1
|
Zhang S, Luan X, Li H, Jin Z. Insulin-like growth factor-1: A potential target for bronchopulmonary dysplasia treatment (Review). Exp Ther Med 2022; 23:191. [PMID: 35126694 PMCID: PMC8794548 DOI: 10.3892/etm.2022.11114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common respiratory disorder among preterm infants, particularly low-birth-weight infants (LBWIs) and very-low-birth-weight infants (VLBWIs). Although BPD was first reported 50 years ago, no specific drugs or efficient measures are yet available for prevention or treatment. Insulin-like growth factor-1 (IGF-1) belongs to the insulin family. It promotes mitosis and stimulates cell proliferation and DNA synthesis, the primary factors involved in pulmonary development during the fetal and postnatal periods. Several studies have reported that IGF-1 exerts certain effects on BPD genesis and progression by regulating BPD-related biological processes. In addition, exogenous addition of IGF-1 can alleviate lung inflammation, cell apoptosis and eliminate alveolar development disorders in children with BPD. These findings suggest that IGF-1 could be a new target for treating BPD. Here, we summarize and analyze the definition, pathogenesis, and research status of BPD, as well as the pathogenesis of IGF-1 in BPD and the latest findings in related biological processes.
Collapse
Affiliation(s)
- Shujian Zhang
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Xue Luan
- Department of Pediatrics, First Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Huiwen Li
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Zhengyong Jin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
2
|
Das P, Shah D, Bhandari V. miR34a: a novel small molecule regulator with a big role in bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L228-L235. [PMID: 33825492 DOI: 10.1152/ajplung.00279.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preterm infants with bronchopulmonary dysplasia (BPD), characterized by pulmonary inflammation leading to impaired alveolarization and vascular dysregulation, have an increased risk of abnormal lung function in infancy, childhood, and adulthood. These include a heightened risk of pulmonary hypertension, and respiratory illnesses. MicroRNAs (miRNAs) are known to disrupt normal lung development and function by interrupting alveolarization and vascularization resulting in the development of BPD. Among the various miRs involved in BPD, miR34a has been shown to have a significant role in BPD pathogenesis. Targeting miR34a or its downstream targets may be a promising therapeutic intervention for BPD. In this review, we summarize the data on cellular arrest, proliferation, differentiation, epithelial-mesenchymal transition, mitochondrial dysfunction, and apoptosis impacted by miR34a in the development of BPD pulmonary phenotypes while predicting the future perspective of miR34a in BPD.
Collapse
Affiliation(s)
- Pragnya Das
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper/Cooper University Health Care, Camden, New Jersey
| | - Dilip Shah
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper/Cooper University Health Care, Camden, New Jersey
| | - Vineet Bhandari
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper/Cooper University Health Care, Camden, New Jersey
| |
Collapse
|
3
|
Bhattacharya S, Mereness JA, Baran AM, Misra RS, Peterson DR, Ryan RM, Reynolds AM, Pryhuber GS, Mariani TJ. Lymphocyte-Specific Biomarkers Associated With Preterm Birth and Bronchopulmonary Dysplasia. Front Immunol 2021; 11:563473. [PMID: 33552042 PMCID: PMC7859626 DOI: 10.3389/fimmu.2020.563473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023] Open
Abstract
Many premature babies who are born with neonatal respiratory distress syndrome (RDS) go on to develop Bronchopulmonary Dysplasia (BPD) and later Post-Prematurity Respiratory Disease (PRD) at one year corrected age, characterized by persistent or recurrent lower respiratory tract symptoms frequently related to inflammation and viral infection. Transcriptomic profiles were generated from sorted peripheral blood CD8+ T cells of preterm and full-term infants enrolled with consent in the NHLBI Prematurity and Respiratory Outcomes Program (PROP) at the University of Rochester and the University at Buffalo. We identified outcome-related gene expression patterns following standard methods to identify markers for oxygen utilization and BPD as outcomes in extremely premature infants. We further identified predictor gene sets for BPD based on transcriptomic data adjusted for gestational age at birth (GAB). RNA-Seq analysis was completed for CD8+ T cells from 145 subjects. Among the subjects with highest risk for BPD (born at <29 weeks gestational age (GA); n=72), 501 genes were associated with oxygen utilization. In the same set of subjects, 571 genes were differentially expressed in subjects with a diagnosis of BPD and 105 genes were different in BPD subjects as defined by physiologic challenge. A set of 92 genes could predict BPD with a moderately high degree of accuracy. We consistently observed dysregulation of TGFB, NRF2, HIPPO, and CD40-associated pathways in BPD. Using gene expression data from both premature and full-term subjects (n=116), we identified a 28 gene set that predicted the PRD status with a moderately high level of accuracy, which also were involved in TGFB signaling. Transcriptomic data from sort-purified peripheral blood CD8+ T cells from 145 preterm and full-term infants identified sets of molecular markers of inflammation associated with independent development of BPD in extremely premature infants at high risk for the disease and of PRD among the preterm and full-term subjects.
Collapse
Affiliation(s)
- Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Jared A Mereness
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Andrea M Baran
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Ravi S Misra
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Derick R Peterson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Rita M Ryan
- Department of Pediatrics, University at Buffalo, Buffalo, NY, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | | | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, United States
| |
Collapse
|
4
|
Abstract
In the current era, the survival of extremely low-birth-weight infants has increased considerably because of new advances in technology; however, these infants often develop chronic dysfunction of the lung, which is called bronchopulmonary dysplasia (BPD). BPD remains an important cause of neonatal mortality and morbidity despite newer and gentler modes of ventilation. BPD results from the exposure of immature lungs to various antenatal and postnatal factors that lead to an impairment in lung development and aberrant growth of lung parenchyma and vasculature. However, we still struggle with a uniform definition for BPD that can help predict various short- and long-term pulmonary outcomes. With new research, our understanding of the pathobiology of this disease has evolved, and many new mechanisms of lung injury and repair are now known. By utilizing the novel ‘omic’ approaches in BPD, we have now identified various factors in the disease process that may act as novel therapeutic targets in the future. New investigational agents being explored for the management and prevention of BPD include mesenchymal stem cell therapy and insulin-like growth factor 1. Despite this, many questions remain unanswered and require further research to improve the outcomes of premature infants with BPD.
Collapse
Affiliation(s)
- Mitali Sahni
- Pediatrix Medical Group, Sunrise Children's Hospital, Las Vegas, NV, USA.,University of Nevada, Las Vegas, NV, USA
| | - Vineet Bhandari
- Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, Camden, NJ, USA
| |
Collapse
|