1
|
Kilicarslan N, Demir A, Yeni S, Cicek MC, Saricetin A, Dirican M. The danger of hyperoxia on the rat kidneys: is tadalafil a real shield? Int Urol Nephrol 2023; 55:241-247. [PMID: 36443608 PMCID: PMC9707269 DOI: 10.1007/s11255-022-03416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Continuous oxygen therapy to compensate for decreased oxygen saturation in the blood is a life-saving treatment used in case lung involvement. Excess oxygen delivery was reported to be a common situation, in which about 50% of the patients showed hyperoxemia and 4% in severe hyperoxemia. In this work, we investigated the effects of hyperoxia on the rat kidneys and whether tadalafil has an effect to reduce this damage. MATERIALS AND METHODS Three groups of 8 male rats each weighing 300-350 g were formed. The groups were divided into the control group, hyperoxia group, and hyperoxia and tadalafil administered group for 10 days. At the end of the 10th day, blood and kidney samples were taken for biochemical analysis (SOD and NO levels) and histopathological examination. RESULTS While our findings showed that SOD levels were significantly different among the control and experimental groups and within the experimental groups, no statistical difference was found in terms of NO levels among the groups (Table 1). While the glomerular and tubular injury was higher in the Hyperoxia group and the Hyperoxia + Tadalafil group than in the control group (p < 0.001), as a result of the rate of severe glomerular and tubular injury in the hyperoxia group, was 62.5% and 43.8% and in the group given tadalafil was 43.8% and 31.3%, respectively (Table 2). CONCLUSIONS Exposure to hyperoxia condition causes renal glomerular and tubular damage, and tadalafil does not show a protective effect on this damage according to this study's dose and exposure time.
Collapse
Affiliation(s)
- Nermin Kilicarslan
- Anesthesia Department, Bursa Yüksek İhtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| | - Aslan Demir
- Urology Department, Medical Faculty, Dragos Hospital, Bezmialam Foundation University, Dragos Hastanesi, Sahil Yolu Sok. No: 16 Maltepe, 34844, Istanbul, Turkey.
| | - Sezgin Yeni
- Urology Department, Medical Faculty, Bursa Uludag University, Bursa, Turkey
| | | | - Aysun Saricetin
- Pathology Department, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Melahat Dirican
- Biochemistry Department, Medical Faculty, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
2
|
Kidney Injuries and Evolution of Chronic Kidney Diseases Due to Neonatal Hyperoxia Exposure Based on Animal Studies. Int J Mol Sci 2022; 23:ijms23158492. [PMID: 35955627 PMCID: PMC9369080 DOI: 10.3390/ijms23158492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth interrupts the development and maturation of the kidneys during the critical growth period. The kidneys can also exhibit structural defects and functional impairment due to hyperoxia, as demonstrated by various animal studies. Furthermore, hyperoxia during nephrogenesis impairs renal tubular development and induces glomerular and tubular injuries, which manifest as renal corpuscle enlargement, renal tubular necrosis, interstitial inflammation, and kidney fibrosis. Preterm birth along with hyperoxia exposure induces a pathological predisposition to chronic kidney disease. Hyperoxia-induced kidney injuries are influenced by several molecular factors, including hypoxia-inducible factor-1α and interleukin-6/Smad2/transforming growth factor-β, and Wnt/β-catenin signaling pathways; these are key to cell proliferation, tissue inflammation, and cell membrane repair. Hyperoxia-induced oxidative stress is characterized by the attenuation or the induction of multiple molecular factors associated with kidney damage. This review focuses on the molecular pathways involved in the pathogenesis of hyperoxia-induced kidney injuries to establish a framework for potential interventions.
Collapse
|
3
|
Voggel J, Mohr J, Nüsken KD, Dötsch J, Nüsken E, Alejandre Alcazar MA. Translational insights into mechanisms and preventive strategies after renal injury in neonates. Semin Fetal Neonatal Med 2022; 27:101245. [PMID: 33994314 DOI: 10.1016/j.siny.2021.101245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adverse perinatal circumstances can cause acute kidney injury (AKI) and contribute to chronic kidney disease (CKD). Accumulating evidence indicate that a wide spectrum of perinatal conditions interferes with normal kidney development and ultimately leads to aberrant kidney structure and function later in life. The present review addresses the lack of mechanistic knowledge with regard to perinatal origins of CKD and provides a comprehensive overview of pre- and peri-natal insults, including genetic predisposition, suboptimal nutritional supply, obesity and maternal metabolic disorders as well as placental insufficiency leading to intrauterine growth restriction (IUGR), prematurity, infections, inflammatory processes, and the need for life-saving treatments (e.g. oxygen supplementation, mechanical ventilation, medications) in neonates. Finally, we discuss future preventive, therapeutic, and regenerative directions. In summary, this review highlights the perinatal vulnerability of the kidney and the early origins of increased susceptibility toward AKI and CKD during postnatal life. Promotion of kidney health and prevention of disease require the understanding of perinatal injury in order to optimize perinatal micro- and macro-environments and enable normal kidney development.
Collapse
Affiliation(s)
- Jenny Voggel
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Jasmine Mohr
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Kai-Dietrich Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Jörg Dötsch
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Eva Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Miguel A Alejandre Alcazar
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany; Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine, University Hospital Cologne Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany.
| |
Collapse
|
4
|
Anti-Tn Monoclonal Antibody Ameliorates Hyperoxia-Induced Kidney Injury by Suppressing Oxidative Stress and Inflammation in Neonatal Mice. Mediators Inflamm 2021; 2021:1180543. [PMID: 34720748 PMCID: PMC8553484 DOI: 10.1155/2021/1180543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/09/2021] [Indexed: 01/27/2023] Open
Abstract
The Tn antigen, an N-acetylgalactosamine structure linked to serine or threonine, has been shown to induce high-specificity, high-affinity anti-Tn antibodies in mice. Maternal immunization with the Tn vaccine increases serum anti-Tn antibody titers and attenuates hyperoxia-induced kidney injury in neonatal rats. However, immunizing mothers to treat neonatal kidney disease is clinically impractical. This study is aimed at determining whether anti-Tn monoclonal antibody treatment ameliorates hyperoxia-induced kidney injury in neonatal mice. Newborn BALB/c mice were exposed to room air (RA) or normobaric hyperoxia (85% O2) for 1 week. On postnatal days 2, 4, and 6, the mice were injected intraperitoneally with PBS alone or with anti-Tn monoclonal antibodies at 25 μg/g body weight in 50 μL phosphate-buffered saline (PBS). The mice were divided into four study groups: RA + PBS, RA + anti-Tn monoclonal antibody, O2 + PBS, and O2 + anti-Tn monoclonal antibody. The kidneys were excised for histology, oxidative stress, cytokine, and Western blot analyses on postnatal day 7. The O2 + PBS mice exhibited significantly higher kidney injury scores, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear factor-κB (NF-κB) expression, and cytokine levels than did the RA + PBS mice or RA + anti-Tn mice. Anti-Tn monoclonal antibody treatment reduced kidney injury and cytokine levels to normoxic levels. The attenuation of kidney injury was accompanied by a reduction of oxidative stress and NF-κB expression. Therefore, we propose that anti-Tn monoclonal antibody treatment ameliorates hyperoxia-induced kidney injury by suppressing oxidative stress and inflammation in neonatal mice.
Collapse
|
5
|
Hsu CN, Tain YL. The First Thousand Days: Kidney Health and Beyond. Healthcare (Basel) 2021; 9:1332. [PMID: 34683012 PMCID: PMC8544398 DOI: 10.3390/healthcare9101332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) is rising. A superior strategy to advance global kidney health is required to prevent and treat CKD early. Kidney development can be impacted during the first 1000 days of life by numerous factors, including malnutrition, maternal illness, exposure to chemicals, substance abuse, medication use, infection, and exogenous stress. In the current review, we summarize environmental risk factors reported thus far in clinical and experimental studies relating to the programming of kidney disease, and systematize the knowledge on common mechanisms underlying renal programming. The aim of this review is to discuss the primary and secondary prevention actions for enhancing kidney health from pregnancy to age 2. The final task is to address the potential interventions to target renal programming through updating animal studies. Together, we can enhance the future of global kidney health in the first 1000 days of life.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
6
|
Immunization with anti-Tn immunogen in maternal rats protects against hyperoxia-induced kidney injury in newborn offspring. Pediatr Res 2021; 89:476-482. [PMID: 32311698 DOI: 10.1038/s41390-020-0894-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/27/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neonatal hyperoxia increases oxidative stress and adversely disturbs glomerular and tubular maturity. Maternal Tn immunization induces anti-Tn antibody titer and attenuates hyperoxia-induced lung injury in neonatal rats. METHODS We intraperitoneally immunized female Sprague-Dawley rats (6 weeks old) with Tn immunogen (50 μg/dose) or carrier protein five times at biweekly intervals on 8, 6, 4, 2, and 0 weeks before the delivery day. The pups were reared for 2 weeks in either room air (RA) or in 85% oxygen-enriched atmosphere (O2), thus generating four study groups, namely carrier protein + RA, Tn vaccine + RA, carrier protein + O2, and Tn vaccine + O2. On postnatal day 14, the kidneys were harvested for the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), nuclear factor-κB (NF-κB), and collagen expression and histological analyses. RESULTS Hyperoxia reduced body weight, induced tubular and glomerular injuries, and increased 8-OHdG and NF-κB expression and collagen deposition in the kidneys. By contrast, maternal Tn immunization reduced kidney injury and collagen deposition in neonatal rats. Furthermore, kidney injury attenuation was accompanied by a reduction in 8-OHdG and NF-κB expression. CONCLUSION Maternal Tn immunization protects against hyperoxia-induced kidney injury in neonatal rats by attenuating oxidative stress and NF-κB activity. IMPACT Hyperoxia increased nuclear factor-κB (NF-κB) activity and collagen deposition in neonatal rat kidney. Maternal Tn immunization reduced kidney injury as well as collagen deposition in neonatal rats. Maternal Tn immunization reduced kidney injury and was associated with a reduction in 8-hydroxy-2'-deoxyguanosine and NF-κB activity. Tn vaccine can be a promising treatment modality against hyperoxia-induced kidney injury in neonates.
Collapse
|
7
|
Prochaska E, Jang M, Burd I. COVID-19 in pregnancy: Placental and neonatal involvement. Am J Reprod Immunol 2020; 84:e13306. [PMID: 32779810 PMCID: PMC7404599 DOI: 10.1111/aji.13306] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 12 million infections and more than 550 000 deaths.1 Morbidity and mortality appear partly due to host inflammatory response.2 Despite rapid, global research, the effect of SARS-CoV-2 on the developing fetus remains unclear. Case reports indicate that vertical transmission is uncommon; however, there is evidence that placental and fetal infection can occur.3-7 Placentas from infected patients show inflammatory, thrombotic, and vascular changes that have been found in other inflammatory conditions.8,9 This suggests that the inflammatory nature of SARS-CoV-2 infection during pregnancy could cause adverse obstetric and neonatal events. Exposure to intrauterine inflammation and placental changes could also potentially result in long-term, multisystemic defects in exposed infants. This review will summarize the known literature on the placenta in SARS-CoV-2 infection, evidence of vertical transmission, and possible outcomes of prenatal exposure to the virus.
Collapse
Affiliation(s)
- Erica Prochaska
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of Pediatric Infectious DiseasesDepartment of PediatricsThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Minyoung Jang
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Irina Burd
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
8
|
Tian M, Ticer T, Wang Q, Walker S, Pham A, Suh A, Busatto S, Davidovich I, Al-Kharboosh R, Lewis-Tuffin L, Ji B, Quinones-Hinojosa A, Talmon Y, Shapiro S, Rückert F, Wolfram J. Adipose-Derived Biogenic Nanoparticles for Suppression of Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904064. [PMID: 32067382 DOI: 10.1002/smll.201904064] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs) have therapeutic effects in inflammatory diseases. However, production of extracellular vesicles (EVs) from ADSCs is costly, inefficient, and time consuming. The anti-inflammatory properties of adipose tissue-derived EVs and other biogenic nanoparticles have not been explored. In this study, biogenic nanoparticles are obtained directly from lipoaspirate, an easily accessible and abundant source of biological material. Compared to ADSC-EVs, lipoaspirate nanoparticles (Lipo-NPs) take less time to process (hours compared to months) and cost less to produce (clinical-grade cell culture facilities are not required). The physicochemical characteristics and anti-inflammatory properties of Lipo-NPs are evaluated and compared to those of patient-matched ADSC-EVs. Moreover, guanabenz loading in Lipo-NPs is evaluated for enhanced anti-inflammatory effects. Apolipoprotein E and glycerolipids are enriched in Lipo-NPs compared to ADSC-EVs. Additionally, the uptake of Lipo-NPs in hepatocytes and macrophages is higher. Lipo-NPs and ADSC-EVs have comparable protective and anti-inflammatory effects. Specifically, Lipo-NPs reduce toll-like receptor 4-induced secretion of inflammatory cytokines in macrophages. Guanabenz-loaded Lipo-NPs further suppress inflammatory pathways, suggesting that this combination therapy can have promising applications for inflammatory diseases.
Collapse
Affiliation(s)
- Ming Tian
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Surgery, Surgical Lab, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Taylor Ticer
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Qikun Wang
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Surgery, Surgical Lab, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Sierra Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Anthony Pham
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Annie Suh
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sara Busatto
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Rawan Al-Kharboosh
- Department of Neurosurgery, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shane Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Felix Rückert
- Department of Surgery, Surgical Lab, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|