Yue P, Gong W, Cui J, Zhu F, Luo Y, Qi L, Guo Y, Chen L, Li G, Liu Z, Chen P, Guo H. DNAJC24 acts directly with PCNA and promotes malignant progression of LUAD by activating phosphorylation of AKT. FASEB J 2024; 38:e23630. [PMID: 38713100 DOI: 10.1096/fj.202300667rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Heat shock proteins (HSPs) are a group of highly conserved proteins found in a wide range of organisms. In recent years, members of the HSP family were overexpressed in various tumors and widely involved in oncogenesis, tumor development, and therapeutic resistance. In our previous study, DNAJC24, a member of the DNAJ/HSP40 family of HSPs, was found to be closely associated with the malignant phenotype of hepatocellular carcinoma. However, its relationship with other malignancies needs to be further explored. Herein, we demonstrated that DNAJC24 exhibited upregulated expression in LUAD tissue samples and predicted poor survival in LUAD patients. The upregulation of DNAJC24 expression promoted proliferation and invasion of LUAD cells in A549 and NCI-H1299 cell lines. Further studies revealed that DNAJC24 could regulate the PI3K/AKT signaling pathway by affecting AKT phosphorylation. In addition, a series of experiments such as Co-IP and mass spectrometry confirmed that DNAJC24 could directly interact with PCNA and promoted the malignant phenotypic transformation of LUAD. In conclusion, our results suggested that DNAJC24 played an important role in the progression of LUAD and may serve as a specific prognostic biomarker for LUAD patients. The DNAJC24/PCNA/AKT axis may be a potential target for future individualized and precise treatment of LUAD patients.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ran Zuo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yu Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ping Yue
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinfang Cui
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fuyi Zhu
- Department of Oncology Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Luo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lisha Qi
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yan Guo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Cancer Biobank of Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liwei Chen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guangtao Li
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Peng Chen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
8
|
Roy SK, Srivastava S, McCance C, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Clinical significance of PNO1 as a novel biomarker and therapeutic target of hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18295. [PMID: 38722284 PMCID: PMC11081011 DOI: 10.1111/jcmm.18295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
| | | | - Caroline McCance
- Department of Cellular and Molecular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- Department of GeneticsLouisiana State University Health Sciences Center – New OrleansNew OrleansLouisianaUSA
- GLAXDoverDelawareUSA
| |
Collapse
|
9
|
Fang L, Wang B, Yang Z, Zhao T, Hao W. PNO1 promotes the progression of osteosarcoma via TGF-β and YAP/TAZ pathway. Sci Rep 2023; 13:21827. [PMID: 38071381 PMCID: PMC10710495 DOI: 10.1038/s41598-023-49295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to explore the potential role and mechanisms of the partner of NOB1 homolog (PNO1) in osteosarcoma. The expression of PNO1 in tumor and adjacent tissue samples was examined using western blotting. Lentiviral transfection was used to establish sh-Ctrl and sh-PNO1 osteosarcoma cell lines. MTT assay, Celigo cell cytometer count, and cell colony formation assay were used to investigate the proliferation of osteosarcoma cells in vitro, whereas xenotransplantation assay was performed for in vivo experiments. Wound-healing and Transwell assays were chosen to verify the migration and invasion of osteosarcoma cells. Flow cytometry assay and caspase-3/7 activity analysis were adopted for the analysis of cell apoptosis and cell cycle. Finally, transcriptome sequencing and bioinformatics analysis were adopted to explore the acting mechanisms. The expression of PNO1 was higher in osteosarcoma tissues than that in adjacent tissues. Down-regulation of PNO1 inhibited the proliferation, migration, and invasion, and induced cell apoptosis and cell cycle arrest of osteosarcoma cells. Furthermore, according to transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that PNO1 might affect the progression of osteosarcoma via TGF-β and YAP/TAZ signaling pathways. PNO1 could be a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Long Fang
- Department of Bone and Soft Tissue Tumors, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China
| | - Baolong Wang
- Department of Bone and Soft Tissue Tumors, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China
| | - Zengkun Yang
- Department of Bone and Soft Tissue Tumors, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China
| | - Tingbao Zhao
- Department of Bone and Soft Tissue Tumors, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China
| | - Wei Hao
- Department of Orthopedics and Traumatology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China.
| |
Collapse
|
10
|
Reina-Ortiz C, Mozas MP, Ovelleiro D, Gao F, Villalba M, Anel A. Dynamic Changes in miRNA Expression during the Generation of Expanded and Activated NK Cells. Int J Mol Sci 2023; 24:13556. [PMID: 37686362 PMCID: PMC10488243 DOI: 10.3390/ijms241713556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Therapies based on allogenic Natural Killer (NK) cells are becoming increasingly relevant, and our laboratory has produced expanded and activated NK (eNK) cells that are highly cytotoxic against several hematological cancers when used alone or in combination with currently approved therapeutic monoclonal antibodies. In order to produce eNK cells, healthy human donor NK cells undergo a 20-day expansion protocol with IL-2, IL-15 and Epstein-Barr virus (EBV)-transformed lymphoblastoid feeder cells. In order to produce an even more potent eNK-based therapy, we must elucidate the changes our protocol produces within healthy NK cells. To understand the post-transcriptional changes responsible for the increased cytolytic abilities of eNK cells, we performed microRNA (miRNA) expression analysis on purified NK cells from day 0 and day 20 of the protocol using quantitative reverse transcription PCR (RT-qPCR). Of the 384 miRNAs profiled, we observed changes in the expression of 64 miRNAs, with especially significant changes in 7 of them. The up-regulated miRNAs of note were miRs-146a, -124, -34a, and -10a, which are key in the regulation of cell survival through the modulation of pro-apoptotic genes such as PUMA. The down-regulation of miRs-199a, -223, and -340 was also detected and is associated with the promotion of NK cell cytotoxicity. We validated our analysis using immunoblot and flow cytometry studies on specific downstream targets of both up- and down-regulated miRNAs such as PUMA and Granzyme B. These results corroborate the functional importance of the described miRNA expression patterns and show the wide variety of changes that occur in eNK cells at day 20.
Collapse
Affiliation(s)
- Chantal Reina-Ortiz
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| | - Mª Pilar Mozas
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| | - David Ovelleiro
- Peripheral Nervous System, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain;
| | - Fei Gao
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CNRS, University Hospital Center Montpellier, 34000 Montpellier, France; (F.G.); (M.V.)
- Immuno-Oncology Laboratory, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Martín Villalba
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CNRS, University Hospital Center Montpellier, 34000 Montpellier, France; (F.G.); (M.V.)
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| |
Collapse
|
11
|
Cui J, He Y, Zhu F, Gong W, Zuo R, Wang Y, Luo Y, Chen L, Wang C, Huo G, Lu H, Liu Z, Chen P, Guo H. Inetetamab, a novel anti-HER2 monoclonal antibody, exhibits potent synergistic anticancer effects with cisplatin by inducing pyroptosis in lung adenocarcinoma. Int J Biol Sci 2023; 19:4061-4081. [PMID: 37705753 PMCID: PMC10496496 DOI: 10.7150/ijbs.82980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Cisplatin is a first-line chemotherapy drug for lung adenocarcinoma (LUAD). However, its therapeutic efficacy is limited because of serious side effects and acquired drug resistance. Targeting HER2 has been proven to be a viable therapeutic strategy against LUAD. Moreover, inetetamab, an innovative anti-HER2 monoclonal antibody, has a more potent antibody-dependent cell-mediated cytotoxicity (ADCC)-inducing effect than trastuzumab, which has been shown to be an effective and rational strategy in the clinic when combined with multiple chemotherapeutic agents. Thus, the present study aimed to explore the synergistic effects of cisplatin (DDP) and inetetamab in LUAD cells and investigate the detailed underlying mechanisms. Here, in vitro and in vivo, we found that the combination of inetetamab and cisplatin induced synergistic effects, including induction of pyroptosis, in LUAD. Mechanistic studies revealed that inetetamab combined with cisplatin inhibited HER2/AKT/Nrf2 signaling to increase ROS levels, which triggered NLRP3/caspase-1/GSDMB-mediated pyroptosis to synergistically enhance antitumor efficacy in LUAD cells. In addition, cisplatin enhanced the PBMC-killing ability of inetetamab by inducing GSDMB-mediated pyroptosis, which can be explained by increased secretion of IFN-γ. Our study reveals that the anti-HER2 monoclonal antibody inetetamab may be an attractive candidate for LUAD therapy, which opens new avenues for therapeutic interventions for LUAD.
Collapse
Affiliation(s)
- Jinfang Cui
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fuyi Zhu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chengmeng Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Gengwei Huo
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hailing Lu
- Department of Oncology, First Hospital of Harbin Medical University, Harbin, 150000, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
12
|
Bian W, Jiang H, Yao L, Hao W, Wu L, Li X. A spatially defined human Notch receptor interaction network reveals Notch intracellular storage and Ataxin-2-mediated fast recycling. Cell Rep 2023; 42:112819. [PMID: 37454291 DOI: 10.1016/j.celrep.2023.112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
The Notch signaling pathway controls cell growth, differentiation, and fate decisions. Dysregulation of Notch signaling has been linked to various human diseases. Notch receptor resides in multiple cellular compartments, and its translocation plays a central role in pathway activation. However, the spatial regulation of Notch receptor functions remains largely elusive. Using TurboID-based proximity labeling followed by affinity purification and mass spectrometry, we establish a spatially defined human Notch receptor interaction network. Notch receptors interact with different proteins in distinct subcellular compartments to perform specific cellular functions. This spatially defined interaction network also reveals that a large fraction of NOTCH is stored at the endoplasmic reticulum (ER)-Golgi intermediate compartment and recruits Ataxin-2-dependent recycling machinery for rapid recycling, Notch signaling activation, and leukemogenesis. Our work provides insights into dynamic Notch receptor complexes with exquisite spatial resolution, which will help in elucidating the detailed regulation of Notch receptors and highlight potential therapeutic targets for Notch-related pathogenesis.
Collapse
Affiliation(s)
- Weixiang Bian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Hua Jiang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Luxia Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
13
|
Villarruel-Melquiades F, Mendoza-Garrido ME, García-Cuellar CM, Sánchez-Pérez Y, Pérez-Carreón JI, Camacho J. Current and novel approaches in the pharmacological treatment of hepatocellular carcinoma. World J Gastroenterol 2023; 29:2571-2599. [PMID: 37213397 PMCID: PMC10198058 DOI: 10.3748/wjg.v29.i17.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumours worldwide. The mortality-to-incidence ratio is up to 91.6% in many countries, representing the third leading cause of cancer-related deaths. Systemic drugs, including the multikinase inhibitors sorafenib and lenvatinib, are first-line drugs used in HCC treatment. Unfortunately, these therapies are ineffective in most cases due to late diagnosis and the development of tumour resistance. Thus, novel pharmacological alternatives are urgently needed. For instance, immune checkpoint inhibitors have provided new approaches targeting cells of the immune system. Furthermore, monoclonal antibodies against programmed cell death-1 have shown benefits in HCC patients. In addition, drug combinations, including first-line treatment and immunotherapy, as well as drug repurposing, are promising novel therapeutic alternatives. Here, we review the current and novel pharmacological approaches to fight HCC. Preclinical studies, as well as approved and ongoing clinical trials for liver cancer treatment, are discussed. The pharmacological opportunities analysed here should lead to significant improvement in HCC therapy.
Collapse
Affiliation(s)
- Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Julio Isael Pérez-Carreón
- Instituto Nacional de Medicina Genómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
14
|
Meng T, Liu J, Chang H, Qie R. Reverse predictive analysis of Rhizoma Pinelliae and Rhizoma Coptidis on differential miRNA target genes in lung adenocarcinoma. Medicine (Baltimore) 2023; 102:e32999. [PMID: 36800601 PMCID: PMC9936040 DOI: 10.1097/md.0000000000032999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
To use bioinformatics and network analysis to reveal the mechanism of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma. The target and pathway of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma were explored by online databases and network analysis tools, and the potential biomarkers of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma were predicted in reverse. A total of 59 traditional Chinese medicine compounds and 510 drug targets were screened in this study. A total of 25 micro-RNAs and 15,323 disease targets were obtained through GEO2R software analysis. In the end, 294 therapeutic targets and 47 core targets were obtained. A total of 186 gene ontology enrichment assays were obtained, and core therapeutic targets play multiple roles in biological processes, molecular functions, and cellular composition. Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that the core targets were mainly enriched in cancer-related pathways, immune-related pathways, endocrine-related pathways, etc, among which the non-small cell lung cancer pathway was the most significant core pathway. Molecular docking shows that the compound and the target have good binding ability. "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair plays a mechanism of action in the treatment of lung adenocarcinoma through multiple targets and pathways. miR-5703, miR-3125, miR-652-5P, and miR-513c-5p may be new biomarkers for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Tianwei Meng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiawen Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
- * Correspondence: Hong Chang, Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China (e-mail: )
| | - Rui Qie
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Roy SK, Srivastava S, Hancock A, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Inhibition of ribosome assembly factor PNO1 by CRISPR/Cas9 technique suppresses lung adenocarcinoma and Notch pathway: Clinical application. J Cell Mol Med 2023; 27:365-378. [PMID: 36625087 PMCID: PMC9889701 DOI: 10.1111/jcmm.17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Growth is crucially controlled by the functional ribosomes available in cells. To meet the enhanced energy demand, cancer cells re-wire and increase their ribosome biogenesis. The RNA-binding protein PNO1, a ribosome assembly factor, plays an essential role in ribosome biogenesis. The purpose of this study was to examine whether PNO1 can be used as a biomarker for lung adenocarcinoma and also examine the molecular mechanisms by which PNO1 knockdown by CRISPR/Cas9 inhibited growth and epithelial-mesenchymal transition (EMT). The expression of PNO1 was significantly higher in lung adenocarcinoma compared to normal lung tissues. PNO1 expression in lung adenocarcinoma patients increased with stage, nodal metastasis, and smoking. Lung adenocarcinoma tissues from males expressed higher PNO1 than those from females. Furthermore, lung adenocarcinoma tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53, suggesting the influence of Tp53 status on PNO1 expression. PNO1 knockdown inhibited cell viability, colony formation, and EMT, and induced apoptosis. Since dysregulated signalling through the Notch receptors promotes lung adenocarcinoma, we measured the effects of PNO1 inhibition on the Notch pathway. PNO1 knockdown inhibited Notch signalling by suppressing the expression of Notch receptors, their ligands, and downstream targets. PNO1 knockdown also suppressed CCND1, p21, PTGS-2, IL-1α, IL-8, and CXCL-8 genes. Overall, our data suggest that PNO1 can be used as a diagnostic biomarker, and also can be an attractive therapeutic target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
| | | | - Andrew Hancock
- Department of Molecular and Cellular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| | - Rakesh K. Srivastava
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| |
Collapse
|
16
|
Chen D, Zhao J, Tian H, Shang F, Feng J. ALKBH5
involves in osteosarcoma tumor progression by mediating Notch signaling. PRECISION MEDICAL SCIENCES 2023. [DOI: 10.1002/prm2.12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Dagui Chen
- Institute of Translational Medicine Shanghai University Shanghai China
| | - Jiebing Zhao
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Hao Tian
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Fusheng Shang
- Institute of Translational Medicine Shanghai University Shanghai China
| | - Jianjun Feng
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
- Fudan Zhangjiang Institute Fudan University Shanghai China
| |
Collapse
|
17
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|
18
|
Hu X, He Y, Han Z, Liu W, Liu D, Zhang X, Chen L, Qi L, Chen L, Luo Y, Li Q, Chen P, Wu Q, Zhu X, Guo H. PNO1 inhibits autophagy-mediated ferroptosis by GSH metabolic reprogramming in hepatocellular carcinoma. Cell Death Dis 2022; 13:1010. [PMID: 36446769 PMCID: PMC9709074 DOI: 10.1038/s41419-022-05448-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Effective strategies for hepatocellular carcinoma, which is the second leading cause of death worldwide, remain limited. A growing body of emerging evidence suggests that ferroptosis activation is a novel promising approach for the treatment of this malignancy. Nevertheless, the potential therapeutic targets and molecular mechanisms of ferroptosis remain elusive. In this study, we found that PNO1 is a bona fide inhibitor of ferroptosis and that autophagy induced by PNO1 promotes cystine/glutamate antiporter SLC7A11 while increasing the synthesis and accumulation of intracellular glutamate. This increase is followed by an equally proportional addition in cystine uptake, which consequently enhances system Xc- activity that leads to the inhibition of ferroptosis. In the maintenance of redox homeostasis, system Xc- activated via PNO1-autophagy metabolism is responsible for maintaining cysteine for glutathione (GSH) synthesis, and the final GSH metabolic reprogramming protects HCC cells from ferroptosis. The combination of PNO1 inhibition with drugs causing ferroptosis induction, particularly sorafenib, the first-line drug associated with ferroptosis in liver cancer shows therapeutic promise in vitro and in vivo. Together, our findings indicated that PNO1 protects HCC cells from ferroptotic death through autophagy-mediated GSH metabolic remodeling, and we identified a candidate therapeutic target that may potentiate the effect of ferroptosis-based antitumor therapy.
Collapse
Affiliation(s)
- Xiaomeng Hu
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Yuchao He
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Zhiqiang Han
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, 300060 Tianjin, China
| | - Wei Liu
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Dongming Liu
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Xihao Zhang
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Lu Chen
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Lisha Qi
- grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Liwei Chen
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Yi Luo
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Qiang Li
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Peng Chen
- grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Qiang Wu
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Xiaolin Zhu
- grid.411918.40000 0004 1798 6427Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Hua Guo
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, China
| |
Collapse
|
19
|
Chemoresistant Cancer Cell Lines Are Characterized by Migratory, Amino Acid Metabolism, Protein Catabolism and IFN1 Signalling Perturbations. Cancers (Basel) 2022; 14:cancers14112763. [PMID: 35681748 PMCID: PMC9179525 DOI: 10.3390/cancers14112763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary While chemoresistance remains a major barrier to improving the outcomes for patients with ovarian cancer, the molecular features, and associated biological functions, which underpin chemoresistance in ovarian cancer remain poorly understood. In this study we aimed to provide insight into the proteins and metabolites, and their associated biological pathways, which play a role in conferring chemoresistance to ovarian cancer. Through mass spectrometry analysis comparing the proteome and metabolome of chemosensitive vs chemoresistant ovarian cancer cell lines we revealed numerous perturbations in signalling and metabolic pathways in chemoresistant cells. Further comparison to primary cells taken from patients with chemoresistant or chemosensitive disease identified a shared dysregulation in cytokine and type 1 interferon signalling. Our research sets the foundation for a deeper understanding of the proteomic and metabolomic features of chemoresistance and identifies type 1 interferon signalling as a common feature of chemoresistance. Abstract Chemoresistance remains the major barrier to effective ovarian cancer treatment. The molecular features and associated biological functions of this phenotype remain poorly understood. We developed carboplatin-resistant cell line models using OVCAR5 and CaOV3 cell lines with the aim of identifying chemoresistance-specific molecular features. Chemotaxis and CAM invasion assays revealed enhanced migratory and invasive potential in OVCAR5-resistant, compared to parental cell lines. Mass spectrometry analysis was used to analyse the metabolome and proteome of these cell lines, and was able to separate these populations based on their molecular features. It revealed signalling and metabolic perturbations in the chemoresistant cell lines. A comparison with the proteome of patient-derived primary ovarian cancer cells grown in culture showed a shared dysregulation of cytokine and type 1 interferon signalling, potentially revealing a common molecular feature of chemoresistance. A comprehensive analysis of a larger patient cohort, including advanced in vitro and in vivo models, promises to assist with better understanding the molecular mechanisms of chemoresistance and the associated enhancement of migration and invasion.
Collapse
|
20
|
Zhang J, Liu W, Feng S, Zhong B. The possible role of SRMS in colorectal cancer by bioinformatics analysis. World J Surg Oncol 2021; 19:326. [PMID: 34781983 PMCID: PMC8594183 DOI: 10.1186/s12957-021-02431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a non-receptor tyrosine kinase that has been found to be overexpressed in various tumors. However, the role of SRMS in colorectal cancer (CRC) has not been well established. METHODS We evaluated the expression levels of SRMS in CRC using GEPIA, Oncomine, and HPA datasets. Survival information and gene expression data of CRC were obtained from The Cancer Genome Atlas (TCGA). Then, the association between SRMS and clinicopathological features was analyzed using UALCAN dataset. LinkedOmics was used to determine co-expression and functional networks associated with SRMS. Besides, we used TISIDB to assess the correlation between SRMS and immune signatures, including tumor-infiltrating immune cells and immunomodulators. Lastly, protein-protein interaction network (PPI) was established and the function enrichment analysis of the SRMS-associated immunomodulators and immune cell marker genes were performed using the STRING portal. RESULTS Compared to normal colorectal tissues, SRMS was found to be overexpressed in CRC tissues, which was correlated with a poor prognosis. In colon adenocarcinoma (COAD), the expression levels of SRMS are significantly correlated with pathological stages and nodal metastasis status. Functional network analysis suggested that SRMS regulates intermediate filament-based processes, protein autophosphorylation, translational initiation, and elongation signaling through pathways involving ribosomes, proteasomes, oxidative phosphorylation, and DNA replication. In addition, SRMS expression was correlated with infiltrating levels of CD4+ T cells, CD56dim, MEM B, Neutrophils, Th2, Th17, and Act DC. The gene ontology (GO) analysis of SRMS-associated immunomodulators and immune cell marker genes showed that they were mainly enriched in the immune microenvironment molecule-related signals. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these genes indicated that they are involved in multiple cancer-related pathways. CONCLUSIONS SRMS is a promising prognostic biomarker and potential therapeutic target for CRC patients. In particular, SRMS regulates CRC progression by modulating cytokine-cytokine receptor interaction, chemokines, IL-17, and intestinal immune networks for IgA production signaling pathways among others. However, more studies are needed to validate these findings.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Weidong Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Sisi Feng
- Department of Essential Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
| |
Collapse
|
21
|
Bhushan A, Kumari R, Srivastava T. Scouting for common genes in the heterogenous hypoxic tumor microenvironment and their validation in glioblastoma. 3 Biotech 2021; 11:451. [PMID: 34631352 DOI: 10.1007/s13205-021-02987-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
Investigating the therapeutic and prognostic potential of genes in the heterogeneous hypoxic niche of glioblastoma. We have analyzed RNA expression of U87MG cells cultured in hypoxia compared to normoxia. Common differentially expressed genes (DEGs) from GSE45301 and GSE18494 and their functional enrichment was performed using MetaScape and PANTHER. Hub genes and their ontology were identified using MCode cytoHubba and ClueGO and validated with GlioVis, Oncomine, HPA and PrognoScan. Using the GEO2R analysis of GSE45301 and GSE18494 datasets, we have found a total of 246 common DEGs (180 upregulated and 66 downregulated) and identified 2 significant modules involved in ribosome biogenesis and TNF signaling. Meta-analysis of key genes of each module in cytoHubba identified 17 hub genes (ATF3, BYSL, DUSP1, EGFR, JUN, ETS1, LYAR, NIP7, NOLC1, NOP2, NOP56, PNO1, RRS1, TNFAIP3, TNFRSF1B, UTP15, VEGFA). Of the 17 hub genes, ATF3, BYSL, EGFR, JUN, NIP7, NOLC1, PNO1, RRS1, TNFAIP3 and VEGFA were identified as hypoxia signatures associated with poor prognosis in Glioma. Ribosome biogenesis emerged as a vital contender of possible therapeutic potential with BYSL, NIP7, NOLC1, PNO1 and RRS1 showing prognostic value. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02987-2.
Collapse
Affiliation(s)
- Ashish Bhushan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ranbala Kumari
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
22
|
PNO1 regulates autophagy and apoptosis of hepatocellular carcinoma via the MAPK signaling pathway. Cell Death Dis 2021; 12:552. [PMID: 34050137 PMCID: PMC8163843 DOI: 10.1038/s41419-021-03837-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Some studies have reported that activated ribosomes are positively associated with malignant tumors, especially in hepatocellular carcinoma (HCC). The RNA-binding protein PNO1 is a critical ribosome rarely reported in human tumors. This study aimed to explore the molecular mechanisms of PNO1 in HCC. Using 150 formalin-fixed and paraffin-embedded samples and 8 fresh samples, we found high PNO1 expression in HCC tumor tissues through Western blotting and RT-PCR. Moreover, the higher PNO1 expression was associated with poor HCC prognosis patients. In vitro and in vivo experiments indicated that PNO1 overexpression promoted the proliferation and depressed the apoptosis of HCC cells. High PNO1 expression also increased the autophagy of HCC cells. The molecular mechanisms underlying PNO1 were examined by RNA-seq analysis and a series of functional experiments. Results showed that PNO1 promoted HCC progression through the MAPK signaling pathway. Therefore, PNO1 was overexpressed in HCC, promoted autophagy, and inhibited the apoptosis of HCC cells through the MAPK signaling pathway.
Collapse
|
23
|
Zhang B, Li H, Zhang J, Hang Y, Xu Y. Overexpression of microRNA-340-5p Ameliorates Inflammatory Response and Intracellular Survival of Mycobacterium Tuberculosis in Alveolar Type II Cells. Infect Drug Resist 2021; 14:1573-1584. [PMID: 33911883 PMCID: PMC8071707 DOI: 10.2147/idr.s291867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background The importance of microRNAs (miRs) has been documented in infections. This study estimated the role of miR-340-5p in Mycobacterium tuberculosis (Mtb)-infected alveolar type II cells. Methods The microarray of GEO database was analyzed to find the differentially expressed miRs caused by Mtb infection, and miR-340-5p was selected as the research object. The effects of Mtb infection on A549 cells were studied by MTT, CFU, EdU, flow cytometry and ELISA assays. miR-340-5p expression was altered in Mtb-infected A549 cells. The downstream target of miR-340-5p was found by bioinformatics analysis and verified by the rescue experiment. The pathways regulated by miR-340-5p and its target gene were further studied. Results Mtb infection suppressed the activity of A549 cells and promoted the release of inflammatory factors. Mtb infection inhibited miR-340-5p expression. Overexpression of miR-340-5p enhanced the resistance of A549 cells to Mtb infection. Moreover, miR-340-5p targeted TMED7. Overexpression of TMED7 reversed the protective effect of miR-340-5p on Mtb-infected A549 cells. miR-340-5p inhibited the activation of NF-κB by targeting TMED7. Conclusion miR-340-5p inhibits the activation of NF-κB by targeting TMED7, thus alleviating the injury of A549 cells caused by Mtb infection. This study may offer a novel approach to Mtb infection.
Collapse
Affiliation(s)
- Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Honglang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jieling Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yaping Hang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yi Xu
- Department of Geriatric Medicine, People's Hospital of Jiangxi Province, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
24
|
Chen X, Guo ZQ, Cao D, Chen Y, Chen J. MYC-mediated upregulation of PNO1 promotes glioma tumorigenesis by activating THBS1/FAK/Akt signaling. Cell Death Dis 2021; 12:244. [PMID: 33664245 PMCID: PMC7933405 DOI: 10.1038/s41419-021-03532-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
PNO1 has been reported to be involved in tumorigenesis, however, its role in glioma remains unexplored. In the present study, PNO1 expression in glioma from on-line databases, cDNA, and tissue microarrays was upregulated and associated with poor prognosis. PNO1 knockdown inhibits tumor cell growth and invasion both in vitro and in vivo; whereas PNO1 overexpression promoted cell proliferation and invasion in vitro. Notably, PNO1 interacted with THBS1 and the promotion of glioma by PNO1 overexpression could be attenuated or even reversed by simultaneously silencing THBS1. Functionally, PNO1 was involved in activation of FAK/Akt pathway. Moreover, overexpressing MYC increased PNO1 promoter activity. MYC knockdown decreased PNO1 and THBS1 expression, while inhibited cell proliferation and invasion. In conclusion, MYC-mediated upregulation of PNO1 contributes to glioma progression by activating THBS1/FAK/Akt signaling. PNO1 was reported to be a tumor promotor in the development and progression of glioma and may act as a candidate of therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Xu Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China.
| | - Zheng-Qian Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China
| | - Dan Cao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China
| | - Yong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China
| | - Jian Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China
| |
Collapse
|
25
|
Feng Y, Guo X, Tang H. SLC6A8 is involved in the progression of non-small cell lung cancer through the Notch signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:264. [PMID: 33708891 PMCID: PMC7940877 DOI: 10.21037/atm-20-5984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Solute carrier family 6 member 8 (SLC6A8) is known to be involved in the development of human tumors; however, the effect of SLC6A8 on the growth of non-small cell lung cancer (NSCLC) remains unclear. Here, we explored the role and potential action mechanism of SLC6A8 in NSCLC. Methods We used public databases [Oncomine, Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA)] to explore the expression of SLC6A8 in NSCLC. Additionally, we used immunohistochemistry to detect the expression of SLC6A8 in NSCLC clinicopathological tissues (cancer and adjacent tissues) and Western blotting to detect the expression of SLC6A8 in NSCLC clinicopathological tissues, NSCLC cell lines (A549, H1299, H520, and H1975), and a normal epithelial cell line (BEAS-2B). Using overexpression and knockdown of the SLC6A8 gene, we analyzed the in vitro effects of SLC6A8 on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of NSCLC and also the possible molecular mechanism with Notch signaling pathway. Results Bioinformatic analysis demonstrated that SLC6A8 is highly expressed in NSCLC and is related to poor prognosis. We found that the expression of the SLC6A8 protein in human lung cancer tissues was significantly higher than that in adjacent tissues. In addition, it was also significantly higher in lung cancer cell lines (A549, H1299, H520, and H1975) than that in normal lung epithelium-BEAS-2B. Moreover, SLC6A8 overexpression promotes the proliferation, migration and invasion in vitro in NSCLC, accompanied by the activation of notch signaling pathway and the up-regulation of MMP9 and E-cadherin proteins. Knocking down SLC6A8 can inhibit the above effects on cells. Conclusions SLC6A8 promotes the malignant progression of NSCLC and activates the Notch signaling pathway. Therefore, SLC6A8 is expected to become a molecular target for NSCLC treatment.
Collapse
Affiliation(s)
- Yan Feng
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiangyu Guo
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Huaping Tang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Zeng F, Luo L, Song M, Li D. Silencing of circular RNA PUM1 inhibits clear cell renal cell carcinoma progression through the miR-340-5p/FABP7 axis. J Recept Signal Transduct Res 2021; 42:141-150. [PMID: 33472512 DOI: 10.1080/10799893.2020.1870494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) monitor the development of clear cell renal cell carcinoma (ccRCC). However, the role of CircPUM1 in ccRCC malignancy is not studied. We estimated the mechanism of CircPUM1 in ccRCC progression in this study. CircPUM1 expression in ccRCC tissues and cells was detected. The expression of CircPUM1 was interfered in ccRCC cells, and its effects on the growth of ccRCC cells were studied. Nuclear/cytosol fractionation assay was performed for the location of CircPUM1, and the downstream miR, gene, and pathway involved in ccRCC progression were explored through gain- and loss-of-function experiments. CircPUM1 was highly expressed in ccRCC samples and cells. Inhibition of CircPUM1 prevented the growth ccRCC cells. CircPUM1 was localized in the cytoplasm and bound to miR-340-5p. Overexpression of miR-340-5p inhibited the growth of ccRCC cells. miR-340-5p targeted FABP7, and CircPUM1 induced FABP7 expression and the activation of MEK/ERK pathway through competitively binding to miR-340-5p. Overexpression of FABP7 attenuated the inhibitory effect of CircPUM1 silencing on the growth of ccRCC cells. Overall, CircPUM1 upregulates FABP7 expression by competitively binding to miR-340-5p, and then activates the MEK/ERK pathway, thus promoting ccRCC progression.
Collapse
Affiliation(s)
- Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Liumei Luo
- Division of Science and Education, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Mi Song
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| |
Collapse
|
27
|
Liu D, Luo Y, Chen L, Chen L, Zuo D, Li Y, Zhang X, Wu J, Xi Q, Li G, Qi L, Yue X, Zhang X, Sun Z, Zhang N, Song T, Lu W, Guo H. Diagnostic value of 5 serum biomarkers for hepatocellular carcinoma with different epidemiological backgrounds: A large-scale, retrospective study. Cancer Biol Med 2021; 18:256-270. [PMID: 33628599 PMCID: PMC7877174 DOI: 10.20892/j.issn.2095-3941.2020.0207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is a lethal global disease that requires an accurate diagnosis. We assessed the potential of 5 serum biomarkers (AFP, AFU, GGT-II, GPC3, and HGF) in the diagnosis of HCC. Methods: In this retrospective study, we measured the serum levels of each biomarker using ELISAs in 921 participants, including 298 patients with HCC, 154 patients with chronic hepatitis (CH), 122 patients with liver cirrhosis (LC), and 347 healthy controls from 3 hospitals. Patients negative for hepatitis B surface antigen and hepatitis C antibody (called “NBNC-HCC”) and patients positive for the above indices (called “HBV-HCC and HCV-HCC”) were enrolled. The selected diagnostic model was constructed using a training cohort (n = 468), and a validation cohort (n = 453) was used to validate our results. Receiver operating characteristic analysis was used to evaluate the diagnostic accuracy. Results: The α-L-fucosidase (AFU)/α-fetoprotein (AFP) combination was best able to distinguish NBNC-HCC [area under the curve: 0.986 (95% confidence interval: 0.958–0.997), sensitivity: 92.6%, specificity: 98.9%] from healthy controls in the test cohort. For screening populations at risk of developing HCC (CH and LC), the AFP/AFU combination improved the diagnostic specificity for early-stage HCC [area under the curve: 0.776 (0.712–0.831), sensitivity: 52.5%, specificity: 91.6% in the test group]. In all-stage HBV-HCC and HCV-HCC, AFU was also the best candidate biomarker combined with AFP [area under the curve: 0.835 (0.784–0.877), sensitivity 69.1%, specificity: 87.4% in the test group]. All results were verified in the validation group. Conclusions: The AFP/AFU combination could be used to identify NBNC-HCC from healthy controls and hepatitis-related HCC from at-risk patients.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Hepatobiliary, Liver Cancer Research Center for Prevention and Therapy
| | - Yi Luo
- Department of Tumor Cell Biology
| | - Lu Chen
- Department of Hepatobiliary, Liver Cancer Research Center for Prevention and Therapy
| | | | - Duo Zuo
- Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yueguo Li
- Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaofang Zhang
- Medical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wu
- Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Qing Xi
- Department of Tumor Cell Biology
| | | | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaofen Yue
- Department of Tianjin Research Institute of Liver Diseases, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Xiehua Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Zhuoyu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ning Zhang
- The Center for Translational Cancer Research, Peking University First Hospital, Beijing 100034, China
| | - Tianqiang Song
- Department of Hepatobiliary, Liver Cancer Research Center for Prevention and Therapy
| | - Wei Lu
- Department of Hepatobiliary, Liver Cancer Research Center for Prevention and Therapy
| | - Hua Guo
- Department of Tumor Cell Biology
| |
Collapse
|