1
|
Wang KCW, James AL, Donovan GM, Noble PB. Prenatal Origins of Obstructive Airway Disease: Starting on the Wrong Trajectory? Compr Physiol 2024; 14:5729-5762. [PMID: 39699087 DOI: 10.1002/cphy.c230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
From the results of well-performed population health studies, we now have excellent data demonstrating that deficits in adult lung function may be present early in life, possibly as a result of developmental disorders, incurring a lifelong risk of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Suboptimal fetal development results in intrauterine growth restriction and low birth weight at term (an outcome distinct from preterm complications), which are associated with subsequent obstructive disease. Numerous prenatal exposures and disorders compromise fetal development and these are summarized herein. Various physiological, structural, and mechanical abnormalities may result from prenatal disruption, including changes to airway smooth muscle structure-function, goblet cell biology, airway stiffness, geometry of the bronchial tree, lung parenchymal structure and mechanics, respiratory skeletal muscle contraction, and pulmonary inflammation. The literature therefore supports the need for early life intervention to prevent or correct growth defects, which may include simple nutritional or antioxidant therapy. © 2024 American Physiological Society. Compr Physiol 14:5729-5762, 2024.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
2
|
Robinson JL, Gatford KL, Clifton VL, Morrison JL, Stark MJ. The impact of maternal asthma on the fetal lung: Outcomes, mechanisms and interventions. Paediatr Respir Rev 2024; 51:38-45. [PMID: 38195368 DOI: 10.1016/j.prrv.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
Maternal asthma affects up to 17% of pregnancies and is associated with adverse infant, childhood, and adult respiratory outcomes, including increased risks of neonatal respiratory distress syndrome, childhood wheeze and asthma. In addition to genetics, these poor outcomes are likely due to the mediating influence of maternal asthma on the in-utero environment, altering fetal lung and immune development and predisposing the offspring to later lung disease. Maternal asthma may impair glucocorticoid signalling in the fetus, a process critical for lung maturation, and increase fetal exposure to proinflammatory cytokines. Therefore, interventions to control maternal asthma, increase glucocorticoid signalling in the fetal lung, or Vitamin A, C, and D supplementation to improve alveologenesis and surfactant production may be beneficial for later lung function. This review highlights potential mechanisms underlying maternal asthma and offspring respiratory morbidities and describes how pregnancy interventions can promote optimal fetal lung development in babies of asthmatic mothers.
Collapse
Affiliation(s)
- Joshua L Robinson
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Vicki L Clifton
- Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Stark
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Department of Neonatal Medicine, Women's & Children's Hospital, Adelaide, Australia.
| |
Collapse
|
3
|
Podolska K, Mazankova D, Goboova M, Vano I. Ascorbic acid intake during pregnancy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:213-218. [PMID: 37691531 DOI: 10.5507/bp.2023.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
The continuing global increase in allergic conditions and diseases in children is now a serious public health and scientific issue. Amongst other concerns is the maternal antenatal diet as intake of essential nutrients. Even small deficits in essential vitamin C can permanently impair the developing brain for example. In this article, we first review ascorbic acid deficiency in different organs of both mother and foetus. However, major emphasis is on the importance of vitamin C in foetal immunity with studies showing an inverse relationship between maternal intake of fresh fruit and vegetables and allergic conditions in childhood, inter alia. Other review results are included.
Collapse
Affiliation(s)
- Kristina Podolska
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Dana Mazankova
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Maria Goboova
- Department of Internal Medicine, Teaching Hospital Nitra, 949 01 Nitra, Slovak Republic
| | - Ivan Vano
- Department of Internal Medicine, Teaching Hospital Nitra, 949 01 Nitra, Slovak Republic
| |
Collapse
|
4
|
Lock MC, Botting KJ, Allison BJ, Niu Y, Ford SG, Murphy MP, Orgeig S, Giussani DA, Morrison JL. MitoQ as an antenatal antioxidant treatment improves markers of lung maturation in healthy and hypoxic pregnancy. J Physiol 2023; 601:3647-3665. [PMID: 37467062 PMCID: PMC10952154 DOI: 10.1113/jp284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Chronic fetal hypoxaemia is a common pregnancy complication that increases the risk of infants experiencing respiratory complications at birth. In turn, chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in animal models of hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. However, whether antenatal antioxidant therapy confers any benefit on lung development in complicated pregnancies has not yet been investigated. Here, we tested the hypothesis that maternal antenatal treatment with MitoQ will protect the developing lung in hypoxic pregnancy in sheep, a species with similar fetal lung developmental milestones as humans. Maternal treatment with MitoQ during late gestation promoted fetal pulmonary surfactant maturation and an increase in the expression of lung mitochondrial complexes III and V independent of oxygenation. Maternal treatment with MitoQ in hypoxic pregnancy also increased the expression of genes regulating liquid reabsorption in the fetal lung. These data support the hypothesis tested and suggest that MitoQ as an antenatal targeted antioxidant treatment may improve lung maturation in the late gestation fetus. KEY POINTS: Chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. MitoQ is a targeted antioxidant that uses the cell and the mitochondrial membrane potential to accumulate within the mitochondria. Treatment of healthy or hypoxic pregnancy with MitoQ, increases the expression of key molecules involved in surfactant maturation, lung liquid reabsorption and in mitochondrial proteins driving ATP synthesis in the fetal sheep lung. There were no detrimental effects of MitoQ treatment alone on the molecular components measured in the present study, suggesting that maternal antioxidant treatment has no effect on other components of normal maturation of the surfactant system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Beth J. Allison
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Sage G. Ford
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | | | - Sandra Orgeig
- UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Dino A. Giussani
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
5
|
Kerschner JL, Paranjapye A, Schacht M, Meckler F, Huang F, Bebek G, Van Wettere AJ, Regouski M, Perisse IV, White KL, Polejaeva IA, Leir SH, Harris A. Transcriptomic analysis of lung development in wildtype and CFTR -/- sheep suggests an early inflammatory signature in the CF distal lung. Funct Integr Genomics 2023; 23:135. [PMID: 37085733 PMCID: PMC10121546 DOI: 10.1007/s10142-023-01050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
The precise molecular events initiating human lung disease are often poorly characterized. Investigating prenatal events that may underlie lung disease in later life is challenging in man, but insights from the well-characterized sheep model of lung development are valuable. Here, we determine the transcriptomic signature of lung development in wild-type sheep (WT) and use a sheep model of cystic fibrosis (CF) to characterize disease associated changes in gene expression through the pseudoglandular, canalicular, saccular, and alveolar stages of lung growth and differentiation. Using gene ontology process enrichment analysis of differentially expressed genes at each developmental time point, we define changes in biological processes (BP) in proximal and distal lung from WT or CF animals. We also compare divergent BP in WT and CF animals at each time point. Next, we establish the developmental profile of key genes encoding components of ion transport and innate immunity that are pivotal in CF lung disease and validate transcriptomic data by RT-qPCR. Consistent with the known pro-inflammatory phenotype of the CF lung after birth, we observe upregulation of inflammatory response processes in the CF sheep distal lung during the saccular stage of prenatal development. These data suggest early commencement of therapeutic regimens may be beneficial.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Makayla Schacht
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Frederick Meckler
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Felix Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gurkan Bebek
- Center for Proteomics and Bioinformatics, Cleveland, OH, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Arnaud J Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UH, USA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UH, USA
| | - Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UH, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UH, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UH, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
6
|
Kane AD, Herrera EA, Niu Y, Camm EJ, Allison BJ, Tijsseling D, Lusby C, Derks JB, Brain KL, Bronckers IM, Cross CM, Berends L, Giussani DA. Combined Statin and Glucocorticoid Therapy for the Safer Treatment of Preterm Birth. Hypertension 2023; 80:837-851. [PMID: 36724801 PMCID: PMC10017302 DOI: 10.1161/hypertensionaha.122.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Prematurity is strongly associated with poor respiratory function in the neonate. Rescue therapies include treatment with glucocorticoids due to their anti-inflammatory and maturational effects on the developing lung. However, glucocorticoid treatment in the infant can increase the risk of long-term cardiovascular complications including hypertension, cardiac, and endothelial dysfunction. Accumulating evidence implicates a molecular link between glucocorticoid excess and depletion of nitric oxide (NO) bioavailability as a mechanism underlying the detrimental effects of postnatal steroids on the heart and circulation. Therefore, combined glucocorticoid and statin therapy, by increasing NO bioavailability, may protect the developing cardiovascular system while maintaining beneficial effects on the lung. METHODS We investigated combined glucocorticoid and statin therapy using an established rodent model of prematurity and combined experiments of cardiovascular function in vivo, with those in isolated organs as well as measurements at the cellular and molecular levels. RESULTS We show that neonatal glucocorticoid treatment increases the risk of later cardiovascular dysfunction in the offspring. Underlying mechanisms include decreased circulating NO bioavailability, sympathetic hyper-reactivity, and NO-dependent endothelial dysfunction. Combined neonatal glucocorticoid and statin therapy protects the developing cardiovascular system by normalizing NO and sympathetic signaling, without affecting pulmonary maturational or anti-inflammatory effects of glucocorticoids. CONCLUSIONS Therefore, combined glucocorticoid and statin therapy may be safer than glucocorticoids alone for the treatment of preterm birth.
Collapse
Affiliation(s)
- Andrew D. Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Emilio A. Herrera
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile (E.A.H.)
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Cambridge BHF Centre for Research Excellence, Cambridge, United Kingdom (Y.N., D.A.G.)
- The Cambridge Strategic Research Initiative in Reproduction, Cambridge, United Kingdom (Y.N., D.A.G.)
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia (E.J.C., B.J.A.)
| | - Beth J. Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia (E.J.C., B.J.A.)
| | - Deodata Tijsseling
- Perinatal Center, University Medical Center, Utrecht, the Netherlands (D.T., J.B.D.)
| | - Ciara Lusby
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Jan B. Derks
- Perinatal Center, University Medical Center, Utrecht, the Netherlands (D.T., J.B.D.)
| | - Kirsty L. Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Inge M. Bronckers
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, the Netherlands (I.M.B.)
| | - Christine M. Cross
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Lindsey Berends
- Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom (L.B.)
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Cambridge BHF Centre for Research Excellence, Cambridge, United Kingdom (Y.N., D.A.G.)
- The Cambridge Strategic Research Initiative in Reproduction, Cambridge, United Kingdom (Y.N., D.A.G.)
| |
Collapse
|