1
|
Wang X, Li Y, Hou X, Li J, Ma X. Lipid metabolism reprogramming in endometrial cancer: biological functions and therapeutic implications. Cell Commun Signal 2024; 22:436. [PMID: 39256811 PMCID: PMC11385155 DOI: 10.1186/s12964-024-01792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Endometrial cancer is one of the major gynecological cancers, with increasing incidence and mortality in the past decades. Emerging preclinical and clinical data have indicated its close association with obesity and dyslipidemia. Metabolism reprogramming has been considered as the hallmark of cancer, to satisfy the extensive need of nutrients and energy for survival and growth. Particularly, lipid metabolism reprogramming has aroused the researchers' interest in the field of cancer, including tumorigenesis, invasiveness, metastasis, therapeutic resistance and immunity modulation, etc. But the roles of lipid metabolism reprogramming in endometrial cancer have not been fully understood. This review has summarized how lipid metabolism reprogramming induces oncogenesis and progression of endometrial cancer, including the biological functions of aberrant lipid metabolism pathway and altered transcription regulation of lipid metabolism pathway. Besides, we proposed novel therapeutic strategies of targeting lipid metabolism pathway and concentrated on its potential of sensitizing immunotherapy and hormonal therapy, to further optimize the existing treatment modalities of patients with advanced/metastatic endometrial cancer. Moreover, we expect that targeting lipid metabolism plus hormone therapy may block the endometrial malignant transformation and enrich the preventative approaches of endometrial cancer. CONCLUSION Lipid metabolism reprogramming plays an important role in tumor initiation and cancer progression of endometrial cancer. Targeting the core enzymes and transcriptional factors of lipid metabolism pathway alone or in combination with immunotherapy/hormone treatment is expected to decrease the tumor burden and provide promising treatment opportunity for patients with advanced/metastatic endometrial cancer.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Xin Hou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Jingfang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
2
|
Sun S, Qi G, Chen H, He D, Ma D, Bie Y, Xu L, Feng B, Pang Q, Guo H, Zhang R. Ferroptosis sensitization in glioma: exploring the regulatory mechanism of SOAT1 and its therapeutic implications. Cell Death Dis 2023; 14:754. [PMID: 37980334 PMCID: PMC10657441 DOI: 10.1038/s41419-023-06282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Glioma, the most common primary malignant tumor of the central nervous system, lacks effective targeted therapies. This study investigates the role of SOAT1, a key gene involved in cholesterol esterification, in glioma prognosis and its association with ferroptosis. Although the impact of SOAT1 on glioma prognosis has been recognized, its precise mechanism remains unclear. In this study, we demonstrate that inhibiting SOAT1 increases the sensitivity of glioma cells to ferroptosis, both in vitro and in vivo. Mechanistically, SOAT1 positively modulates the expression of SLC40A1, an iron transporter, resulting in enhanced intracellular iron outflow, reduced intracellular iron levels, and subsequent disruption of ferroptosis. Importantly, we find that SOAT1 regulates ferroptosis independently of SREBPs, which are known to be involved in ferroptosis regulation. Furthermore, we identify the involvement of the PI3K-AKT-mTOR signaling pathway in mediating the regulatory effects of SOAT1 on SLC40A1 expression and ferroptosis sensitivity. These findings highlight the contribution of intracellular signaling cascades in the modulation of ferroptosis by SOAT1. We show that inhibiting SOAT1 enhances the efficacy of radiotherapy in gliomas, both in vitro and in vivo, by promoting sensitivity to ferroptosis. This suggests that targeting SOAT1 could potentially improve therapeutic outcomes for glioma patients. In summary, this study uncovers the pivotal role of SOAT1 as a link between cholesterol esterification and ferroptosis in glioma. Our findings underscore the potential of SOAT1 as a promising clinical therapeutic target, providing new avenues for the development of effective treatments for glioma. Further research is warranted to unravel the complete regulatory mechanisms of SOAT1 and explore its clinical applications.
Collapse
Affiliation(s)
- Shicheng Sun
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Guoliang Qi
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hao Chen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Dengzhen Ma
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Yifan Bie
- Department of Radiology, The Second Hospital, Shandong University, Jinan, China
| | - Linzong Xu
- Tumor Research and Therapy Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Bin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
3
|
Tu T, Zhang H, Xu H. Targeting sterol-O-acyltransferase 1 to disrupt cholesterol metabolism for cancer therapy. Front Oncol 2023; 13:1197502. [PMID: 37409263 PMCID: PMC10318190 DOI: 10.3389/fonc.2023.1197502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Cholesterol esterification is often dysregulated in cancer. Sterol O-acyl-transferase 1 (SOAT1) plays an important role in maintaining cellular cholesterol homeostasis by catalyzing the formation of cholesterol esters from cholesterol and long-chain fatty acids in cells. Many studies have implicated that SOAT1 plays a vital role in cancer initiation and progression and is an attractive target for novel anticancer therapy. In this review, we provide an overview of the mechanism and regulation of SOAT1 in cancer and summarize the updates of anticancer therapy targeting SOAT1.
Collapse
Affiliation(s)
- Teng Tu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
HUANG YANGQING, ZHOU XINLAN, LI XIUFEN, HUANG DAN, FANG ZHONG, DING RONGRONG. A pan-cancer analysis identifies SOAT1 as an immunological and prognostic biomarker. Oncol Res 2023; 31:193-205. [PMID: 37304239 PMCID: PMC10207962 DOI: 10.32604/or.2023.027112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/17/2023] [Indexed: 06/13/2023] Open
Abstract
Sterol o-acyltransferase1 (SOAT1) is an enzyme that regulates lipid metabolism. Nevertheless, the predictive value of SOAT1 regarding immune responses in cancer is not fully understood. Herein, we aimed to expound the predictive value and the potential biological functions of SOAT1 in pan-cancer. Raw data related to SOAT1 expression in 33 different types of cancer were acquired from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. SOAT1 expression was significantly increased in most cancers and showed a distinct correlation with prognosis. This enhanced expression of the SOAT1 gene was confirmed by evaluating SOAT1 protein expression using tissue microarrays. In addition, we found significant positive associations between SOAT1 expression levels and infiltrating immune cells, including T cells, neutrophils, and macrophages. Moreover, the co-expression analysis between SOAT1 and immune genes showed that many immune-related genes were increased with enhanced SOAT1 expression. A gene set enrichment analysis (GSEA) revealed that the expression of SOAT1 correlated with the tumor microenvironment, adaptive immune response, interferon signaling, and cytokine signaling. These findings indicate that SOAT1 is a potential candidate marker for predicting prognosis and a promising target for tumor immunotherapy in cancers.
Collapse
Affiliation(s)
- YANGQING HUANG
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Hepatobiliary Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - XINLAN ZHOU
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - XIUFEN LI
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - DAN HUANG
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - ZHONG FANG
- Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - RONGRONG DING
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Xiao Y, Huang Y, Jiang J, Chen Y, Wei C. Identification of the prognostic value of Th1/Th2 ratio and a novel prognostic signature in basal-like breast cancer. Hereditas 2023; 160:2. [PMID: 36694223 PMCID: PMC9875389 DOI: 10.1186/s41065-023-00265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous group of diseases. The polarization of CD4+ T helper (Th) lymphocytes (mainly Th1 and Th2) may differ in breast cancers with different outcomes, but this has not been fully validated. METHODS This study is a bioinformatic analysis, in which differentially expressed genes (DEGs) were identified in patients with low and high Th1/Th2 ratios. And then, DEG functions, hub genes and independent predictors were determined. RESULTS Low Th1/Th2 ratio was associated with poor outcome in Luminal A and basal-like breast cancer (p < 0.05). GSEA and KEGG analysis of DEGs obtained from comparing low and high Th1/Th2 ratios illuminated downregulation of immune-related gene sets and pathways affecting Th1/Th2 balance toward Th2 polarization (p < 0.05). Survival and Cox analyses of all the DEGs confirmed CCL1 and MYH6 were independent protective factors and IFNK and SOAT2 were independent risk factors for basal-like breast cancer (95%CI: 1.06-2.5, p = 0.026). Then a four-gene signature was constructed and achieved a promising prognostic value (C-index = 0.82; AUC = 0.826). CONCLUSIONS Low Th1/Th2 ratio predicts poor outcome in Luminal A and Basal-like breast cancer, and downregulation of immune-related gene sets and pathways contribute to Th1/Th2 balance toward Th2 polarization. CCL1, MYH6, IFNK, and SOAT2 have an independent prognostic value of survival outcome and might be novel markers in basal-like breast cancer.
Collapse
Affiliation(s)
- Yu Xiao
- grid.256607.00000 0004 1798 2653Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China ,grid.452847.80000 0004 6068 028XDepartment of Thyroid and Breast Surgery, Shenzhen Second People’s Hospital, Shenzhen, Guangdong China
| | - Yi Huang
- grid.256607.00000 0004 1798 2653Department of Research, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China
| | - Jianping Jiang
- grid.256607.00000 0004 1798 2653Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China
| | - Yan Chen
- grid.256607.00000 0004 1798 2653Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China
| | - Changyuan Wei
- grid.256607.00000 0004 1798 2653Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi China
| |
Collapse
|
6
|
Kou Y, Geng F, Guo D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines 2022; 10:1943. [PMID: 36009491 PMCID: PMC9405736 DOI: 10.3390/biomedicines10081943] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor. With limited therapeutic options, novel therapies are desperately needed. Recent studies have shown that GBM acquires large amounts of lipids for rapid growth through activation of sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor that regulates fatty acid and cholesterol synthesis, and cholesterol uptake. Interestingly, GBM cells divert substantial quantities of lipids into lipid droplets (LDs), a specific storage organelle for neutral lipids, to prevent lipotoxicity by increasing the expression of diacylglycerol acyltransferase 1 (DGAT1) and sterol-O-acyltransferase 1 (SOAT1), which convert excess fatty acids and cholesterol to triacylglycerol and cholesteryl esters, respectively. In this review, we will summarize recent progress on our understanding of lipid metabolism regulation in GBM to promote tumor growth and discuss novel strategies to specifically induce lipotoxicity to tumor cells through disrupting lipid storage, a promising new avenue for treating GBM.
Collapse
Affiliation(s)
- Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
8
|
Sun JX, Liu CQ, Zhong XY, Xu JZ, An Y, Xu MY, Hu J, Zhang ZB, Xia QD, Wang SG. Statin Use and the Risk of Prostate Cancer Biochemical Recurrence Following Definitive Therapy: A Systematic Review and Meta-Analysis of Cohort Studies. Front Oncol 2022; 12:887854. [PMID: 35615153 PMCID: PMC9124863 DOI: 10.3389/fonc.2022.887854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Numerous studies have reported the role of statins on biochemical recurrence (BCR) among patients with prostate cancer (PCa) after definite treatment. However, the conclusions of these studies are contradictory. We aimed to determine the effect of statins on BCR of PCa using a systematic review and meta-analysis. Methods We searched PubMed (Medline) and other databases for cohort studies evaluating the effect of statins on the BCR of patients with PCa between January 1, 2000, and December 31, 2021. The random effects (RE) model and quality effects (QE) model were used to calculate the pooled hazard ratio (pHR) and pooled risk ratio (pRR) and their 95% confidence interval (95% CI). Results A total of 33 cohort studies were finally selected and included in this systematic review and meta-analysis. Statin use was significantly associated with a 14% reduction in the HR of BCR (pHR: 0.86, 95% CI: 0.78 to 0.95, I2 = 64%, random effects model, 31 studies) and a 26% reduction in the RR of BCR (pRR: 0.74, 95% CI: 0.57 to 0.94, 24,591 patients, I2 = 88%, random effects model, 15 studies) among patients with PCa. The subgroup analyses showed that statins could result in 22% reduction in the HR of BCR (pHR: 0.78, 95% CI: 0.61 to 0.98, I2 = 57%, random effects model) among patients accepting radiotherapy (RT). Conclusions Our study suggests that statins have a unique role in the reduction of BCR in patients with PCa after definite treatment, especially RT. In the future, more clinical trials and in vitro and animal experiments are needed to further verify the effects of statins in PCa and the potential mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zong-Biao Zhang
- *Correspondence: Zong-Biao Zhang, ; Qi-Dong Xia, ; Shao-Gang Wang,
| | - Qi-Dong Xia
- *Correspondence: Zong-Biao Zhang, ; Qi-Dong Xia, ; Shao-Gang Wang,
| | - Shao-Gang Wang
- *Correspondence: Zong-Biao Zhang, ; Qi-Dong Xia, ; Shao-Gang Wang,
| |
Collapse
|
9
|
Löhr M, Härtig W, Schulze A, Kroiß M, Sbiera S, Lapa C, Mages B, Strobel S, Hundt JE, Bohnert S, Kircher S, Janaki-Raman S, Monoranu CM. SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma? Int J Mol Sci 2022; 23:ijms23073726. [PMID: 35409086 PMCID: PMC8998855 DOI: 10.3390/ijms23073726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages.
Collapse
Affiliation(s)
- Mario Löhr
- Department of Neurosurgery, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany;
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Matthias Kroiß
- Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany;
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, 86156 Augsburg, Germany;
| | - Bianca Mages
- Institute for Anatomy, University of Leipzig, 04103 Leipzig, Germany;
| | - Sabrina Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany; (S.S.); (S.K.)
| | | | - Simone Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Stefan Kircher
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany; (S.S.); (S.K.)
| | - Sudha Janaki-Raman
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany; (S.S.); (S.K.)
- Correspondence: ; Tel.: +49-931-3181184
| |
Collapse
|
10
|
Raftopulos NL, Washaya TC, Niederprüm A, Egert A, Hakeem-Sanni MF, Varney B, Aishah A, Georgieva ML, Olsson E, Dos Santos DZ, Nassar ZD, Cochran BJ, Nagarajan SR, Kakani MS, Hastings JF, Croucher DR, Rye KA, Butler LM, Grewal T, Hoy AJ. Prostate cancer cell proliferation is influenced by LDL-cholesterol availability and cholesteryl ester turnover. Cancer Metab 2022; 10:1. [PMID: 35033184 PMCID: PMC8760736 DOI: 10.1186/s40170-021-00278-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prostate cancer growth is driven by androgen receptor signaling, and advanced disease is initially treatable by depleting circulating androgens. However, prostate cancer cells inevitably adapt, resulting in disease relapse with incurable castrate-resistant prostate cancer. Androgen deprivation therapy has many side effects, including hypercholesterolemia, and more aggressive and castrate-resistant prostate cancers typically feature cellular accumulation of cholesterol stored in the form of cholesteryl esters. As cholesterol is a key substrate for de novo steroidogenesis in prostate cells, this study hypothesized that castrate-resistant/advanced prostate cancer cell growth is influenced by the availability of extracellular, low-density lipoprotein (LDL)-derived, cholesterol, which is coupled to intracellular cholesteryl ester homeostasis. METHODS C4-2B and PC3 prostate cancer cells were cultured in media supplemented with fetal calf serum (FCS), charcoal-stripped FCS (CS-FCS), lipoprotein-deficient FCS (LPDS), or charcoal-stripped LPDS (CS-LPDS) and analyzed by a variety of biochemical techniques. Cell viability and proliferation were measured by MTT assay and Incucyte, respectively. RESULTS Reducing lipoprotein availability led to a reduction in cholesteryl ester levels and cell growth in C4-2B and PC3 cells, with concomitant reductions in PI3K/mTOR and p38MAPK signaling. This reduced growth in LPDS-containing media was fully recovered by supplementation of exogenous low-density lipoprotein (LDL), but LDL only partially rescued growth of cells cultured with CS-LPDS. This growth pattern was not associated with changes in androgen receptor signaling but rather increased p38MAPK and MEK1/ERK/MSK1 activation. The ability of LDL supplementation to rescue cell growth required cholesterol esterification as well as cholesteryl ester hydrolysis activity. Further, growth of cells cultured in low androgen levels (CS-FCS) was suppressed when cholesteryl ester hydrolysis was inhibited. CONCLUSIONS Overall, these studies demonstrate that androgen-independent prostate cancer cell growth can be influenced by extracellular lipid levels and LDL-cholesterol availability and that uptake of extracellular cholesterol, through endocytosis of LDL-derived cholesterol and subsequent delivery and storage in the lipid droplet as cholesteryl esters, is required to support prostate cancer cell growth. This provides new insights into the relationship between extracellular cholesterol, intracellular cholesterol metabolism, and prostate cancer cell growth and the potential mechanisms linking hypercholesterolemia and more aggressive prostate cancer.
Collapse
Affiliation(s)
- Nikki L Raftopulos
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tinashe C Washaya
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andreas Niederprüm
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Ruprecht Karl University of Heidelberg, Baden-Wuerttemberg, Heidelberg, Germany
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bianca Varney
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Atqiya Aishah
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariya L Georgieva
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellinor Olsson
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Diandra Z Dos Santos
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Zeyad D Nassar
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Meghna S Kakani
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|