1
|
Kelchtermans J, March ME, Hakonarson H, McGrath-Morrow SA. Phenotype wide association study links bronchopulmonary dysplasia with eosinophilia in children. Sci Rep 2024; 14:21391. [PMID: 39271728 PMCID: PMC11399246 DOI: 10.1038/s41598-024-72348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Despite this, genetic drivers of BPD are poorly understood. The objective of this study is to better understand the impact of single nucleotide polymorphisms (SNPs) previously associated with BPD by examining associations with other phenotypes. We drew pediatric subjects from the biorepository at the Center for Applied Genomics to identify associations between these SNPs and 2,146 imputed phenotypes. Methylation data, external cohorts, and in silico validation methods were used to corroborate significant associations. We identified 60 SNPs that were previously associated with BPD. We found a significant association between rs3771150 and rs3771171 and mean eosinophil percentage in a European cohort of 6,999 patients and replicated this in external cohorts. Both SNPs were also associated with asthma, COPD and FEV1/FVC ratio. These SNPs displayed associations with methylation probes and were functionally linked to ST2 (IL1RL1) levels in blood and lung tissue. Our findings support a genetic justification for the epidemiological link between BPD and asthma. Given the well-established link between ST2 and type 2 inflammation in asthma, these findings provide a rationale for future studies exploring the role of type 2 inflammation in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Jelte Kelchtermans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Michael E March
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| | - Sharon A McGrath-Morrow
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Bruns N, Dohna-Schwake C, Olivieri M, Urschitz MS, Blomenkamp S, Frosch C, Lieftüchter V, Tomidis Chatzimanouil MK, Hoffmann F, Brenner S. Pediatric intensive care unit admissions network-rationale, framework and method of operation of a nationwide collaborative pediatric intensive care research network in Germany. Front Pediatr 2024; 11:1254935. [PMID: 38269291 PMCID: PMC10806156 DOI: 10.3389/fped.2023.1254935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
The Pediatric Intensive Care Unit Admissions (PIA) network aims to establish a nationwide database in Germany to gather epidemiological, clinical, and outcome data on pediatric critical illness. The heterogeneity of pediatric patients in intensive care units (PICU) poses challenges in obtaining sufficient case numbers for reliable research. Multicentered approaches, such as patient registries, have proven effective in collecting large-scale data. However, Germany lacks a systematic registration system for pediatric intensive care admissions, hindering epidemiological and outcome assessments. The PIA network intends to address these gaps and provide a framework for clinical and epidemiological research in pediatric intensive care. The network will interconnect PICUs across Germany and collect structured data on diagnoses, treatment, clinical course, and short-term outcomes. It aims to identify areas for improvement in care, enable disease surveillance, and potentially serve as a quality control tool. The PIA network builds upon the existing infrastructure of the German Pediatric Surveillance Unit ESPED and utilizes digitalized data collection techniques. Participating units will complete surveys on their organizational structure and equipment. The study population includes patients aged ≥28 days admitted to participating PICUs, with a more detailed survey for cases meeting specific criteria. Data will be collected by local PIA investigators, anonymized, and entered into a central database. The data protection protocol complies with regulations and ensures patient privacy. Quarterly data checks and customized quality reports will be conducted to monitor data completeness and plausibility. The network will evaluate its performance, data collection feasibility, and data quality. Eligible investigators can submit proposals for data analyses, which will be reviewed and analyzed by trained statisticians or epidemiologists. The PIA network aims to improve pediatric intensive care medicine in Germany by providing a comprehensive understanding of critical illness, benchmarking treatment quality, and enabling disease surveillance.
Collapse
Affiliation(s)
- Nora Bruns
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care Medicine, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- TNBS, Centre for Translational Neuro- and Behavioural Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Dohna-Schwake
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care Medicine, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- TNBS, Centre for Translational Neuro- and Behavioural Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Olivieri
- Pediatric Intensive Care Unit, Dr. von Hauner Childreńs Hospital, LMU Munich, Munich, Germany
| | - Michael S. Urschitz
- Division of Pediatric Epidemiology, Institute of Medical Biostatistics, Epidemiology, and Informatics, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Susanne Blomenkamp
- Division of Pediatric Epidemiology, Institute of Medical Biostatistics, Epidemiology, and Informatics, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Clara Frosch
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care Medicine, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- TNBS, Centre for Translational Neuro- and Behavioural Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Victoria Lieftüchter
- Pediatric Intensive Care Unit, Dr. von Hauner Childreńs Hospital, LMU Munich, Munich, Germany
| | - Markos K. Tomidis Chatzimanouil
- Pediatric Intensive Care Medicine, Department of Pediatrics, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Florian Hoffmann
- Pediatric Intensive Care Unit, Dr. von Hauner Childreńs Hospital, LMU Munich, Munich, Germany
| | - Sebastian Brenner
- Pediatric Intensive Care Medicine, Department of Pediatrics, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Lavoie PM, Rayment JH. Genetics of bronchopulmonary dysplasia: An update. Semin Perinatol 2023; 47:151811. [PMID: 37775368 DOI: 10.1016/j.semperi.2023.151811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a multi-factorial disease that results from multiple clinical factors, including lung immaturity, mechanical ventilation, oxidative stress, pulmonary congestion due to increasing cardiac blood shunting, nutritional and immunological factors. Twin studies have indicated that susceptibility to BPD can be strongly inherited in some settings. Studies have reported associations between common genetic variants and BPD in preterm infants. Recent genomic studies have highlighted a potential role for molecular pathways involved in inflammation and lung development in affected infants. Rare mutations in genes encoding the lipid transporter ATP-binding cassette, sub-family A, member 3 (ABCA3 gene) which is involved in surfactant synthesis in alveolar type II cells, as well as surfactant protein B (SFTPB) and C (SFTPC) can also result in severe form of neonatal-onset interstitial lung diseases and may also potentially affect the course of BPD. This chapter summarizes the current state of knowledge on the genetics of BPD.
Collapse
Affiliation(s)
- Pascal M Lavoie
- Division of Neonatology, Department of Pediatrics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada.
| | - Jonathan H Rayment
- BC Children's Hospital Research Institute, Vancouver, Canada; Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, Canada; Division of Respiratory Medicine, BC Children's Hospital, Vancouver, Canada
| |
Collapse
|