1
|
Mistry KH, Boyd RN, Pagnozzi AM, Bora S, Ware RS, George JM. Diagnostic accuracy of early neonatal MRI in predicting adverse motor outcomes in children born preterm: Systematic review and meta-analysis. Dev Med Child Neurol 2025. [PMID: 39745804 DOI: 10.1111/dmcn.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
AIM To examine the diagnostic accuracy of Early structural and diffusion-weighted magnetic resonance imaging (MRI) (acquired at < 36 weeks postmenstrual age) to detect cerebral palsy (CP) or other adverse motor outcomes at or beyond 3 years corrected age in infants born preterm. METHOD In this systematic review and meta-analysis, we searched the CINAHL, Embase, PubMed, and Web of Science databases for studies without language restrictions and a prospectively registered protocol up to October 2023. We extracted the study details, associations presented, and meta-analyses conducted with pooled sensitivity and specificity. RESULTS Twenty-seven articles met the overall inclusion criteria. White matter injury, cerebellar haemorrhage, intraventricular haemorrhage, and lower thalamic volume were associated with poorer motor outcomes. Abnormal Early structural MRI detected infants with a later diagnosis of CP (n = 448, eight studies) with a pooled sensitivity of 98% (95% confidence interval [CI] = 86-100), specificity of 75% (95% CI = 51-93), and adverse motor outcomes (n = 215, four studies), with a pooled sensitivity of 39% (95% CI = 20-59) and a specificity of 90% (95% CI = 88-94). INTERPRETATION Early abnormal structural MRI predicted later CP with high sensitivity and specificity, while specificity was higher than sensitivity in predicting adverse motor outcomes using the Movement Assessment Battery for Children, Second Edition. Further research into diagnostic accuracy and association between Early MRI and long-term motor outcomes is warranted.
Collapse
Affiliation(s)
- Karen H Mistry
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Centre, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Queensland, Australia
| | - Samudragupta Bora
- University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert S Ware
- School of Medicine and Dentistry, Griffith University, Brisbane, Queensland, Australia
| | - Joanne M George
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Physiotherapy Department, Queensland Children's Hospital, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Sullivan G, Quigley AJ, Choi S, Teed R, Blesa Cabez M, Vaher K, Corrigan A, Stoye DQ, Thrippleton MJ, Bastin M, Boardman JP. Brain 3T magnetic resonance imaging in neonates: features and incidental findings from a research cohort enriched for preterm birth. Arch Dis Child Fetal Neonatal Ed 2024; 110:85-90. [PMID: 38960453 PMCID: PMC11672019 DOI: 10.1136/archdischild-2024-326960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND OBJECTIVES The survival rate and patterns of brain injury after very preterm birth are evolving with changes in clinical practices. Additionally, incidental findings can present legal, ethical and practical considerations. Here, we report MRI features and incidental findings from a large, contemporary research cohort of very preterm infants and term controls. METHODS 288 infants had 3T MRI at term-equivalent age: 187 infants born <32 weeks without major parenchymal lesions, and 101 term-born controls. T1-weighted, T2-weighted and susceptibility-weighted imaging were used to classify white and grey matter injury according to a structured system, and incidental findings described. RESULTS Preterm infants: 34 (18%) had white matter injury and 4 (2%) had grey matter injury. 51 (27%) infants had evidence of intracranial haemorrhage and 34 (18%) had punctate white matter lesions (PWMLs). Incidental findings were detected in 12 (6%) preterm infants. Term infants: no term infants had white or grey matter injury. Incidental findings were detected in 35 (35%); these included intracranial haemorrhage in 22 (22%), periventricular pseudocysts in 5 (5%) and PWMLs in 4 (4%) infants. From the whole cohort, 10 (3%) infants required referral to specialist services. CONCLUSIONS One-fifth of very preterm infants without major parenchymal lesions have white or grey matter abnormalities at term-equivalent age. Incidental findings are seen in 6% of preterm and 35% of term infants. Overall, 3% of infants undergoing MRI for research require follow-up due to incidental findings. These data should help inform consent procedures for research and assist service planning for centres using 3T neonatal brain MRI for clinical purposes.
Collapse
Affiliation(s)
- Gemma Sullivan
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
| | - Alan J Quigley
- Radiology, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Samantha Choi
- Radiology, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Rory Teed
- The University of Edinburgh MRC Centre for Reproductive Health, Edinburgh, UK
| | - Manuel Blesa Cabez
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- The University of Edinburgh MRC Centre for Reproductive Health, Edinburgh, UK
| | - Kadi Vaher
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- The University of Edinburgh MRC Centre for Reproductive Health, Edinburgh, UK
| | - Amy Corrigan
- The University of Edinburgh MRC Centre for Reproductive Health, Edinburgh, UK
| | - David Q Stoye
- The University of Edinburgh MRC Centre for Reproductive Health, Edinburgh, UK
| | - Michael J Thrippleton
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- The University of Edinburgh Edinburgh Imaging Facility, Edinburgh, UK
| | - Mark Bastin
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- The University of Edinburgh Edinburgh Imaging Facility, Edinburgh, UK
| | - James P Boardman
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- The University of Edinburgh MRC Centre for Reproductive Health, Edinburgh, UK
| |
Collapse
|
3
|
Drommelschmidt K, Mayrhofer T, Hüning B, Stein A, Foldyna B, Schweiger B, Felderhoff-Müser U, Sirin S. Incidence of brain injuries in a large cohort of very preterm and extremely preterm infants at term-equivalent age: results of a single tertiary neonatal care center over 10 years. Eur Radiol 2024; 34:5239-5249. [PMID: 38279057 PMCID: PMC11255071 DOI: 10.1007/s00330-024-10592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
OBJECTIVES Cerebral magnetic resonance imaging (cMRI) at term-equivalent age (TEA) can detect brain injury (BI) associated with adverse neurological outcomes in preterm infants. This study aimed to assess BI incidences in a large, consecutive cohort of preterm infants born < 32 weeks of gestation, the comparison between very (VPT, ≥ 28 + 0 to < 32 + 0 weeks of gestation) and extremely preterm infants (EPT, < 28 + 0 weeks of gestation) and across weeks of gestation. METHODS We retrospectively analyzed cMRIs at TEA of VPT and EPT infants born at a large tertiary center (2009-2018). We recorded and compared the incidences of BI, severe BI, intraventricular hemorrhage (IVH), periventricular hemorrhagic infarction (PVHI), cerebellar hemorrhage (CBH), cystic periventricular leukomalacia (cPVL), and punctate white matter lesions (PWML) between VPTs, EPTs, and across weeks of gestation. RESULTS We included 507 preterm infants (VPT, 335/507 (66.1%); EPT, 172/507 (33.9%); mean gestational age (GA), 28 + 2 weeks (SD 2 + 2 weeks); male, 52.1%). BIs were found in 48.3% of the preterm infants (severe BI, 12.0%) and increased with decreasing GA. IVH, PVHI, CBH, cPVL, and PWML were seen in 16.8%, 0.8%, 10.5%, 3.4%, and 18.1%, respectively. EPT vs. VPT infants suffered more frequently from BI (59.3% vs. 42.7%, p < 0.001), severe BI (18.6% vs. 8.7%, p = 0.001), IVH (31.9% vs. 9.0%, p < 0.001), and CBH (18.0% vs. 6.6%, p < 0.001). CONCLUSION Brain injuries are common cMRI findings among preterm infants with a higher incidence of EPT compared to VPT infants. These results may serve as reference values for clinical management and research. CLINICAL RELEVANCE STATEMENT Our results with regard to gestational age might provide valuable clinical insights, serving as a key reference for parental advice, structured follow-up planning, and enhancing research and management within the Neonatal Intensive Care Unit. KEY POINTS • Brain injury is a common cMRI finding in preterm infants seen in 48.3% individuals. • Extremely preterm compared to very preterm infants have higher brain injury incidences driven by brain injuries such as intraventricular and cerebellar hemorrhage. • Reference incidence values are crucial for parental advice and structured follow-up planning.
Collapse
Affiliation(s)
- Karla Drommelschmidt
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (cTNBS), University Medicine Essen, Essen, Germany
| | - Thomas Mayrhofer
- School of Business Studies, Stralsund, University of Applied Sciences, Stralsund, Germany
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital - Harvard Medical School, Boston, MA, USA
| | - Britta Hüning
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (cTNBS), University Medicine Essen, Essen, Germany
| | - Anja Stein
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (cTNBS), University Medicine Essen, Essen, Germany
| | - Borek Foldyna
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital - Harvard Medical School, Boston, MA, USA
| | - Bernd Schweiger
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (cTNBS), University Medicine Essen, Essen, Germany
| | - Selma Sirin
- Department of Diagnostic Imaging, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Di Ludovico A, Rinaldi M, Mainieri F, Di Michele S, Girlando V, Ciarelli F, La Bella S, Chiarelli F, Attanasi M, Mauro A, Bizzi E, Brucato A, Breda L. Molecular Mechanisms of Fetal and Neonatal Lupus: A Narrative Review of an Autoimmune Disease Transferal across the Placenta. Int J Mol Sci 2024; 25:5224. [PMID: 38791261 PMCID: PMC11120786 DOI: 10.3390/ijms25105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This study, conducted by searching keywords such as "maternal lupus", "neonatal lupus", and "congenital heart block" in databases including PubMed and Scopus, provides a detailed narrative review on fetal and neonatal lupus. Autoantibodies like anti-Ro/SSA and anti-La/SSB may cross the placenta and cause complications in neonates, such as congenital heart block (CHB). Management options involve hydroxychloroquine, which is able to counteract some of the adverse events, although the drug needs to be used carefully because of its impact on the QTc interval. Advanced pacing strategies for neonates with CHB, especially in severe forms like hydrops, are also assessed. This review emphasizes the need for interdisciplinary care by rheumatologists, obstetricians, and pediatricians in order to achieve the best maternal and neonatal health in lupus pregnancies. This multidisciplinary approach seeks to improve the outcomes and management of the disease, decreasing the burden on mothers and their infants.
Collapse
Affiliation(s)
- Armando Di Ludovico
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Marta Rinaldi
- Paediatric Department, Buckinghamshire Healthcare NHS Trust, Aylesbury-Thames Valley Deanery, Aylesbury HP21 8AL, UK;
| | - Francesca Mainieri
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Stefano Di Michele
- Department of Surgical Science, Division of Obstetrics and Gynecology, University of Cagliari, Cittadella Universitaria Blocco I, Asse didattico Medicina P2, Monserrato, 09042 Cagliari, Italy;
| | - Virginia Girlando
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Francesca Ciarelli
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Saverio La Bella
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Francesco Chiarelli
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Marina Attanasi
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Angela Mauro
- Pediatric Rheumatology Unit, Department of Childhood and Developmental Medicine, Fatebenefratelli—Sacco Hospital, Piazzale Principessa Clotilde, 20121 Milan, Italy
| | - Emanuele Bizzi
- Division of Internal Medicine, ASST Fatebenefratelli Sacco, Fatebenefratelli Hospital, University of Milan, 20121 Milan, Italy; (E.B.); (A.B.)
| | - Antonio Brucato
- Division of Internal Medicine, ASST Fatebenefratelli Sacco, Fatebenefratelli Hospital, University of Milan, 20121 Milan, Italy; (E.B.); (A.B.)
- Department of Biomedical and Clinical Sciences “Sacco”, University of Milano, Ospedale Fatebenefratelli, 20121 Milan, Italy
| | - Luciana Breda
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| |
Collapse
|
5
|
Mahabee-Gittens EM, Priyanka Illapani VS, Merhar SL, Kline-Fath B, Harun N, He L, Parikh NA. Prenatal Opioid Exposure and Risk for Adverse Brain and Motor Outcomes in Infants Born Premature. J Pediatr 2024; 267:113908. [PMID: 38220065 PMCID: PMC11872248 DOI: 10.1016/j.jpeds.2024.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE To compare brain magnetic resonance imaging (MRI) biomarkers and neurodevelopmental test scores in infants born preterm with and without prenatal opioid exposure (POE). STUDY DESIGN We examined 395 preterm infants (≤32 weeks gestational age) who had term-equivalent brain MRIs, composite scores from the Bayley Scales of Infant and Toddler Development-III at 2 years corrected age, and POE data. MRI parameters included total/regional brain volumes and severe punctate white matter lesions (PWMLs). We conducted bivariable analysis and multivariable logistic regression analyses. RESULTS The mean ± SD gestational age was 29.3 ± 2.5 weeks; 35 (8.9%) had POE and 20 (5.1%) had severe PWML. Compared with unexposed infants, those with POE exhibited higher rates of severe PWML (17.1% vs 3.9%, respectively; P = .002); findings remained significant with an OR of 4.16 (95% CI, 1.26-13.68) after adjusting for confounders. On mediation analysis, the significant relationship between POE and severe PWML was not indirectly mediated through preterm birth/gestational age (OR, 0.93; 95% CI, 0.78-1.10), thus suggesting the association was largely driven by a direct adverse effect of POE on white matter. In multivariable analyses, POE was associated with a significantly lower score by -6.2 (95% CI, -11.8 to -0.6) points on the Bayley Scales of Infant and Toddler Development-III Motor subscale compared with unexposed infants. CONCLUSIONS POE was associated with severe PWML; this outcome may be a direct effect of POE rather than being mediated by premature birth. POE was also associated with worse motor development. Continued follow-up to understand the long-term effects of POE is warranted.
Collapse
Affiliation(s)
- E Melinda Mahabee-Gittens
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH.
| | - Venkata Sita Priyanka Illapani
- Neurodevelopmental Disorders Prevention Center, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Stephanie L Merhar
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH; Neurodevelopmental Disorders Prevention Center, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Beth Kline-Fath
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH; Neurodevelopmental Disorders Prevention Center, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Nusrat Harun
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Lili He
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH; Neurodevelopmental Disorders Prevention Center, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Nehal A Parikh
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH; Neurodevelopmental Disorders Prevention Center, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
6
|
Zhu L, Yuan Q, Jing C, Sun L, Jiang L. Angiogenic responses are enhanced by recombinant human erythropoietin in a model of periventricular white matter damage of neonatal rats through EPOR-ERK1 signaling. J Neuropathol Exp Neurol 2024; 83:161-167. [PMID: 38263262 PMCID: PMC10880070 DOI: 10.1093/jnen/nlae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Recombinant human erythropoietin (rh-EPO) has been shown to stimulate neurogenesis and angiogenesis, both of which play crucial roles in the repair of brain injuries. Previously, we observed that rh-EPO treatment effectively reduced brain damage and enhanced angiogenesis in a neonatal rat model of periventricular white matter damage (PWMD). The objective of this research is to investigate the specific mechanism through which rh-EPO regulates angiogenesis following PWMD in premature neonates. We conducted experiments utilizing a neonatal PWMD model. Following rh-EPO treatment, the levels of erythropoietin receptor (EPOR) were found to be increased in the damaged brain of rats. Although the total amount of extracellular signal-regulated kinase (ERK), a downstream protein in the EPO signaling pathway, remained unchanged, there was clear upregulation of phosphorylated ERK1 (p-ERK1) levels. The increase in levels of p-ERK1 was inhibited by an ERK kinase inhibitor, while the total amount of ERK remained unchanged. Conversely, the levels of EPOR were not affected by the inhibitor. Notably, the introduction of rh-EPO led to a significant increase in the frequency of angiogenesis-related cells and the expression levels of angiogenic factors. However, these effects were nullified when the ERK pathway was blocked. These findings indicate that rh-EPO enhances angiogenic responses through the EPOR-ERK1 pathway in a neonatal PWMD model.
Collapse
Affiliation(s)
- Lihua Zhu
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing 211800, China
| | - Qichao Yuan
- Department of Pediatrics, Danyang People’s Hospital Affiliate of Nantong University, Danyang 212300, China
| | - Chunping Jing
- Department of Pediatrics, Danyang People’s Hospital Affiliate of Nantong University, Danyang 212300, China
| | - Lingxian Sun
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing 211800, China
| | - Li Jiang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, China
| |
Collapse
|
7
|
Massirio P, Battaglini M, Bonato I, De Crescenzo S, Calevo MG, Malova M, Caruggi S, Parodi A, Preiti D, Zoia A, Uccella S, Tortora D, Severino M, Rossi A, Traggiai C, Nobili L, Striano P, Ramenghi LA. Early Extra-Uterine Growth Restriction in Very-Low-Birth-Weight Neonates with Normal or Mildly Abnormal Brain MRI: Effects on a 2-3-Year Neurodevelopmental Outcome. Nutrients 2024; 16:449. [PMID: 38337733 PMCID: PMC10856867 DOI: 10.3390/nu16030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Extra-uterine growth restriction (EUGR) is a common complication and a known risk factor for impaired development in very-low-birth-weight (VLBW) neonates. We report a population of 288 patients with no or with low-grade MRI lesions scanned at a term equivalent age (TEA) born between 2012 and 2018. Griffiths Mental Development Scale II (GMDS II) at 2 and 3 years, preterm complications and weight growth were retrospectively analyzed. EUGR was defined for weight z-score ˂ 10 percentile at TEA, 6 and 12 months of correct age or as z-score decreased by 1-point standard deviation (SDS) from birth to TEA and from TEA to 6 months. Multivariate analysis showed that a higher weight z-score at 6 months is protective for the global developmental quotient (DQ) at 2 years (OR 0.74; CI 95% 0.59-0.93; p = 0.01). EUGR at 6 months was associated with worse locomotor, personal/social, language and performance DQ at 2 years and worse language and practical reasoning DQ at 3 years. In conclusion, a worse weight z-score at 6 months of age seems to be an independent risk factor for significantly reduced GMDS in many areas. These results suggest that we should invest more into post-discharge nutrition, optimizing family nutritional education.
Collapse
Affiliation(s)
- Paolo Massirio
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
| | - Marcella Battaglini
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (S.U.); (L.N.); (P.S.)
| | - Irene Bonato
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
| | - Sara De Crescenzo
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (S.U.); (L.N.); (P.S.)
| | - Maria Grazia Calevo
- Epidemiology and Biostatistic Unit, Scientific Direction, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Mariya Malova
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
| | - Samuele Caruggi
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (S.U.); (L.N.); (P.S.)
| | - Alessandro Parodi
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
| | - Deborah Preiti
- Psychology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Agata Zoia
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
- Psychology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Sara Uccella
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (S.U.); (L.N.); (P.S.)
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (D.T.); (M.S.); (A.R.)
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (D.T.); (M.S.); (A.R.)
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (D.T.); (M.S.); (A.R.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Cristina Traggiai
- Neonatology Unit, International Evangelical Hospital, 16122 Genoa, Italy;
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (S.U.); (L.N.); (P.S.)
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (S.U.); (L.N.); (P.S.)
- Paediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Luca Antonio Ramenghi
- Neonatal Intensive Care Unit, Maternal and Neonatal Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (I.B.); (S.D.C.); (S.C.); (A.P.); (A.Z.); (L.A.R.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (S.U.); (L.N.); (P.S.)
| |
Collapse
|
8
|
Bridgen P, Tomi-Tricot R, Uus A, Cromb D, Quirke M, Almalbis J, Bonse B, De la Fuente Botella M, Maggioni A, Cio PD, Cawley P, Casella C, Dokumaci AS, Thomson AR, Willers Moore J, Bridglal D, Saravia J, Finck T, Price AN, Pickles E, Cordero-Grande L, Egloff A, O’Muircheartaigh J, Counsell SJ, Giles SL, Deprez M, De Vita E, Rutherford MA, Edwards AD, Hajnal JV, Malik SJ, Arichi T. High resolution and contrast 7 tesla MR brain imaging of the neonate. FRONTIERS IN RADIOLOGY 2024; 3:1327075. [PMID: 38304343 PMCID: PMC10830693 DOI: 10.3389/fradi.2023.1327075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Introduction Ultra-high field MR imaging offers marked gains in signal-to-noise ratio, spatial resolution, and contrast which translate to improved pathological and anatomical sensitivity. These benefits are particularly relevant for the neonatal brain which is rapidly developing and sensitive to injury. However, experience of imaging neonates at 7T has been limited due to regulatory, safety, and practical considerations. We aimed to establish a program for safely acquiring high resolution and contrast brain images from neonates on a 7T system. Methods Images were acquired from 35 neonates on 44 occasions (median age 39 + 6 postmenstrual weeks, range 33 + 4 to 52 + 6; median body weight 2.93 kg, range 1.57 to 5.3 kg) over a median time of 49 mins 30 s. Peripheral body temperature and physiological measures were recorded throughout scanning. Acquired sequences included T2 weighted (TSE), Actual Flip angle Imaging (AFI), functional MRI (BOLD EPI), susceptibility weighted imaging (SWI), and MR spectroscopy (STEAM). Results There was no significant difference between temperature before and after scanning (p = 0.76) and image quality assessment compared favorably to state-of-the-art 3T acquisitions. Anatomical imaging demonstrated excellent sensitivity to structures which are typically hard to visualize at lower field strengths including the hippocampus, cerebellum, and vasculature. Images were also acquired with contrast mechanisms which are enhanced at ultra-high field including susceptibility weighted imaging, functional MRI, and MR spectroscopy. Discussion We demonstrate safety and feasibility of imaging vulnerable neonates at ultra-high field and highlight the untapped potential for providing important new insights into brain development and pathological processes during this critical phase of early life.
Collapse
Affiliation(s)
- Philippa Bridgen
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Raphael Tomi-Tricot
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, London, United Kingdom
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Megan Quirke
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jennifer Almalbis
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Beya Bonse
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Miguel De la Fuente Botella
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alessandra Maggioni
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Pierluigi Di Cio
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Paul Cawley
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Chiara Casella
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Ayse Sila Dokumaci
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alice R. Thomson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Jucha Willers Moore
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Devi Bridglal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Joao Saravia
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Thomas Finck
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Anthony N. Price
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Elisabeth Pickles
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, ISCIII, Madrid, Spain
| | - Alexia Egloff
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Sharon L. Giles
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Enrico De Vita
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MR Physics, Radiology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mary A. Rutherford
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - A. David Edwards
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Joseph V. Hajnal
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Shaihan J. Malik
- LondonCollaborative Ultra High Field System (LoCUS), King’s College London, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Tomoki Arichi
- Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
Cawley P, Padormo F, Cromb D, Almalbis J, Marenzana M, Teixeira R, Uus A, O’Muircheartaigh J, Williams SC, Counsell SJ, Arichi T, Rutherford MA, Hajnal JV, Edwards AD. Development of neonatal-specific sequences for portable ultralow field magnetic resonance brain imaging: a prospective, single-centre, cohort study. EClinicalMedicine 2023; 65:102253. [PMID: 38106560 PMCID: PMC10725077 DOI: 10.1016/j.eclinm.2023.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023] Open
Abstract
Background Magnetic Resonance (MR) imaging is key for investigation of suspected newborn brain abnormalities. Access is limited in low-resource settings and challenging in infants needing intensive care. Portable ultralow field (ULF) MRI is showing promise in bedside adult brain imaging. Use in infants and children has been limited as brain-tissue composition differences necessitate sequence modification. The aim of this study was to develop neonatal-specific ULF structural sequences and test these across a range of gestational maturities and pathologies to inform future validation studies. Methods Prospective cohort study within a UK neonatal specialist referral centre. Infants undergoing 3T MRI were recruited for paired ULF (64mT) portable MRI by convenience sampling from the neonatal unit and post-natal ward. Key inclusion criteria: 1) Infants with risk or suspicion of brain abnormality, or 2) preterm and term infants without suspicion of major genetic, chromosomal or neurological abnormality. Exclusions: presence of contra-indication for MR scanning. ULF sequence parameters were optimised for neonatal brain-tissues by iterative and explorative design. Neuroanatomic and pathologic features were compared by unblinded review, informing optimisation of subsequent sequence generations in a step-wise manner. Main outcome: visual identification of healthy and abnormal brain tissues/structures. ULF MR spectroscopy, diffusion, susceptibility weighted imaging, arteriography, and venography require pre-clinical technical development and have not been tested. Findings Between September 23, 2021 and October 25, 2022, 102 paired scans were acquired in 87 infants; 1.17 paired scans per infant. Median age 9 days, median postmenstrual age 40+2 weeks (range: 31+3-53+4). Infants had a range of intensive care requirements. No adverse events observed. Optimised ULF sequences can visualise key neuroanatomy and brain abnormalities. In finalised neonatal sequences: T2w imaging distinguished grey and white matter (7/7 infants), ventricles (7/7), pituitary tissue (5/7), corpus callosum (7/7) and optic nerves (7/7). Signal congruence was seen within the posterior limb of the internal capsule in 10/11 infants on finalised T1w scans. In addition, brain abnormalities visualised on ULF optimised sequences have similar MR signal patterns to 3T imaging, including injury secondary to infarction (6/6 infants on T2w scans), hypoxia-ischaemia (abnormal signal in basal ganglia, thalami and white matter 2/2 infants on T2w scans, cortical highlighting 1/1 infant on T1w scan), and congenital malformations: polymicrogyria 3/3, absent corpus callosum 2/2, and vermian hypoplasia 3/3 infants on T2w scans. Sequences are susceptible to motion corruption, noise, and ULF artefact. Non-identified pathologies were small or subtle. Interpretation On unblinded review, optimised portable MR can provide sufficient contrast, signal, and resolution for neuroanatomical identification and detection of a range of clinically important abnormalities. Blinded validation studies are now warranted. Funding The Bill and Melinda Gates Foundation, the MRC, the Wellcome/EPSRC Centre for Medical Engineering, the MRC Centre for Neurodevelopmental Disorders, and the National Institute for Health Research (NIHR) Biomedical Research Centres based at Guy's and St Thomas' and South London & Maudsley NHS Foundation Trusts and King's College London.
Collapse
Affiliation(s)
- Paul Cawley
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neonatal Intensive Care Unit, Evelina Children’s Hospital London, St Thomas’ Hospital, 6th Floor North Wing, Westminster Bridge Road, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Francesco Padormo
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Medical Physics, Guy’s & St. Thomas' NHS Foundation Trust, London, UK
- Hyperfine, Inc., 351 New Whitfield St., Guilford, Connecticut 06437, USA
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neonatal Intensive Care Unit, Evelina Children’s Hospital London, St Thomas’ Hospital, 6th Floor North Wing, Westminster Bridge Road, London SE1 7EH, UK
| | - Jennifer Almalbis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neonatal Intensive Care Unit, Evelina Children’s Hospital London, St Thomas’ Hospital, 6th Floor North Wing, Westminster Bridge Road, London SE1 7EH, UK
| | - Massimo Marenzana
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Rui Teixeira
- Hyperfine, Inc., 351 New Whitfield St., Guilford, Connecticut 06437, USA
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Steven C.R. Williams
- Centre for Neuroimaging Sciences, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
- Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Mary A. Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Joseph V. Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - A. David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neonatal Intensive Care Unit, Evelina Children’s Hospital London, St Thomas’ Hospital, 6th Floor North Wing, Westminster Bridge Road, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| |
Collapse
|