1
|
Uchitel J, Blanco B, Collins-Jones L, Edwards A, Porter E, Pammenter K, Hebden J, Cooper RJ, Austin T. Cot-side imaging of functional connectivity in the developing brain during sleep using wearable high-density diffuse optical tomography. Neuroimage 2023; 265:119784. [PMID: 36464095 DOI: 10.1016/j.neuroimage.2022.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Studies of cortical function in newborn infants in clinical settings are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become an increasingly common clinical research tool but has significant limitations including a low spatial resolution and poor depth specificity. Moreover, the bulky optical fibres required in traditional fNIRS approaches present significant mechanical challenges, particularly for the study of vulnerable newborn infants. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first cot-side study of newborn infants using wearable HD-DOT in a clinical setting. We use this technology to study functional brain connectivity (FC) in newborn infants during sleep and assess the effect of neonatal sleep states, active sleep (AS) and quiet sleep (QS), on resting state FC. Our results demonstrate that it is now possible to obtain high-quality functional images of the neonatal brain in the clinical setting with few constraints. Our results also suggest that sleep states differentially affect FC in the neonatal brain, consistent with prior reports.
Collapse
Affiliation(s)
- Julie Uchitel
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK; Department of Pediatrics, University of Cambridge, Cambridge, UK.
| | - Borja Blanco
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Liam Collins-Jones
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Andrea Edwards
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emma Porter
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kelle Pammenter
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jem Hebden
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Robert J Cooper
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
2
|
Uchitel J, Blanco B, Vidal-Rosas E, Collins-Jones L, Cooper RJ. Reliability and similarity of resting state functional connectivity networks imaged using wearable, high-density diffuse optical tomography in the home setting. Neuroimage 2022; 263:119663. [PMID: 36202159 DOI: 10.1016/j.neuroimage.2022.119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND When characterizing the brain's resting state functional connectivity (RSFC) networks, demonstrating networks' similarity across sessions and reliability across different scan durations is essential for validating results and possibly minimizing the scanning time needed to obtain stable measures of RSFC. Recent advances in optical functional neuroimaging technologies have resulted in fully wearable devices that may serve as a complimentary tool to functional magnetic resonance imaging (fMRI) and allow for investigations of RSFC networks repeatedly and easily in non-traditional scanning environments. METHODS Resting-state cortical hemodynamic activity was repeatedly measured in a single individual in the home environment during COVID-19 lockdown conditions using the first ever application of a 24-module (72 sources, 96 detectors) wearable high-density diffuse optical tomography (HD-DOT) system. Twelve-minute recordings of resting-state data were acquired over the pre-frontal and occipital regions in fourteen experimental sessions over three weeks. As an initial validation of the data, spatial independent component analysis was used to identify RSFC networks. Reliability and similarity scores were computed using metrics adapted from the fMRI literature. RESULTS We observed RSFC networks over visual regions (visual peripheral, visual central networks) and higher-order association regions (control, salience and default mode network), consistent with previous fMRI literature. High similarity was observed across testing sessions and across chromophores (oxygenated and deoxygenated haemoglobin, HbO and HbR) for all functional networks, and for each network considered separately. Stable reliability values (described here as a <10% change between time windows) were obtained for HbO and HbR with differences in required scanning time observed on a network-by-network basis. DISCUSSION Using RSFC data from a highly sampled individual, the present work demonstrates that wearable HD-DOT can be used to obtain RSFC measurements with high similarity across imaging sessions and reliability across recording durations in the home environment. Wearable HD-DOT may serve as a complimentary tool to fMRI for studying RSFC networks outside of the traditional scanning environment and in vulnerable populations for whom fMRI is not feasible.
Collapse
Affiliation(s)
- Julie Uchitel
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Borja Blanco
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Ernesto Vidal-Rosas
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Liam Collins-Jones
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Robert J Cooper
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| |
Collapse
|
3
|
Wearable, Integrated EEG-fNIRS Technologies: A Review. SENSORS 2021; 21:s21186106. [PMID: 34577313 PMCID: PMC8469799 DOI: 10.3390/s21186106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/04/2023]
Abstract
There has been considerable interest in applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) simultaneously for multimodal assessment of brain function. EEG–fNIRS can provide a comprehensive picture of brain electrical and hemodynamic function and has been applied across various fields of brain science. The development of wearable, mechanically and electrically integrated EEG–fNIRS technology is a critical next step in the evolution of this field. A suitable system design could significantly increase the data/image quality, the wearability, patient/subject comfort, and capability for long-term monitoring. Here, we present a concise, yet comprehensive, review of the progress that has been made toward achieving a wearable, integrated EEG–fNIRS system. Significant marks of progress include the development of both discrete component-based and microchip-based EEG–fNIRS technologies; modular systems; miniaturized, lightweight form factors; wireless capabilities; and shared analogue-to-digital converter (ADC) architecture between fNIRS and EEG data acquisitions. In describing the attributes, advantages, and disadvantages of current technologies, this review aims to provide a roadmap toward the next generation of wearable, integrated EEG–fNIRS systems.
Collapse
|
4
|
Ximendes E, Benayas A, Jaque D, Marin R. Quo Vadis, Nanoparticle-Enabled In Vivo Fluorescence Imaging? ACS NANO 2021; 15:1917-1941. [PMID: 33465306 DOI: 10.1021/acsnano.0c08349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The exciting advancements that we are currently witnessing in terms of novel materials and synthesis approaches are leading to the development of colloidal nanoparticles (NPs) with increasingly greater tunable properties. We have now reached a point where it is possible to synthesize colloidal NPs with functionalities tailored to specific societal demands. The impact of this new wave of colloidal NPs has been especially important in the field of biomedicine. In that vein, luminescent NPs with improved brightness and near-infrared working capabilities have turned out to be optimal optical probes that are capable of fast and high-resolution in vivo imaging. However, luminescent NPs have thus far only reached a limited portion of their potential. Although we believe that the best is yet to come, the future might not be as bright as some of us think (and have hoped!). In particular, translation of NP-based fluorescence imaging from preclinical studies to clinics is not straightforward. In this Perspective, we provide a critical assessment and highlight promising research avenues based on the latest advances in the fields of luminescent NPs and imaging technologies. The disillusioned outlook we proffer herein might sound pessimistic at first, but we consider it necessary to avoid pursuing "pipe dreams" and redirect the efforts toward achievable-yet ambitious-goals.
Collapse
Affiliation(s)
- Erving Ximendes
- Fluorescence Imaging Group, Departamento de Fısica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Antonio Benayas
- Fluorescence Imaging Group, Departamento de Fısica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Fısica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Riccardo Marin
- Fluorescence Imaging Group, Departamento de Fısica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| |
Collapse
|
5
|
Wheelock MD, Culver JP, Eggebrecht AT. High-density diffuse optical tomography for imaging human brain function. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:051101. [PMID: 31153254 PMCID: PMC6533110 DOI: 10.1063/1.5086809] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/14/2019] [Indexed: 05/08/2023]
Abstract
This review describes the unique opportunities and challenges for noninvasive optical mapping of human brain function. Diffuse optical methods offer safe, portable, and radiation free alternatives to traditional technologies like positron emission tomography or functional magnetic resonance imaging (fMRI). Recent developments in high-density diffuse optical tomography (HD-DOT) have demonstrated capabilities for mapping human cortical brain function over an extended field of view with image quality approaching that of fMRI. In this review, we cover fundamental principles of the diffusion of near infrared light in biological tissue. We discuss the challenges involved in the HD-DOT system design and implementation that must be overcome to acquire the signal-to-noise necessary to measure and locate brain function at the depth of the cortex. We discuss strategies for validation of the sensitivity, specificity, and reliability of HD-DOT acquired maps of cortical brain function. We then provide a brief overview of some clinical applications of HD-DOT. Though diffuse optical measurements of neurophysiology have existed for several decades, tremendous opportunity remains to advance optical imaging of brain function to address a crucial niche in basic and clinical neuroscience: that of bedside and minimally constrained high fidelity imaging of brain function.
Collapse
Affiliation(s)
- Muriah D. Wheelock
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|