1
|
Alvi MA, Pedro KM, Quddusi AI, Fehlings MG. Advances and Challenges in Spinal Cord Injury Treatments. J Clin Med 2024; 13:4101. [PMID: 39064141 PMCID: PMC11278467 DOI: 10.3390/jcm13144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that is associated with long-term physical and functional disability. Our understanding of the pathogenesis of SCI has evolved significantly over the past three decades. In parallel, significant advances have been made in optimizing the management of patients with SCI. Early surgical decompression, adequate bony decompression and expansile duraplasty are surgical strategies that may improve neurological and functional outcomes in patients with SCI. Furthermore, advances in the non-surgical management of SCI have been made, including optimization of hemodynamic management in the critical care setting. Several promising therapies have also been investigated in pre-clinical studies, with some being translated into clinical trials. Given the recent interest in advancing precision medicine, several investigations have been performed to delineate the role of imaging, cerebral spinal fluid (CSF) and serum biomarkers in predicting outcomes and curating individualized treatment plans for SCI patients. Finally, technological advancements in biomechanics and bioengineering have also found a role in SCI management in the form of neuromodulation and brain-computer interfaces.
Collapse
Affiliation(s)
- Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Karlo M. Pedro
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ayesha I. Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
2
|
Wang Y, Ding Y, Guo C. Mesenchymal Stem Cells for the Treatment of Spinal Cord Injury in Rat Models: A Systematic Review and Network Meta-Analysis. Cell Transplant 2024; 33:9636897241262992. [PMID: 38910431 PMCID: PMC11265244 DOI: 10.1177/09636897241262992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/25/2024] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) is one of the hopeful treatments for spinal cord injury (SCI). Most current studies are in animals, and less in humans, and the optimal transplantation strategy for MSCs is still controversial. In this article, we explore the optimal transplantation strategy of MSCs through a network meta-analysis of the effects of MSCs on SCI in animal models. PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), and Chinese Biomedical Literature Service System (SinoMed) databases were searched by computer for randomized controlled studies on MSCs for SCI. Two investigators independently completed the literature screening and data extraction based on the inclusion and exclusion criteria. RevMan 5.4 software was used to assess the quality of the included literature. Stata 16.0 software was used for standard meta-analysis and network meta-analysis. Standardized mean difference (SMD) was used for continuous variables to combine the statistics and calculate 95% confidence interval (95% CI). P < 0.05 was considered a statistically significant difference. Cochrane's Q test and the I2 value were used to indicate the magnitude of heterogeneity. A random-effects model was used if I2 > 50% and P < 0.10 indicated significant heterogeneity between studies, and conversely, a fixed-effects model was used. Evidence network diagrams were drawn based on direct comparisons between various interventions. The surface under the cumulative ranking curve area (SUCRA) was used to predict the ranking of the treatment effects of each intervention. A total of 32 animal studies were included in this article for analysis. The results of the standard meta-analysis showed that MSCs improved motor ability after SCI. The network meta-analysis showed that the best treatment effect was achieved for adipose tissue-derived mesenchymal stromal cells (ADMSCs) in terms of cell source and intrathecal (IT) in terms of transplantation modality. For transplantation timing, the best treatment effect was achieved when transplantation was performed in the subacute phase. The available literature suggests that IT transplantation using ADMSCs in the subacute phase may be the best transplantation strategy to improve functional impairment after SCI. Future high-quality studies are still needed to further validate the results of this study to ensure the reliability of the results.
Collapse
Affiliation(s)
- Yueying Wang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenchen Guo
- Department of Rehabilitation Medicine, Neck, Shoulder, Lumbago and Leg Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Siddiqui AM, Thiele F, Stewart RN, Rangnick S, Weiss GJ, Chen BK, Silvernail JL, Strickland T, Nesbitt JJ, Lim K, Schwarzbauer JE, Schwartz J, Yaszemski MJ, Windebank AJ, Madigan NN. Open-Spaced Ridged Hydrogel Scaffolds Containing TiO 2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury. Int J Mol Sci 2023; 24:10250. [PMID: 37373396 DOI: 10.3390/ijms241210250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50-120 cells/mm2 in all conditions), scarring (5-10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10-20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Frederic Thiele
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Rachel N Stewart
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Simone Rangnick
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Georgina J Weiss
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 90419 Nuremberg, Germany
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tammy Strickland
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | | | - Kelly Lim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey Schwartz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
4
|
Liu G, Zhao Z, Wang H, Hao C, Wang W, Zhang C, Wang T, Li X, Xi J, Li S, Long H, Mi Y, Miao L, Chen Y, Xu L, Zheng L, Wang H, Ding N, Zhu F, Ge Q, Liu Y. Therapeutic Efficacy of Human Mesenchymal Stem Cells With Different Delivery Route and Dosages in Rat Models of Spinal Cord Injury. Cell Transplant 2022; 31:9636897221139734. [PMID: 36448598 PMCID: PMC9716590 DOI: 10.1177/09636897221139734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recent studies have shown that the use of mesenchymal stem/stromal cells (MSCs) may be a promising strategy for treating spinal cord injury (SCI). This study aimed to explore the effectiveness of human umbilical cord-derived MSCs (hUC-MSCs) with different administration routes and dosages on SCI rats. Following T10-spinal cord contusion in Sprague-Dawley rats (N = 60), three different dosages of hUC-MSCs were intrathecally injected into rats (SCI-ITH) after 24 h. Intravenous injection of hUC-MSCs (SCI-i.v.) and methylprednisolone reagent (SCI-PC) were used as positive controls (N = 10/group). A SCI control group without treatment and a sham operation group were injected with Multiple Electrolyte Injection solution. The locomotor function was assessed by Basso Beattie Bresnahan (BBB) rating score, magnetic resonance imaging (MRI), histopathology, and immunofluorescence. ELISA was conducted to further analyze the nerve injury and inflammation in the rat SCI model. Following SCI, BBB scores were significantly lower in the SCI groups compared with the sham operation group, but all the treated groups showed the recovery of hind-limb motor function, and rats receiving the high-dose intrathecal injection of hUC-MSCs (SCI-ITH-H) showed improved outcomes compared with rats in hUC-MSCs i.v. and positive control groups. Magnetic resonance imaging revealed significant edema and spinal cord lesion in the SCI groups, and significant recovery was observed in the medium and high-dose hUC-MSCs ITH groups. Histopathological staining showed that the necrotic area in spinal cord tissue was significantly reduced in the hUC-MSCs ITH-H group, and the immunofluorescence staining confirmed the neuroprotection effect of hUC-MSCs infused on SCI rats. The increase of inflammatory cytokines was repressed in hUC-MSCs ITH-H group. Our results confirmed that hUC-MSC administered via intrathecal injection has dose-dependent neuroprotection effect in SCI rats.
Collapse
Affiliation(s)
- Guangyang Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Zhiling Zhao
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Herui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Chunhua Hao
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Weiting Wang
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Chenliang Zhang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Tiehua Wang
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xin Li
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Jingjing Xi
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Shaoyun Li
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Haomiao Long
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Yi Mi
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Li Miao
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Yaoyao Chen
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Liqiang Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Libo Zheng
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Hao Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Ning Ding
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Fengmei Zhu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Qinggang Ge
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China,Yongjun Liu, Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing 100176, China.
| |
Collapse
|
5
|
The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells 2021; 10:cells10112837. [PMID: 34831060 PMCID: PMC8616037 DOI: 10.3390/cells10112837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) is a devasting condition with no reliable treatment. Spina bifida is the most common cause of congenital SCI. Cell-based therapies using mesenchymal stem/stromal cells (MSCS) have been largely utilized in SCI. Several clinical trials for acquired SCI use adult tissue-derived MSC sources, including bone-marrow, adipose, and umbilical cord tissues. The first stem/stromal cell clinical trial for spina bifida is currently underway (NCT04652908). The trial uses early gestational placental-derived mesenchymal stem/stromal cells (PMSCs) during the fetal repair of myelomeningocele. PMSCs have been shown to exhibit unique neuroprotective, angiogenic, and antioxidant properties, all which are promising applications for SCI. This review will summarize the unique properties and current applications of PMSCs and discuss their therapeutic role for acquired SCI.
Collapse
|