1
|
Lok IM, Wever KE, Vliegenthart RJS, Onland W, van Kaam AH, van Tuyl M. Effects of postnatal corticosteroids on lung development in newborn animals. A systematic review. Pediatr Res 2024; 96:1141-1152. [PMID: 38493255 PMCID: PMC11522003 DOI: 10.1038/s41390-024-03114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Postnatal systemic corticosteroids reduce the risk of bronchopulmonary dysplasia but the effect depends on timing, dosing, and type of corticosteroids. Animal studies may provide valuable information on these variable effects. This systematic review summarizes the effects of postnatal systemic corticosteroids on lung development in newborn animals. METHODS A systematic search was performed in PubMed and Embase in December 2022. The protocol was published on PROSPERO (CRD42021177701). RESULTS Of the 202 eligible studies, 51 were included. Only newborn rodent studies met the inclusion criteria. Most studies used dexamethasone (98%). There was huge heterogeneity in study outcome measures and corticosteroid treatment regimens. Reporting of study quality indicators was mediocre and risk of bias was unclear due to poor reporting of study methodology. Meta-analysis showed that postnatal corticosteroids caused a decrease in body weight as well as persistent alveolar simplification. Subgroup analyses revealed that healthy animals were most affected. CONCLUSION In newborn rodents, postnatal systemic corticosteroids have a persistent negative effect on body weight and lung development. There was huge heterogeneity in experimental models, mediocre study quality, unclear risk of bias, and very small subgroups for meta-analysis which limited firm conclusions. IMPACT Postnatal corticosteroids reduce the risk of bronchopulmonary dysplasia but the effect depends on timing, dosing, and type of corticosteroids while the underlying mechanism of this variable effect is unknown. This is the first systematic review and meta-analysis of preclinical newborn animal studies reviewing the effect of postnatal systemic corticosteroids on lung development. In newborn rodent models, postnatal corticosteroids have a persistent negative effect on body weight and lung alveolarization, especially in healthy animals.
Collapse
Affiliation(s)
- Irene M Lok
- Department of Neonatology, Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Wes Onland
- Department of Neonatology, Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Minke van Tuyl
- Department of Neonatology, Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Hillman NH, Kemp MW, Royse E, Grzych H, Usada H, Ikeda H, Takahashi Y, Takahashi T, Jobe AH, Fee E. Postnatal budesonide improved lung function in preterm lambs exposed to antenatal steroids and chorioamnionitis. Pediatr Res 2024; 96:678-684. [PMID: 38368498 DOI: 10.1038/s41390-024-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND A combination of budesonide and surfactant decreases the rates of BPD in infants and lung injury in preterm sheep. Whether this combination will show benefit in the setting of chorioamnionitis and antenatal steroids is not known. METHODS Ewes at 123 ± 1 day gestational age received intra-amniotic (IA) injections of 10 mg LPS before being randomized to receive either 0.25 mg/kg maternal betamethasone phosphate and acetate or saline by intramuscular (IM) injection at 48 and 24 h prior to delivery at 125 ± 1 day. Lambs (N = 6-9/group) underwent intentionally injurious ventilation for 15 min, then lambs received surfactant mixed with either: (1) saline; or (2) Budesonide 0.25 mg/kg and were ventilated for 4 h. RESULTS Compared with LPS-exposed animals that received no IM steroid treatment, betamethasone exposed fetuses had improved hemodynamic stability, lung compliance, and ventilation efficiency. The addition of budesonide to surfactant further improved markers of injury and pro-inflammatory cytokine mRNA in both betamethasone IM or no IM lambs exposed to LPS IA. Antenatal betamethasone and IA LPS exposures decreased budesonide levels in the fetal lung and plasma. CONCLUSION Antenatal betamethasone stabilizes physiologic parameters in LPS treated lambs. Budesonide mixed with surfactant further decreases injury and improves respiratory physiology in betamethasone treated animals. IMPACT Antenatal betamethasone improved lung and systemic physiology in the setting of intra-amniotic LPS. The addition of budesonide to the surfactant further improved lung function. Budesonide levels in the plasma and lung were lower in lambs exposed to either LPS or LPS and Betamethasone animals, and these findings were not explained by increased esterification in the lungs. The combination of antenatal steroids and budesonide with surfactant had the lowest markers of pro-inflammatory cytokines in the lung of LPS exposed animals.
Collapse
Affiliation(s)
- Noah H Hillman
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA.
| | - Matthew W Kemp
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Emily Royse
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Hayley Grzych
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Haruo Usada
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Hideyuki Ikeda
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Yuki Takahashi
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Tsukasa Takahashi
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Alan H Jobe
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Erin Fee
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Pereira-Fantini PM, Tingay D, Lakshminrusimha S. A complex inflammatory mix: chorioamnionitis, antenatal steroids and early postnatal budesonide. Pediatr Res 2024; 96:560-562. [PMID: 38724647 PMCID: PMC11499268 DOI: 10.1038/s41390-024-03219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/12/2024]
Affiliation(s)
- Prue M Pereira-Fantini
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - David Tingay
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Neonatal Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | |
Collapse
|
4
|
Abstract
Drug delivery using a surfactant vehicle has the potential to prevent systemic side effects by delivering therapeutic agents directly to the respiratory system. The inherent chemical properties of surfactant allows it to readily distribute throughout the respiratory system. Therapeutic agents delivered by surfactant can primarily confer additional benefits but have potential to improve surfactant function. It is critically important that additional agents do not interefere with the innate surface tension lowering function of surfactant. Systemic evaluation through benchtop, translational and human trials are required to translate this potential technique into clinical practice.
Collapse
Affiliation(s)
- Arun Sett
- Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Melbourne, Australia; Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia; Newborn Services, Joan Kirner Women's and Children's, Sunshine Hospital, Victoria, Australia.
| | - Charles C Roehr
- Newborn Services, Southmead Hospital, North Bristol NHS Trust Bristol, Bristol, UK; Faculty of Health Sciences, University of Bristol, Bristol, UK; Oxford Population Health, National Perinatal Epidemiology Unit, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Brett J Manley
- Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Melbourne, Australia; Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
5
|
Hillman NH, Jobe AH. Preterm lung and brain responses to mechanical ventilation and corticosteroids. J Perinatol 2023; 43:1222-1229. [PMID: 37169913 DOI: 10.1038/s41372-023-01692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Mechanical ventilation is necessary to maintain oxygenation and ventilation in many preterm infants. Unfortunately, even short periods of mechanical ventilation can cause lung and airway injury, and initiate the lung inflammation that contributes to the development of bronchopulmonary dysplasia (BPD). The mechanical stretch leads to airway cell differentiation and simplification of the alveoli, and releases cytokines that cause systemic response in other organs. Mechanical ventilation also leads to brain injury (IVH, white and gray matter) and neuronal inflammation that can affect the neurodevelopment of preterm infants. In efforts to decrease BPD, corticosteroids have been used for both prevention and treatment of lung inflammation. Corticosteroids have also been demonstrated to cause neuronal injury, so the clinician must balance the negative effects of both mechanical ventilation and steroids on the brain and lungs. Predictive models for BPD can help assess the infants who will benefit most from corticosteroid exposure. This review describes the lung and brain injury from mechanical ventilation in the delivery room and chronic mechanical ventilation in animal models. It provides updates on the current guidelines for use of postnatal corticosteroids (dexamethasone, hydrocortisone, budesonide, budesonide with surfactant) for the prevention and treatment of BPD, and the effects the timing of each steroid regimen has on neurodevelopment.
Collapse
Affiliation(s)
- Noah H Hillman
- Division of Neonatology, SSM Health Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA.
| | - Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
6
|
Josephsen JB, Hemmann BM, Anderson CD, Hemmann BM, Buchanan PM, Williams HL, Lubsch LM, Hillman NH. Presumed adrenal insufficiency in neonates treated with corticosteroids for the prevention of bronchopulmonary dysplasia. J Perinatol 2022; 42:65-71. [PMID: 34725449 DOI: 10.1038/s41372-021-01251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine if extremely preterm (EPT) neonates receiving dexamethasone for the prevention of BPD have a higher incidence of presumed adrenal insufficiency (PAI). STUDY DESIGN Retrospective cohort study of neonates <28 weeks gestation examining PAI after dexamethasone use and PAI after intratracheal budesonide with surfactant administration. RESULT Of 332 neonates, 38% received dexamethasone. The incidence of PAI was higher in neonates who had received dexamethasone (20.8% vs 2.9%, p < 0.001). However, for intubated babies receiving surfactant, dexamethasone was not independently associated with increased PAI after adjusting for gestational age, birthweight, and race (aOR 2.92, 95% CI: 0.79-10.85). Dexamethasone was independently associated with increased PAI in infants previously receiving budesonide/surfactant treatment (aOR 5.38, 95% CI: 1.38-20.90). CONCLUSION The use of dexamethasone alone was not associated with increased PAI, when adjusted for prematurity-related factors. The combination of budesonide with dexamethasone was significantly associated with increased PAI.
Collapse
Affiliation(s)
- Justin B Josephsen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | - Brianna M Hemmann
- Cincinnati Children's Hospital Medical Center, Department of Pharmacy, Cincinnati, OH, USA
| | - Connie D Anderson
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Brett M Hemmann
- The Christ Hospital Health Network, Department of Pharmacy, Cincinnati, OH, USA
| | - Paula M Buchanan
- Department of Health and Clinical Outcomes Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Howard L Williams
- SSM Health Cardinal Glennon Children's Hospital, Department of Pharmacy, St. Louis, MO, USA
| | - Lisa M Lubsch
- SSM Health Cardinal Glennon Children's Hospital, Department of Pharmacy, St. Louis, MO, USA.,Southern Illinois University Edwardsville School of Pharmacy, Department of Pharmacy Practice, Edwardsville, IL, USA
| | - Noah H Hillman
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
8
|
Surfactant-Assisted Distal Pulmonary Distribution of Budesonide Revealed by Mass Spectrometry Imaging. Pharmaceutics 2021; 13:pharmaceutics13060868. [PMID: 34204670 PMCID: PMC8231273 DOI: 10.3390/pharmaceutics13060868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Direct lung administration of budesonide in combination with surfactant reduces the incidence of bronchopulmonary dysplasia. Although the therapy is currently undergoing clinical development, the lung distribution of budesonide throughout the premature neonatal lung has not yet been investigated. Here, we applied mass spectrometry imaging (MSI) to investigate the surfactant-assisted distal lung distribution of budesonide. Unlabeled budesonide was either delivered using saline as a vehicle (n = 5) or in combination with a standard dose of the porcine surfactant Poractant alfa (n = 5). These lambs were ventilated for one minute, and then the lungs were extracted for MSI analysis. Another group of lambs (n = 5) received the combination of budesonide and Poractant alfa, followed by two hours of mechanical ventilation. MSI enabled the label-free detection and visualization of both budesonide and the essential constituent of Poractant alfa, the porcine surfactant protein C (SP-C). 2D ion intensity images revealed a non-uniform distribution of budesonide with saline, which appeared clustered in clumps. In contrast, the combination therapy showed a more homogeneous distribution of budesonide throughout the sample, with more budesonide distributed towards the lung periphery. We found similar distribution patterns for the SP-C and budesonide in consecutive lung tissue sections, indicating that budesonide was transported across the lungs associated with the exogenous surfactant. After two hours of mechanical ventilation, the budesonide intensity signal in the 2D ion intensity maps dropped dramatically, suggesting a rapid lung clearance and highlighting the relevance of achieving a uniform surfactant-assisted lung distribution of budesonide early after delivery to maximize the anti-inflammatory and maturational effects throughout the lung.
Collapse
|
9
|
Budesonide with surfactant decreases systemic responses in mechanically ventilated preterm lambs exposed to fetal intra-amniotic lipopolysaccharide. Pediatr Res 2021; 90:328-334. [PMID: 33177678 PMCID: PMC7657068 DOI: 10.1038/s41390-020-01267-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chorioamnionitis is associated with increased rates of bronchopulmonary dysplasia (BPD) in ventilated preterm infants. Budesonide when added to surfactant decreased lung and systemic inflammation from mechanical ventilation in preterm lambs and decreased the rates and severity of BPD in preterm infants. We hypothesized that the addition of budesonide to surfactant will decrease the injury from mechanical ventilation in preterm lambs exposed to intra-amniotic (IA) lipopolysaccharide (LPS). METHODS Lambs at 126 ± 1 day GA received LPS 10 mg IA 48 h prior to injurious mechanical ventilation. After 15 min, lambs received either surfactant mixed with: (1) saline or (2) Budesonide 0.25 mg/kg, then ventilated with normal tidal volumes for 4 h. Injury markers in the lung, liver, and brain were compared. RESULTS Compared with surfactant alone, the addition of budesonide improved blood pressures, dynamic compliance, and ventilation, while decreasing mRNA for pro-inflammatory cytokines in the lung, liver, and multiple areas of the brain. LPS caused neuronal activation and structural changes in the brain that were not altered by budesonide. Budesonide was not retained within the lung beyond 4 h. CONCLUSIONS In preterm lambs exposed to IA LPS, the addition of budesonide to surfactant improved physiology and markers of lung and systemic inflammation. IMPACT The addition of budesonide to surfactant decreases the lung and systemic responses to injurious mechanical ventilation preterm lambs exposed to fetal LPS. Budesonide was present in the plasma by 15 min and the majority of the budesonide is no longer in the lung at 4 h of ventilation. IA LPS and mechanical ventilation caused structural changes in the brain that were not altered by short-term exposure to budesonide. The budesonide dose of 0.25 mg/kg being used clinically seems likely to decrease lung inflammation in preterm infants with chorioamnionitis.
Collapse
|
10
|
Gie AG, Regin Y, Salaets T, Casiraghi C, Salomone F, Deprest J, Vanoirbeek J, Toelen J. Intratracheal budesonide/surfactant attenuates hyperoxia-induced lung injury in preterm rabbits. Am J Physiol Lung Cell Mol Physiol 2020; 319:L949-L956. [PMID: 32903026 DOI: 10.1152/ajplung.00162.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent clinical trials have shown improvements in neonatal outcomes after intratracheal administration of a combination of budesonide/surfactant (ITBS) in infants at risk of bronchopulmonary dysplasia. However, the effect of ITBS on lung function and alveolar structure is not known. We aimed to determine the effect of ITBS on lung function, parenchymal structure, and inflammatory cytokine expression in a relevant preterm animal model for bronchopulmonary dysplasia. Premature neonatal rabbits were administered a single dose of ITBS on the day of delivery and exposed to 95% oxygen. Following 7 days of hyperoxia, in vivo forced oscillation and pressure-volume maneuvers were performed to examine pulmonary function. Histological and molecular analysis was performed to assess alveolar and extracellular matrix (ECM) morphology, along with gene expression of connective tissue growth factor (CTGF), IL-8, and CCL-2. ITBS attenuated the functional effect of hyperoxia-induced lung injury and limited the change to respiratory system impedance, measured using the forced oscillation technique. Treatment effects were most obvious in the small airways, with significant effects on small airway resistance and small airway reactance. In addition, ITBS mitigated the decrease in inspiratory capacity and static compliance. ITBS restricted alveolar septal thickening without altering the mean linear intercept and mitigated hyperoxia-induced remodeling of the ECM. These structural changes were associated with improved inspiratory capacity and lung compliance. Gene expression of CTGF, IL-8, and CCL-2 was significantly downregulated in the lung. Treatment with ITBS shortly after delivery attenuated the functional and structural consequences of hyperoxia-induced lung injury to day 7 of life in the preterm rabbit.
Collapse
Affiliation(s)
- Andre G Gie
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Yannick Regin
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Thomas Salaets
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | | | - Jan Deprest
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Institute for Women's Health, University College London Hospital, London, United Kingdom
| | - Jeroen Vanoirbeek
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Wang SH, Tsao PN. Phenotypes of Bronchopulmonary Dysplasia. Int J Mol Sci 2020; 21:ijms21176112. [PMID: 32854293 PMCID: PMC7503264 DOI: 10.3390/ijms21176112] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic morbidity in preterm infants. In the absence of effective interventions, BPD is currently a major therapeutic challenge. Several risk factors are known for this multifactorial disease that results in disrupted lung development. Inflammation plays an important role and leads to persistent airway and pulmonary vascular disease. Since corticosteroids are potent anti-inflammatory agents, postnatal corticosteroids have been used widely for BPD prevention and treatment. However, the clinical responses vary to a great degree across individuals, and steroid-related complications remain major concerns. Emerging studies on the molecular mechanism of lung alveolarization during inflammatory stress will elucidate the complicated pathway and help discover novel therapeutic targets. Moreover, with the advances in metabolomics, there are new opportunities to identify biomarkers for early diagnosis and prognosis prediction of BPD. Pharmacometabolomics is another novel field aiming to identify the metabolomic changes before and after a specific drug treatment. Through this "metabolic signature," a more precise treatment may be developed, thereby avoiding unnecessary drug exposure in non-responders. In the future, more clinical, genetic, and translational studies would be required to improve the classification of BPD phenotypes and achieve individualized care to enhance the respiratory outcomes in preterm infants.
Collapse
Affiliation(s)
- Shih-Hsin Wang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
- Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei 100226, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 71013)
| |
Collapse
|