1
|
Frans MT, Kuipers EM, Bianchi F, van den Bogaart G. Unveiling the impact of GOLM1/GP73 on cytokine production in cancer and infectious disease. Immunol Cell Biol 2023; 101:727-734. [PMID: 37332154 DOI: 10.1111/imcb.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
The Golgi membrane protein GOLM1/GP73/GOLPH2 has been found to impact cytokine production in both infectious disease and cancer. In viral infections, GOLM1 levels are increased, and this lowers the production of type I interferons and other inflammatory cytokines. However, elevated GOLM1 expression levels due to mutations are linked to a higher production of interleukin (IL)-6 during Candida infections, potentially explaining an increased susceptibility to candidemia in individuals carrying these mutations. In cancer, the protease Furin produces a soluble form of GOLM1 that has oncogenic properties by promoting the production of the chemokine CCL2 and suppressing the production of inflammatory cytokines such as IL-12 and interferon gamma. This review will focus on the role of GOLM1 in cytokine production, highlighting how it can both promote and inhibit cytokine production. It is crucial to understand this in order to effectively target GOLM1 for therapeutic purposes in diseases associated with abnormal cytokine production, including cancer and infectious disease.
Collapse
Affiliation(s)
- Myrthe T Frans
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ella M Kuipers
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Hu X, Yuan S, Zhou S, Sun T, Wang C, Ying S, Zhu H, Luo J, Jin H, Liu Y. Golgi-protein 73 facilitates vimentin polymerization in hepatocellular carcinoma. Int J Biol Sci 2023; 19:3694-3708. [PMID: 37564210 PMCID: PMC10411459 DOI: 10.7150/ijbs.85431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Golgi-protein 73 (GP73) is highly expressed in hepatocellular carcinoma (HCC) and, as a secretory protein, it has been proposed as a serum biomarker indicating progression of HCC. The underlying mechanism by which GP73 may promote HCC metastasis is still poorly understood. In this study, we discovered that GP73 interacted with vimentin to facilitate Serine/Threonine-protein phosphatase PP1-alpha (PP1A)-mediated dephosphorylation of vimentin at S56 and facilitated vimentin polymerization, which blocked vimentin degradation via TRIM56-mediated ubiquitin/proteasome-dependent pathway. Strikingly, Clomipramine, a 5-hydroxytryptamine receptor (5-HTR) agonist approved for the treatment of depression, impaired GP73-mediated vimentin polymerization to effectively inhibit metastasis of HCC with high GP73 expression, which provided a new strategy against HCC metastasis. Lastly, it was found that serum GP73 (sGP73) correlated positively with vimentin in primary tissues of HCC, suggesting that sGP73 might serve as a potential serum biomarker for companion diagnosis of HCC with highly expressed vimentin. In summary, this study reveals the process of GP73-mediated vimentin polymerization and proves that Clomipramine serves as a potential drug targeting vimentin for metastatic HCC patients with high sGP73 level.
Collapse
Affiliation(s)
- Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Shijin Yuan
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Sining Zhou
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ting Sun
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chaoqun Wang
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, China
| | - Shilong Ying
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jingfeng Luo
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wang H, Wang R, Fang J. A spliceosome-associated gene signature aids in predicting prognosis and tumor microenvironment of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:204765. [PMID: 37301543 PMCID: PMC10292887 DOI: 10.18632/aging.204765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Splicing alterations have been shown to be key tumorigenesis drivers. In this study, we identified a novel spliceosome-related genes (SRGs) signature to predict the overall survival (OS) of patients with hepatocellular carcinoma (HCC). A total of 25 SRGs were identified from the GSE14520 dataset (training set). Univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were utilized to construct the signature using genes with predictive significance. We then constructed a risk model using six SRGs (BUB3, IGF2BP3, RBM3, ILF3, ZC3H13, and CCT3). The reliability and predictive power of the gene signature were validated in two validation sets (TCGA and GSE76427 dataset). Patients in training and validation sets were divided into high and low-risk groups based on the gene signature. Patients in high-risk groups exhibited a poorer OS than in low-risk groups both in the training set and two validation sets. Next, risk score, BCLC staging, TNM staging, and multinodular were combined in a nomogram for OS prediction, and the decision curve analysis (DCA) curve exhibited the excellent prediction performance of the nomogram. The functional enrichment analyses demonstrated high-risk score patients were closely related to multiple oncology characteristics and invasive-related pathways, such as Cell cycle, DNA replication, and Spliceosome. Different compositions of the tumor microenvironment and immunocyte infiltration ratio might contribute to the prognostic difference between high and low-risk score groups. In conclusion, a spliceosome-related six-gene signature exhibited good performance for predicting the OS of patients with HCC, which may aid in clinical decision-making for individual treatment.
Collapse
Affiliation(s)
- Huaxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ruling Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jian Fang
- Department of Hepatobiliary Medicine, The Third People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350108, Fujian, China
| |
Collapse
|
4
|
Shahini E, Pasculli G, Solimando AG, Tiribelli C, Cozzolongo R, Giannelli G. Updating the Clinical Application of Blood Biomarkers and Their Algorithms in the Diagnosis and Surveillance of Hepatocellular Carcinoma: A Critical Review. Int J Mol Sci 2023; 24:ijms24054286. [PMID: 36901717 PMCID: PMC10001986 DOI: 10.3390/ijms24054286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The most common primary liver cancer is hepatocellular carcinoma (HCC), and its mortality rate is increasing globally. The overall 5-year survival of patients with liver cancer is currently 10-20%. Moreover, because early diagnosis can significantly improve prognosis, which is highly correlated with tumor stage, early detection of HCC is critical. International guidelines advise using α-FP biomarker with/without ultrasonography for HCC surveillance in patients with advanced liver disease. However, traditional biomarkers are sub-optimal for risk stratification of HCC development in high-risk populations, early diagnosis, prognostication, and treatment response prediction. Since about 20% of HCCs do not produce α-FP due to its biological diversity, combining α-FP with novel biomarkers can enhance HCC detection sensitivity. There is a chance to offer promising cancer management methods in high-risk populations by utilizing HCC screening strategies derived from new tumor biomarkers and prognostic scores created by combining biomarkers with distinct clinical parameters. Despite numerous efforts to identify molecules as potential biomarkers, there is no single ideal marker in HCC. When combined with other clinical parameters, the detection of some biomarkers has higher sensitivity and specificity in comparison with a single biomarker. Therefore, newer biomarkers and models, such as the Lens culinaris agglutinin-reactive fraction of Alpha-fetoprotein (α-FP), α-FP-L3, Des-γ-carboxy-prothrombin (DCP or PIVKA-II), and the GALAD score, are being used more frequently in the diagnosis and prognosis of HCC. Notably, the GALAD algorithm was effective in HCC prevention, particularly for cirrhotic patients, regardless of the cause of their liver disease. Although the role of these biomarkers in surveillance is still being researched, they may provide a more practical alternative to traditional imaging-based surveillance. Finally, looking for new diagnostic/surveillance tools may help improve patients' survival. This review discusses the current roles of the most used biomarkers and prognostic scores that may aid in the clinical management of HCC patients.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
- Correspondence: ; Tel.: +39-0804994249
| | - Giuseppe Pasculli
- National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), University of Bari “A. Moro”, 70121 Bari, Italy
| | | | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Gianluigi Giannelli
- Scientific Director, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
5
|
Bongolo CC, Thokerunga E, Yan Q, Yacouba MBM, Wang C. Exosomes Derived from microRNA-27a-3p Overexpressing Mesenchymal Stem Cells Inhibit the Progression of Liver Cancer through Suppression of Golgi Membrane Protein 1. Stem Cells Int 2022; 2022:9748714. [PMID: 36530488 PMCID: PMC9750777 DOI: 10.1155/2022/9748714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 08/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a significant health burden to date. Its early diagnosis and treatment are complicated by the lack of early diagnosis markers and multidrug resistance. microRNA regulation of HCC oncogenes are among the new diagnostic and therapeutic strategies being explored, although the mode of delivery of a therapeutic dose of the miRNA remains a challenge. In this study, we explored the use of exosomes from umbilical mesenchymal stem cells transfected with miR-27a-3p to interact with the oncogene GOLM1 in HCC and inhibit HCC progression both in vitro and in vivo. We first determined and compared the expression levels of miR-27a-3p in blood, various cell lines and tissues of HCC and their corresponding normal controls. We then employed bioinformatics analysis to determine the gene target for miR-27a-3p in HCC and later transfected upregulated miR-27a-3p in mesenchymal stem cells, and treated HCC cells with exosomes extracted from the transfected stem cells. We then created mouse models of HCC using balbc/nude mice and equally treated them with exosomes from miR-27a-3p transfected stem cells. The results showed that miR-27a-3p is downregulated in blood, cell lines, and tissues of HCC patients compared to normal controls. Exosomes from the miR-27a-3p transfected mesenchymal stem cells prevented HCC cell proliferation, invasion, and metastasis both in vitro and in vivo. Upregulation of miR-27a-3p prevented HCC through interacting with and downregulating GOLM1 as its target oncogene. In conclusion, miR-27a-3p is a potential therapeutic target for HCC acting through GOLM1.
Collapse
Affiliation(s)
- Christian Cedric Bongolo
- Wuhan Sheba Precision Medical Technology Co. Ltd., Wuhan, 430022 Hubei, China
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 43007, China
| | - Erick Thokerunga
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 43007, China
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science and Technology, 1410 Mbarara, Uganda
| | - Qian Yan
- Wuhan Sheba Precision Medical Technology Co. Ltd., Wuhan, 430022 Hubei, China
| | | | - Chao Wang
- Department of General Surgery, Clinical Research Center of Geriatric Diseases in Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Liu MY, Huang L, Wu JF, Zhang HB, Ai WB, Zhang RT. Possible roles of Golgi protein-73 in liver diseases. Ann Hepatol 2022; 27:100720. [PMID: 35577277 DOI: 10.1016/j.aohep.2022.100720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Golgi protein 73 (also known as GP73 or GOLPH2) is a transmembrane glycoprotein present in the Golgi apparatus. In diseased states, GP73 is expressed by hepatocytes rather than by bile duct epithelial cells. Many studies have reported that serum GP73 (sGP73) is a marker for hepatocellular carcinoma (HCC). For HCC diagnosis, the sensitivities of sGP73 were higher than that of other markers but the specificities were lower. Considering that the concentration of GP73 is consistent with the stage of liver fibrosis and cirrhosis, some studies have implied that GP73 may be a marker for liver fibrosis and cirrhosis. Increased sGP73 levels may result from hepatic inflammatory activity. During liver inflammation, GP73 facilitates liver tissue regeneration. By summarizing the studies on GP73 in liver diseases, we wish to focus on the mechanism of GP73 in diseases.
Collapse
Affiliation(s)
- Meng-Yuan Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Medical College, China Three Gorges University; Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lu Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Medical College, China Three Gorges University; Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Medical College, China Three Gorges University; Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Hong-Bing Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Bing Ai
- The Yiling Hospital of Yichang, 31 Donghu Road, Yi Ling District, Yichang 443100, Hubei, China.
| | - Rui-Tao Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Medical College, China Three Gorges University; Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| |
Collapse
|
7
|
GOLM1 depletion modifies cellular sphingolipid metabolism and adversely affects cell growth. J Lipid Res 2022; 63:100259. [PMID: 35948172 PMCID: PMC9475319 DOI: 10.1016/j.jlr.2022.100259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Golgi membrane protein 1 (GOLM1) is a Golgi-resident type 2 transmembrane protein known to be overexpressed in several cancers, including hepatocellular carcinoma (HCC), as well as in viral infections. However, the role of GOLM1 in lipid metabolism remains enigmatic. In this study, we employed siRNA-mediated GOLM1 depletion in Huh-7 HCC cells to study the role of GOLM1 in lipid metabolism. Mass spectrometric lipidomic analysis in GOLM1 knockdown cells showed an aberrant accumulation of sphingolipids, such as ceramides, hexosylceramides, dihexosylceramides, sphinganine, sphingosine, and ceramide phosphate, along with cholesteryl esters. Furthermore, we observed a reduction in phosphatidylethanolamines and lysophosphatidylethanolamines. In addition, Seahorse extracellular flux analysis indicated a reduction in mitochondrial oxygen consumption rate upon GOLM1 depletion. Finally, alterations in Golgi structure and distribution were observed both by electron microscopy imaging and immunofluorescence microscopy analysis. Importantly, we found that GOLM1 depletion also affected cell proliferation and cell cycle progression in Huh-7 HCC cells. The Golgi structural defects induced by GOLM1 reduction might potentially affect the trafficking of proteins and lipids leading to distorted intracellular lipid homeostasis, which may result in organelle dysfunction and altered cell growth. In conclusion, we demonstrate that GOLM1 depletion affects sphingolipid metabolism, mitochondrial function, Golgi structure, and proliferation of HCC cells.
Collapse
|
8
|
Liu Y, Hu X, Liu S, Zhou S, Chen Z, Jin H. Golgi Phosphoprotein 73: The Driver of Epithelial-Mesenchymal Transition in Cancer. Front Oncol 2021; 11:783860. [PMID: 34950590 PMCID: PMC8688837 DOI: 10.3389/fonc.2021.783860] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Golgi phosphoprotein 73 (GP73, also termed as GOLM1 or GOLPH2) is a glycosylated protein residing on cis-Golgi cisternae and highly expressed in various types of cancer tissues. Since GP73 is a secretory protein and detectable in serum derived from cancer patients, it has been regarded as a novel serum biomarker for the diagnosis of different cancers, especially hepatocellular carcinoma (HCC). However, the functional roles of GP73 in cancer development are still poorly understood. In recent years, it has been discovered that GP73 acts as a multifunctional protein-facilitating cancer progression, and strikingly, it has been identified as a leading factor promoting epithelial-mesenchymal transition (EMT) of cancer cells and causing cancer metastasis. In this review, we have overviewed the latest findings of the functional roles of GP73 in elevating cancer progression, especially in facilitating EMT and cancer metastasis through modulating expression, transactivation, and trafficking of EMT-related proteins. In addition, unsolved research fields of GP73 have been lightened, which might be helpful to elucidate the regulatory mechanisms of GP73 on EMT and provide potential approaches in therapeutics against cancer metastasis.
Collapse
Affiliation(s)
- Yiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shiyao Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|