1
|
Chaaban H, Burge K, McElroy SJ. Evolutionary bridges: how factors present in amniotic fluid and human milk help mature the gut. J Perinatol 2024; 44:1552-1559. [PMID: 38844520 PMCID: PMC11521761 DOI: 10.1038/s41372-024-02026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/22/2024]
Abstract
Necrotizing enterocolitis (NEC) continues to be a leading cause of morbidity and mortality in preterm infants. As modern medicine significantly improves the survival of extremely premature infants, the persistence of NEC underscores our limited understanding of its pathogenesis. Due to early delivery, a preterm infant's exposure to amniotic fluid (AF) is abruptly truncated. Replete with bioactive molecules, AF plays an important role in fetal intestinal maturation and preparation for contact with the environment, thus its absence during development of the intestine may contribute to increased susceptibility to NEC. Human milk (HM), particularly during the initial phases of lactation, is a cornerstone of neonatal intestinal defense. The concentrations and activities of several bioactive factors in HM parallel those of AF, suggesting continuity of protection. In this review, we discuss the predominant overlapping bioactive components of HM and AF, with an emphasis on those associated with intestinal growth or reduction of NEC.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Steven J McElroy
- Department of Pediatrics, Division of Neonatology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Jatana S, Abbadi A, West GA, Ponti AK, Braga-Neto MB, Smith JL, Marino-Melendez A, Willard B, Nagy LE, Motte CDL. Hyperglycemic environments directly compromise intestinal epithelial barrier function in an organoid model and hyaluronan (∼35 kDa) protects via a layilin dependent mechanism. Matrix Biol 2024; 133:116-133. [PMID: 39187208 DOI: 10.1016/j.matbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Metabolic syndrome and diabetes in obese individuals are strong risk factors for development of inflammatory bowel disease (IBD) and colorectal cancer. The pathogenic mechanisms of low-grade metabolic inflammation, including chronic hyperglycemic stress, in disrupting gut homeostasis are poorly understood. In this study, we sought to understand the impact of a hyperglycemic environment on intestinal barrier integrity and the protective effects of small molecular weight (35 kDa) hyaluronan on epithelial barrier function. METHODS Intestinal organoids derived from mouse colon were grown in normal glucose media (5 mM) or high glucose media (25 mM) to study the impact of hyperglycemic stress on the intestinal barrier. Additionally, organoids were pretreated with 35 kDa hyaluronan (HA35) to investigate the effect of hyaluronan on epithelial barrier under high glucose stress. Immunoblotting as well as confocal imaging was used to understand changes in barrier proteins, quantitative as well as spatial distribution, respectively. Alterations in barrier function were measured using trans-epithelial electrical resistance and fluorescein isothiocyanate flux assays. Untargeted proteomics analysis was performed to elucidate mechanisms by which HA35 exerts a protective effect on the barrier. Intestinal organoids derived from receptor knockout mice specific to various HA receptors were utilized to understand the role of HA receptors in barrier protection under high glucose conditions. RESULTS We found that high glucose stress decreased the protein expression as well as spatial distribution of two key barrier proteins, zona occludens-1 (ZO-1) and occludin. HA35 prevented the degradation or loss of ZO-1 and maintained the spatial distribution of both ZO-1 and occludin under hyperglycemic stress. Functionally, we also observed a protective effect of HA35 on the epithelial barrier under high glucose conditions. We found that HA receptor, layilin, was involved in preventing barrier protein loss (ZO-1) as well as maintaining spatial distribution of ZO-1 and occludin. Additionally, proteomics analysis showed that cell death and survival was the primary pathway upregulated in organoids treated with HA35 under high glucose stress. We found that XIAP associated factor 1 (Xaf1) was modulated by HA35 thereby regulating apoptotic cell death in the intestinal organoid system. Finally, we observed that spatial organization of both focal adhesion kinase (FAK) as well as F-actin was mediated by HA35 via layilin. CONCLUSION Our results highlight the impact of hyperglycemic stress on the intestinal barrier function. This is of clinical relevance, as impaired barrier function has been observed in individuals with metabolic syndrome. Additionally, we demonstrate barrier protective effects of HA35 through its receptor layilin and modulation of cellular apoptosis under high glucose stress.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Amina Abbadi
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - András K Ponti
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Manuel B Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jordyn L Smith
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Armando Marino-Melendez
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E Nagy
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Carol de la Motte
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Ye H, Zhang R, Zhang C, Xia Y, Jin L. Advances in hyaluronic acid: Bioactivity, complexed biomaterials and biological application: A review. Asian J Surg 2024:S1015-9584(24)01841-4. [PMID: 39217010 DOI: 10.1016/j.asjsur.2024.08.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Hyaluronic acid (HA) is a natural glycosaminoglycan found in the human body, particularly in the extracellular matrix of body fluids and tissues. It plays a critical role in cellular processes of living organisms by maintaining tissue hydration, cell proliferation, differentiation, and inflammatory response. HA exhibits significant biological activity in skin care, aesthetic anti-aging, medical orthopedic repair, gynecological cancer monitoring, and other pathological conditions. Due to its exceptional biocompatibility, biodegradability, lack of toxicity, non-immunogenicity, and its capacity to bond with other substances, various HA-based biomedical products like hydrogels, microneedles, and microspheres have been developed. These innovations have also been applied in various medical and health fields, such as bone and tissue regeneration, gels for medical aesthetic fillers, and gynecology-related cancer treatment, utilizing the HA drug delivery pathway. The interest in HA and its products is increasing due to their biological functions. Therefore, this review aimed to summarize the biological properties of HA and to focus on its applications in the bone tissue engineering and healthcare, for HA has some practical applications of HA-based complexes in biomedical materials, tissue repair, medical aesthetics, and gynecology. Through this review, we seek to offer theoretical research assistance for the development of HA-based bioproducts in the healthcare domain and provide innovative insights for human health.
Collapse
Affiliation(s)
- Huijun Ye
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318 Chaowang Road, Hangzhou, 310005, Zhejiang, China
| | - Ruijuan Zhang
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China
| | - Chunye Zhang
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China
| | - Yujie Xia
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China.
| | - Lihua Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318 Chaowang Road, Hangzhou, 310005, Zhejiang, China.
| |
Collapse
|
4
|
Eckert JV, Moshal KS, Burge K, Wilson A, Chaaban H. Endogenous Hyaluronan Promotes Intestinal Homeostasis and Protects against Murine Necrotizing Enterocolitis. Cells 2024; 13:1179. [PMID: 39056761 PMCID: PMC11274784 DOI: 10.3390/cells13141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a complex, multifactorial gastrointestinal disorder predominantly affecting preterm infants. The pathogenesis of this condition involves a complex interplay between intestinal barrier dysfunction, microbial dysbiosis, and an altered immune response. This study investigates the potential role of endogenous hyaluronan (HA) in both the early phases of intestinal development and in the context of NEC-like intestinal injury. We treated neonatal CD-1 mouse pups with PEP1, a peptide inhibiting HA receptor interactions, from postnatal days 8 to 12. We evaluated postnatal intestinal developmental indicators, such as villi length, crypt depth, epithelial cell proliferation, crypt fission, and differentiation of goblet and Paneth cells, in PEP1-treated animals compared with those treated with scrambled peptide. PEP1 treatment significantly impaired intestinal development, as evidenced by reductions in villi length, crypt depth, and epithelial cell proliferation, along with a decrease in crypt fission activity. These deficits in PEP1-treated animals correlated with increased susceptibility to NEC-like injuries, including higher mortality rates, and worsened histological intestinal injury. These findings highlight the role of endogenous HA in supporting intestinal development and protecting against NEC.
Collapse
Affiliation(s)
| | | | | | | | - Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.V.E.); (K.S.M.); (K.B.); (A.W.)
| |
Collapse
|
5
|
Bu C, Hu M, Su Y, Yuan F, Zhang Y, Xia J, Jia Z, Zhang L. Cell-permeable JNK-inhibitory peptide regulates intestinal barrier function and inflammation to ameliorate necrotizing enterocolitis. J Cell Mol Med 2024; 28:e18534. [PMID: 39031467 PMCID: PMC11258882 DOI: 10.1111/jcmm.18534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024] Open
Abstract
Intestinal dysbiosis is believed to play a role in the development of necrotizing enterocolitis (NEC). The efficacy of JNK-inhibitory peptide (CPJIP) in treating NEC was assessed. Treatment with CPJIP led to a notable reduction in p-JNK expression in IEC-6 cells and NEC mice. Following LPS stimulation, the expression of RNA and protein of claudin-1, claudin-3, claudin-4 and occludin was significantly decreased, with this decrease being reversed by CPJIP administration, except for claudin-3, which remained consistent in NEC mice. Moreover, the expression levels of the inflammatory factors TNF-α, IL-1β and IL-6 were markedly elevated, a phenomenon that was effectively mitigated by the addition of CPJIP in both IEC-6 cells and NEC mice. CPJIP administration resulted in improved survival rates, ameliorated microscopic intestinal mucosal injury, and increased the total length of the intestines and colon in NEC mice. Additionally, CPJIP treatment led to a reduction in serum concentrations of FD-4, D-lactate and DAO. Furthermore, our results revealed that CPJIP effectively inhibited intestinal cell apoptosis and promoted cell proliferation in the intestine. This study represents the first documentation of CPJIP's ability to enhance the expression of tight junction components, suppress inflammatory responses, and rescue intestinal cell fate by inhibiting JNK activation, ultimately mitigating intestinal severity. These findings suggest that CPJIP has the potential to serve as a promising candidate for the treatment of NEC.
Collapse
Affiliation(s)
- Chaozhi Bu
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
- State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care HospitalWomen's Hospital of Jiangnan University, Jiangnan UniversityWuxiChina
| | - Mengyuan Hu
- Department of NeonatologyThe Affiliated Wuxi Children's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| | - Yinglin Su
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Fuqiang Yuan
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Yiting Zhang
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Jing Xia
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Zhenyu Jia
- Department of Gastroenterology and Digestive DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Le Zhang
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
- Department of NeonatologyThe Affiliated Wuxi Children's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| |
Collapse
|
6
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
7
|
Gantumur MA, Jia X, Hui JH, Barber C, Wan L, Furenlid LR, Martin DR, Hui M, Liu Z. Characterization, Bioactivity, and Biodistribution of 35 kDa Hyaluronan Fragment. Life (Basel) 2024; 14:97. [PMID: 38255712 PMCID: PMC10817694 DOI: 10.3390/life14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
It has been reported that hyaluronic acid (HA) with a 35 kDa molecular weight (HA35) acts biologically to protect tissue from injury, but its biological properties are not yet fully characterized. This study aimed to evaluate the cellular effects and biodistribution of HA35 compared to HA with a 1600 kDa molecular weight (HA1600). We assessed the effects of HA35 and HA1600 on cell migration, NO and ROS generation, and gene expression in cultured macrophages, microglia, and lymphocytes. HA35 was separately radiolabeled with 99mTc and 125I and administered to C57BL/6J mice for in vivo biodistribution imaging. In vitro studies indicated that HA35 and HA1600 similarly enhanced cell migration through HA receptor binding mechanisms, reduced the generation of NO and ROS, and upregulated gene expression profiles related to cell signaling pathways in immune cells. HA35 showed a more pronounced effect in regulating a broader range of genes in macrophages and microglia than HA1600. Upon intradermal or intravenous administration, radiolabeled HA35 rapidly accumulated in the liver, spleen, and lymph nodes. In conclusion, HA35 not only exhibits effects on cellular bioactivity comparable to those of HA1600 but also exerts biological effects on a broader range of immune cell gene expression. The findings herein offer valuable insights for further research into the therapeutic potential of HA35 in inflammation-mediated tissue injury.
Collapse
Affiliation(s)
- Munkh-Amgalan Gantumur
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.-A.G.); (X.J.); (J.H.H.)
| | - Xiaoxiao Jia
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.-A.G.); (X.J.); (J.H.H.)
| | - Jessica H. Hui
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.-A.G.); (X.J.); (J.H.H.)
| | - Christy Barber
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724, USA; (C.B.); (L.W.); (L.R.F.)
| | - Li Wan
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724, USA; (C.B.); (L.W.); (L.R.F.)
| | - Lars R. Furenlid
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724, USA; (C.B.); (L.W.); (L.R.F.)
| | - Diego R. Martin
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Mizhou Hui
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.-A.G.); (X.J.); (J.H.H.)
| | - Zhonglin Liu
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA;
| |
Collapse
|
8
|
Monzon N, Kasahara EM, Gunasekaran A, Burge KY, Chaaban H. Impact of neonatal nutrition on necrotizing enterocolitis. Semin Pediatr Surg 2023; 32:151305. [PMID: 37257267 PMCID: PMC10750299 DOI: 10.1016/j.sempedsurg.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of morbidity and mortality in preterm infants. NEC is multifactorial and the result of a complex interaction of feeding, dysbiosis, and exaggerated inflammatory response. Feeding practices in the neonatal intensive care units (NICUs) can vary among institutions and have significant impact on the vulnerable gastointestinal tract of preterm infants. . These practices encompass factors such as the type of feeding and fortification, duration of feeding, and rate of advancement, among others. The purpose of this article is to review the data on some of the most common feeding practices in the NICU and their impact on the development of NEC in preterm infants. Data on the human milk bioactive component glycosaminoglycans, specifically hyaluronan, will also be discussed in the context of postnatal intestinal development and NEC prevention.
Collapse
Affiliation(s)
- Noahlana Monzon
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104
| | - Emma M Kasahara
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Kathryn Y Burge
- Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Hala Chaaban
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104; Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
9
|
Cuna A, Nsumu M, Menden HL, Chavez-Bueno S, Sampath V. The Detrimental Effects of Peripartum Antibiotics on Gut Proliferation and Formula Feeding Injury in Neonatal Mice Are Alleviated with Lactobacillus rhamnosus GG. Microorganisms 2023; 11:1482. [PMID: 37374984 DOI: 10.3390/microorganisms11061482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peripartum antibiotics can negatively impact the developing gut microbiome and are associated with necrotizing enterocolitis (NEC). The mechanisms by which peripartum antibiotics increase the risk of NEC and strategies that can help mitigate this risk remain poorly understood. In this study, we determined mechanisms by which peripartum antibiotics increase neonatal gut injury and evaluated whether probiotics protect against gut injury potentiated by peripartum antibiotics. To accomplish this objective, we administered broad-spectrum antibiotics or sterile water to pregnant C57BL6 mice and induced neonatal gut injury to their pups with formula feeding. We found that pups exposed to antibiotics had reduced villus height, crypt depth, and intestinal olfactomedin 4 and proliferating cell nuclear antigen compared to the controls, indicating that peripartum antibiotics impaired intestinal proliferation. When formula feeding was used to induce NEC-like injury, more severe intestinal injury and apoptosis were observed in the pups exposed to antibiotics compared to the controls. Supplementation with the probiotic Lactobacillus rhamnosus GG (LGG) reduced the severity of formula-induced gut injury potentiated by antibiotics. Increased intestinal proliferating cell nuclear antigen and activation of the Gpr81-Wnt pathway were noted in the pups supplemented with LGG, suggesting partial restoration of intestinal proliferation by probiotics. We conclude that peripartum antibiotics potentiate neonatal gut injury by inhibiting intestinal proliferation. LGG supplementation decreases gut injury by activating the Gpr81-Wnt pathway and restoring intestinal proliferation impaired by peripartum antibiotics. Our results suggest that postnatal probiotics may be effective in mitigating the increased risk of NEC associated with peripartum antibiotic exposure in preterm infants.
Collapse
Affiliation(s)
- Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Marianne Nsumu
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Heather L Menden
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Susana Chavez-Bueno
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Division of Infectious Diseases, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
10
|
Park HY, Kweon DK, Kim JK. Molecular weight-dependent hyaluronic acid permeability and tight junction modulation in human buccal TR146 cell monolayers. Int J Biol Macromol 2023; 227:182-192. [PMID: 36529213 DOI: 10.1016/j.ijbiomac.2022.12.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The oral route is considered an attractive method for drug delivery, as it avoids the hepatic and intestinal first-pass metabolism processes. Hyaluronic acid (HA) beneficial effects to the human body include anti-aging and wound healing but its effects on oral barrier integrity and mechanical function have not yet been investigated. In this study, we analyzed oral barrier integrity and the paracellular pathway of HA transportation in TR146 cell monolayers during and after permeation and using low molecular weight HA (LMW-HA, <100 kDa) and high molecular weight HA (HMW-HA, >500 kDa). Cytotoxicity assays in TR146 cells revealed that neither LMW-HA or HMW-HA altered cell viability at concentrations <0.5 % during 24 h of treatment. HA-treated TR146 cell monolayers showed enhanced oral barrier integrity and reduced apparent permeability of fluorescein. Moreover, HA significantly increased tight junction (TJ)-related genes expression, including ZO-2, marvelD3, cingulin, claudin-1, claudin-3, and claudin-4 expression. Overall, the results of the present study indicate that HA can permeate across the oral barrier and enhance oral barrier function via the upregulated expression of TJ-related genes.
Collapse
Affiliation(s)
- Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Dong-Keon Kweon
- Jinwoo Bio Co., Ltd., Giheung-gu, Yongin-si 17111, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
11
|
Jia X, Shi M, Wang Q, Hui J, Shofaro JH, Erkhembayar R, Hui M, Gao C, Gantumur MA. Anti-Inflammatory Effects of the 35kDa Hyaluronic Acid Fragment (B-HA/HA35). J Inflamm Res 2023; 16:209-224. [PMID: 36686276 PMCID: PMC9846287 DOI: 10.2147/jir.s393495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Background Hyaluronic acid (HA) and HA fragments interact with a variety of human body receptors and are involved in the regulation of various physiological functions and leukocyte trafficking in the body. Accordingly, the development of an injectable HA fragment with good tissue permeability, the identification of its indications, and molecular mechanisms are of great significance for its clinical application. The previous studies showed that the clinical effects of injectable 35kDa B-HA result from B-HA binding to multiple receptors in different cells, tissues, and organs. This study lays the foundation for further studies on the comprehensive clinical effects of injectable B-HA. Methods We elaborated on the production process, bioactivity assay, efficacy analyses, and safety evaluation of an injectable novel HA fragment with an average molecular weight of 35 kDa (35 kDa B-HA), produced by recombinant human hyaluronidase PH20 digestion. Results The results showed that 35 kDa B-HA induced human erythrocyte aggregation (rouleaux formation) and accelerated erythrocyte sedimentation rates through the CD44 receptor. B-HA application and injection treatment significantly promoted the removal of mononuclear cells from the site of inflammation and into the lymphatic circulation. At a low concentration, 35 kDa B-HA inhibited production of reactive oxygen species and tumor necrosis factor by neutrophils; at a higher concentration, 35 kDa B-HA promoted the migration of monocytes. Furthermore, 35 kDa B-HA significantly inhibited the migration of neutrophils with or without lipopolysaccharide treatment, suggesting that in local tissues, higher concentrations of 35 kDa B-HA have antiinflammatory effects. After 99mTc radiolabeled 35 kDa B-HA was intravenously injected into mice, it quickly entered into the spleen, liver, lungs, kidneys and other organs through the blood circulation. Conclusion This study demonstrated that the HA fragment B-HA has good tissue permeability and antiinflammatory effects, laying a theoretical foundation for further clinical studies.
Collapse
Affiliation(s)
- XiaoXiao Jia
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Qifei Wang
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Jessica Hui
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Hui Shofaro
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Ryenchindorj Erkhembayar
- Department of International Cyber Education, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mizhou Hui
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Chenzhe Gao
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Munkh-Amgalan Gantumur
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
12
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Wilson A, Burge K, Eckert J, Chaaban H. Effect of Hyaluronic Acid 35 kDa on an In Vitro Model of Preterm Small Intestinal Injury and Healing using Enteroid-derived Monolayers. J Vis Exp 2022:10.3791/63758. [PMID: 35943893 PMCID: PMC9680908 DOI: 10.3791/63758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
In vitro scratch wound assays are commonly used to investigate the mechanisms and characteristics of epithelial healing in a variety of tissue types. Here, we describe a protocol to generate a two-dimensional (2D) monolayer from three-dimensional (3D) non-human primate enteroids derived from intestinal crypts of the terminal ileum. These enteroid-derived monolayers were then utilized in an in vitro scratch wound assay to test the ability of hyaluronan 35 kDa (HA35), a human milk HA mimic, to promote cell migration and proliferation along the epithelial wound edge. After the monolayers were grown to confluency, they were manually scratched and treated with HA35 (50 µg/mL, 100 µg/mL, 200 µg/mL) or control (PBS). Cell migration and proliferation into the gap were imaged using a transmitted-light microscope equipped for live-cell imaging. Wound closure was quantified as percent wound healing using the Wound Healing Size Plugin in ImageJ. The scratch area and rate of cell migration and the percentage of wound closure were measured over 24 h. HA35 in vitro accelerates wound healing in small intestinal enteroid monolayers, likely through a combination of cell proliferation at the wound edge and migration to the wound area. These methods can potentially be used as a model to explore intestinal regeneration in the preterm human small intestine.
Collapse
Affiliation(s)
- Adam Wilson
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center;
| |
Collapse
|
14
|
Burge K, Eckert J, Wilson A, Trammell M, Lueschow SR, McElroy SJ, Dyer D, Chaaban H. Hyaluronic Acid 35 kDa Protects against a Hyperosmotic, Formula Feeding Model of Necrotizing Enterocolitis. Nutrients 2022; 14:nu14091779. [PMID: 35565748 PMCID: PMC9105773 DOI: 10.3390/nu14091779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Necrotizing enterocolitis (NEC), an inflammatory disease of the intestine, is a common gastrointestinal emergency among preterm infants. Intestinal barrier dysfunction, hyperactivation of the premature immune system, and dysbiosis are thought to play major roles in the disease. Human milk (HM) is protective, but the mechanisms underpinning formula feeding as a risk factor in the development of NEC are incompletely understood. Hyaluronic acid 35 kDa (HA35), a bioactive glycosaminoglycan of HM, accelerates intestinal development in murine pups during homeostasis. In addition, HA35 prevents inflammation-induced tissue damage in pups subjected to murine NEC, incorporating Paneth cell dysfunction and dysbiosis. We hypothesized HA35 treatment would reduce histological injury and mortality in a secondary mouse model of NEC incorporating formula feeding. NEC-like injury was induced in 14-day mice by dithizone-induced disruption of Paneth cells and oral gavage of rodent milk substitute. Mortality and histological injury, serum and tissue cytokine levels, stool bacterial sequencing, and bulk RNA-Seq comparisons were analyzed. HA35 significantly reduced the severity of illness in this model, with a trend toward reduced mortality, while RNA-Seq analysis demonstrated HA35 upregulated genes associated with goblet cell function and innate immunity. Activation of these critical protective and reparative mechanisms of the small intestine likely play a role in the reduced pathology and enhanced survival trends of HA-treated pups subjected to intestinal inflammation in this secondary model of NEC, providing potentially interesting translational targets for the human preterm disease.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.); (A.W.)
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.); (A.W.)
| | - Adam Wilson
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.); (A.W.)
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - Shiloh R. Lueschow
- Department of Microbiology and Immunology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven J. McElroy
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA;
| | - David Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.); (A.W.)
- Correspondence:
| |
Collapse
|
15
|
Feng Z, Jia C, Lin X, Hao H, Li S, Li F, Cui Q, Chen Y, Wu F, Xiao X. The inhibition of enterocyte proliferation by lithocholic acid exacerbates necrotizing enterocolitis through downregulating the Wnt/β-catenin signalling pathway. Cell Prolif 2022; 55:e13228. [PMID: 35441471 PMCID: PMC9136529 DOI: 10.1111/cpr.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Necrotizing enterocolitis (NEC) is a catastrophic gastrointestinal emergency in preterm infants, whose exact aetiology remains unknown. The role of lithocholic acid (LCA), a key component of secondary bile acids (BAs), in NEC is unclear. Methods Clinical data were collected to analyse the changes of BAs in NEC patients. In vitro studies, the cell proliferation and cell death were assessed. In vivo experiments, the newborn rats were administered with low or high dose of LCA and further induced NEC. Results Clinically, compared with control group, total BAs in the NEC patients were significantly higher when NEC occurred. In vitro, LCA treatment significantly inhibited the cell proliferation through arresting cell cycle at G1/S phase without inducing apoptosis or necroptosis. Mechanistically, the Wnt/β‐catenin pathway was involved. In vivo, LCA inhibited intestinal cell proliferation leading to disruption of intestinal barrier, and thereby increased the severity of NEC. Specifically, LCA supplementation caused higher levels of FITC‐labelled dextran in serum, reduced PCNA expression and inhibited the activity of Wnt/β‐catenin pathway in enterocytes. The LC–MS/MS test found that LCA was significantly higher in intestinal tissue of NEC group, and more obviously in the NEC‐L and NEC‐H group compared with the DM group. Conclusion LCA exacerbates NEC by inhibiting intestinal cell proliferation through downregulating the Wnt/β‐catenin pathway.
Collapse
Affiliation(s)
- Zhoushan Feng
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China.,Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xiaojun Lin
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hu Hao
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Fei Li
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Qiliang Cui
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyong Chen
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xin Xiao
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| |
Collapse
|
16
|
Managlia E, Yan X, De Plaen IG. Intestinal Epithelial Barrier Function and Necrotizing Enterocolitis. NEWBORN 2022; 1:32-43. [PMID: 35846894 PMCID: PMC9286028 DOI: 10.5005/jp-journals-11002-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. NEC is characterized by intestinal tissue inflammation and necrosis. The intestinal barrier is altered in NEC, which potentially contributes to its pathogenesis by promoting intestinal bacterial translocation and stimulating the inflammatory response. In premature infants, many components of the intestinal barrier are immature. This article reviews the different components of the intestinal barrier and how their immaturity contributes to intestinal barrier dysfunction and NEC.
Collapse
Affiliation(s)
- Elizabeth Managlia
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Xiaocai Yan
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Isabelle G De Plaen
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
17
|
Chaaban H, Patel MM, Burge K, Eckert JV, Lupu C, Keshari RS, Silasi R, Regmi G, Trammell M, Dyer D, McElroy SJ, Lupu F. Early Antibiotic Exposure Alters Intestinal Development and Increases Susceptibility to Necrotizing Enterocolitis: A Mechanistic Study. Microorganisms 2022; 10:519. [PMID: 35336095 PMCID: PMC8951210 DOI: 10.3390/microorganisms10030519] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests that prolonged antibiotic therapy in preterm infants is associated with increased mortality and morbidities, such as necrotizing enterocolitis (NEC), a devastating gastrointestinal pathology characterized by intestinal inflammation and necrosis. While a clinical correlation exists between antibiotic use and the development of NEC, the potential causality of antibiotics in NEC development has not yet been demonstrated. Here, we tested the effects of systemic standard-of-care antibiotic therapy for ten days on intestinal development in neonatal mice. Systemic antibiotic treatment impaired the intestinal development by reducing intestinal cell proliferation, villi height, crypt depth, and goblet and Paneth cell numbers. Oral bacterial challenge in pups who received antibiotics resulted in NEC-like intestinal injury in more than half the pups, likely due to a reduction in mucous-producing cells affecting microbial-epithelial interactions. These data support a novel mechanism that could explain why preterm infants exposed to prolonged antibiotics after birth have a higher incidence of NEC and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.V.E.)
| | - Maulin M. Patel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.M.P.); (C.L.); (R.S.K.); (R.S.); (G.R.); (F.L.)
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.V.E.)
| | - Jeffrey V. Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.V.E.)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.M.P.); (C.L.); (R.S.K.); (R.S.); (G.R.); (F.L.)
| | - Ravi S. Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.M.P.); (C.L.); (R.S.K.); (R.S.); (G.R.); (F.L.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.M.P.); (C.L.); (R.S.K.); (R.S.); (G.R.); (F.L.)
| | - Girija Regmi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.M.P.); (C.L.); (R.S.K.); (R.S.); (G.R.); (F.L.)
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA; (M.T.); (D.D.)
| | - David Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA; (M.T.); (D.D.)
| | - Steven J. McElroy
- Department of Pediatrics, UC Davis Health, Sacramento, CA 95817, USA;
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.M.P.); (C.L.); (R.S.K.); (R.S.); (G.R.); (F.L.)
| |
Collapse
|
18
|
Garantziotis S. Modulation of hyaluronan signaling as a therapeutic target in human disease. Pharmacol Ther 2021; 232:107993. [PMID: 34587477 DOI: 10.1016/j.pharmthera.2021.107993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The extracellular matrix is an active participant, modulator and mediator of the cell, tissue, organ and organismal response to injury. Recent research has highlighted the role of hyaluronan, an abundant glycosaminoglycan constituent of the extracellular matrix, in many fundamental biological processes underpinning homeostasis and disease development. From this basis, emerging studies have demonstrated the therapeutic potential of strategies which target hyaluronan synthesis, biology and signaling, with significant promise as therapeutics for a variety of inflammatory and immune diseases. This review summarizes the state of the art in this field and discusses challenges and opportunities in what could emerge as a new class of therapeutic agents, that we term "matrix biologics".
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
19
|
Chaaban H, Burge K, Eckert J, Trammell M, Dyer D, Keshari RS, Silasi R, Regmi G, Lupu C, Good M, McElroy SJ, Lupu F. Acceleration of Small Intestine Development and Remodeling of the Microbiome Following Hyaluronan 35 kDa Treatment in Neonatal Mice. Nutrients 2021; 13:2030. [PMID: 34204790 PMCID: PMC8231646 DOI: 10.3390/nu13062030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
The beneficial effects of human milk suppressing the development of intestinal pathologies such as necrotizing enterocolitis in preterm infants are widely known. Human milk (HM) is rich in a multitude of bioactive factors that play major roles in promoting postnatal maturation, differentiation, and the development of the microbiome. Previous studies showed that HM is rich in hyaluronan (HA) especially in colostrum and early milk. This study aims to determine the role of HA 35 KDa, a HM HA mimic, on intestinal proliferation, differentiation, and the development of the intestinal microbiome. We show that oral HA 35 KDa supplementation for 7 days in mouse pups leads to increased villus length and crypt depth, and increased goblet and Paneth cells, compared to controls. We also show that HA 35 KDa leads to an increased predominance of Clostridiales Ruminococcaceae, Lactobacillales Lactobacillaceae, and Clostridiales Lachnospiraceae. In seeking the mechanisms involved in the changes, bulk RNA seq was performed on samples from the terminal ileum and identified upregulation in several genes essential for cellular growth, proliferation, and survival. Taken together, this study shows that HA 35 KDa supplemented to mouse pups promotes intestinal epithelial cell proliferation, as well as the development of Paneth cells and goblet cell subsets. HA 35 KDa also impacted the intestinal microbiota; the implications of these responses need to be determined.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - David Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - Ravi S. Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Girija Regmi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Steven J. McElroy
- Department of Microbiology and Immunology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA;
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| |
Collapse
|
20
|
Morrin ST, Buck RH, Farrow M, Hickey RM. Milk-derived anti-infectives and their potential to combat bacterial and viral infection. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
de Lange IH, van Gorp C, Eeftinck Schattenkerk LD, van Gemert WG, Derikx JPM, Wolfs TGAM. Enteral Feeding Interventions in the Prevention of Necrotizing Enterocolitis: A Systematic Review of Experimental and Clinical Studies. Nutrients 2021; 13:1726. [PMID: 34069699 PMCID: PMC8161173 DOI: 10.3390/nu13051726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC), which is characterized by severe intestinal inflammation and in advanced stages necrosis, is a gastrointestinal emergency in the neonate with high mortality and morbidity. Despite advancing medical care, effective prevention strategies remain sparse. Factors contributing to the complex pathogenesis of NEC include immaturity of the intestinal immune defense, barrier function, motility and local circulatory regulation and abnormal microbial colonization. Interestingly, enteral feeding is regarded as an important modifiable factor influencing NEC pathogenesis. Moreover, breast milk, which forms the currently most effective prevention strategy, contains many bioactive components that are known to support neonatal immune development and promote healthy gut colonization. This systematic review describes the effect of different enteral feeding interventions on the prevention of NEC incidence and severity and the effect on pathophysiological mechanisms of NEC, in both experimental NEC models and clinical NEC. Besides, pathophysiological mechanisms involved in human NEC development are briefly described to give context for the findings of altered pathophysiological mechanisms of NEC by enteral feeding interventions.
Collapse
Affiliation(s)
- Ilse H. de Lange
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Laurens D. Eeftinck Schattenkerk
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Wim G. van Gemert
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Joep P. M. Derikx
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
22
|
Griffiths V, Al Assaf N, Khan R. Review of claudin proteins as potential biomarkers for necrotizing enterocolitis. Ir J Med Sci 2021; 190:1465-1472. [PMID: 33492576 PMCID: PMC8521514 DOI: 10.1007/s11845-020-02490-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Background Claudin proteins are a component of tight junctions found in cell-cell adhesion complexes. A central feature of necrotizing enterocolitis (NEC) is intestinal permeability, with changes to claudin proteins potentially contributing to intestinal instability, inflammation, and the progression of NEC. A current area of interest is the development of a novel, noninvasive biomarker for the detection of NEC in neonates at risk of developing this disease, in order to reduce morbidity and mortality through earlier intervention. Aims This review aims to explore the relevance of claudin proteins in the pathophysiology of NEC and their potential usefulness as a biomarker. Methods This review was conducted using the search terms “claudin” + “necrotizing enterocolitis”, with 27 papers selected for review. Results Claudin proteins appear to have a role in the stability of the gut epithelium through the regulation of intestinal permeability, maturity, and inflammation. Formula feeding has been shown to promote inflammation and result in changes to claudin proteins, while breastfeeding and certain nutritional supplements lead to reduced inflammation and improved intestinal stability as demonstrated through changes to claudin protein expression. Preliminary studies in human neonates suggest that urinary claudin measurements may be used to predict the development of NEC. Conclusions Alterations to claudin proteins may reflect changes seen to intestinal permeability and inflammation in the context of NEC. Further research is necessary to understand the relevance of claudin proteins in the pathophysiology of NEC and their use as a biomarker.
Collapse
Affiliation(s)
- Victoria Griffiths
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.
| | - Niazy Al Assaf
- Department of Neonatology, University Maternity Hospital Limerick, Limerick, Ireland
| | - Rizwan Khan
- Department of Neonatology, University Maternity Hospital Limerick, Limerick, Ireland
| |
Collapse
|
23
|
Stenson WF, Ciorba MA. Nonmicrobial Activation of TLRs Controls Intestinal Growth, Wound Repair, and Radioprotection. Front Immunol 2021; 11:617510. [PMID: 33552081 PMCID: PMC7859088 DOI: 10.3389/fimmu.2020.617510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
TLRs, key components of the innate immune system, recognize microbial molecules. However, TLRs also recognize some nonmicrobial molecules. In particular, TLR2 and TLR4 recognize hyaluronic acid, a glycosaminoglycan in the extracellular matrix. In neonatal mice endogenous hyaluronic acid binding to TLR4 drives normal intestinal growth. Hyaluronic acid binding to TLR4 in pericryptal macrophages results in cyclooxygenase2- dependent PGE2 production, which transactivates EGFR in LGR5+ crypt epithelial stem cells leading to increased proliferation. The expanded population of LGR5+ stem cells leads to crypt fission and lengthening of the intestine and colon. Blocking this pathway at any point (TLR4 activation, PGE2 production, EGFR transactivation) results in diminished intestinal and colonic growth. A similar pathway leads to epithelial proliferation in wound repair. The repair phase of dextran sodium sulfate colitis is marked by increased epithelial proliferation. In this model, TLR2 and TLR4 in pericryptal macrophages are activated by microbial products or by host hyaluronic acid, resulting in production of CXCL12, a chemokine. CXCL12 induces the migration of cyclooxygenase2-expressing mesenchymal stem cells from the lamina propria of the upper colonic crypts to a site adjacent to LGR5+ epithelial stem cells. PGE2 released by these mesenchymal stem cells transactivates EGFR in LGR5+ epithelial stem cells leading to increased proliferation. Several TLR2 and TLR4 agonists, including hyaluronic acid, are radioprotective in the intestine through the inhibition of radiation-induced apoptosis in LGR5+ epithelial stem cells. Administration of exogenous TLR2 or TLR4 agonists activates TLR2/TLR4 on pericryptal macrophages inducing CXCL12 production with migration of cyclooxygenase2-expressing mesenchymal stem cells from the lamina propria of the villi to a site adjacent to LGR5+ epithelial stem cells. PGE2 produced by these mesenchymal stem cells, blocks radiation-induced apoptosis in LGR5+ epithelial stem cells by an EGFR mediated pathway.
Collapse
Affiliation(s)
- William F. Stenson
- Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, United States
| | | |
Collapse
|
24
|
Gunasekaran A, Eckert J, Burge K, Zheng W, Yu Z, Kessler S, de la Motte C, Chaaban H. Insights Image for "Hyaluronan 35 kDa enhances epithelial barrier function and protects against the development of murine necrotizing enterocolitis". Pediatr Res 2020; 87:1272. [PMID: 31968356 PMCID: PMC7255923 DOI: 10.1038/s41390-020-0773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Aarthi Gunasekaran
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeffrey Eckert
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathryn Burge
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Zheng
- Department of GI/Liver Pathology, UCLA, Los Angeles, CA, USA
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sean Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| | - Carol de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| | - Hala Chaaban
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
25
|
Kim Y, de la Motte CA. The Role of Hyaluronan Treatment in Intestinal Innate Host Defense. Front Immunol 2020; 11:569. [PMID: 32411124 PMCID: PMC7201044 DOI: 10.3389/fimmu.2020.00569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Hyaluronan (HA) is best known as an abundantly present extracellular matrix component found throughout the body of all vertebrates, including humans. Recent evidence, however, has demonstrated benefits of providing HA exogenously as a therapeutic modality for several medical conditions. Here we discuss the effects of providing HA treatment to increase innate host defense of the intestine, elucidate the size specific effects of HA, and discuss the role of various HA receptors as potential mediators of the HA effects in the intestine. This review especially focuses on HA interaction with the epithelium because it is the primary cellular barrier of the intestine and these cells play a critical balancing role between allowing water and nutrient absorption while excluding microbes and harmful dietary metabolites that are constantly in that organ's environment.
Collapse
Affiliation(s)
- Yeojung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Carol A de la Motte
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
26
|
Galley JD, Besner GE. The Therapeutic Potential of Breast Milk-Derived Extracellular Vesicles. Nutrients 2020; 12:nu12030745. [PMID: 32168961 PMCID: PMC7146576 DOI: 10.3390/nu12030745] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, interest in the therapeutic benefits of exosomes and extracellular vesicles (EVs) has grown exponentially. Exosomes/EVs are small particles which are produced and exocytosed by cells throughout the body. They are loaded with active regulatory and stimulatory molecules from the parent cell including miRNAs and enzymes, making them prime targets in therapeutics and diagnostics. Breast milk, known for years to have beneficial health effects, contains a population of EVs which may mediate its therapeutic effects. This review offers an update on the therapeutic potential of exosomes/EVs in disease, with a focus on EVs present in human breast milk and their remedial effect in the gastrointestinal disease necrotizing enterocolitis. Additionally, the relationship between EV miRNAs, health, and disease will be examined, along with the potential for EVs and their miRNAs to be engineered for targeted treatments.
Collapse
|
27
|
Burge K, Bergner E, Gunasekaran A, Eckert J, Chaaban H. The Role of Glycosaminoglycans in Protection from Neonatal Necrotizing Enterocolitis: A Narrative Review. Nutrients 2020; 12:nu12020546. [PMID: 32093194 PMCID: PMC7071410 DOI: 10.3390/nu12020546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022] Open
Abstract
Necrotizing enterocolitis, a potentially fatal intestinal inflammatory disorder affecting primarily premature infants, is a significant cause of morbidity and mortality in neonates. While the etiology of the disease is, as yet, unknown, a number of risk factors for the development of necrotizing enterocolitis have been identified. One such risk factor, formula feeding, has been shown to contribute to both increased incidence and severity of the disease. The protective influences afforded by breastfeeding are likely attributable to the unique composition of human milk, an extremely potent, biologically active fluid. This review brings together knowledge on the pathogenesis of necrotizing enterocolitis and current thinking on the instrumental role of one of the more prominent classes of bioactive components in human breast milk, glycosaminoglycans.
Collapse
MESH Headings
- Breast Feeding
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/prevention & control
- Female
- Glycosaminoglycans/pharmacology
- Humans
- Infant Formula/adverse effects
- Infant, Newborn
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/pathology
- Infant, Premature, Diseases/prevention & control
- Male
- Milk, Human/chemistry
- Protective Agents/pharmacology
- Risk Factors
Collapse
|