Ely MR, Schleifer GD, Singh TK, Baggish AL, Taylor JA. Exercise Training Does Not Attenuate Cardiac Atrophy or Loss of Function in Individuals With Acute Spinal Cord Injury: A Pilot Study.
Arch Phys Med Rehabil 2023;
104:909-917. [PMID:
36572202 PMCID:
PMC10247388 DOI:
10.1016/j.apmr.2022.12.001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE
To investigate the effects of 2 modes of exercise training, upper-body alone, and the addition of electrical stimulation of the lower body, to attenuate cardiac atrophy and loss of function in individuals with acute spinal cord injury (SCI).
DESIGN
Randomized controlled trial.
SETTING
Rehabilitation Hospital.
PARTICIPANTS
Volunteers (N=27; 5 women, 22 men) who were <24 months post SCI.
INTERVENTIONS
Volunteers completed either 6 months of no structured exercise (Control), arm rowing (AO), or a combination of arm rowing with electrical stimulation of lower body paralyzed muscle (functional electrical stimulation [FES] rowing).
MAIN OUTCOME MEASURES
Transthoracic echocardiography was performed on each subject prior to and 6 months after the intervention. The relations between time since injury and exercise type to cardiac structure and function were assessed via 2-way repeated-measures analysis of variance and with multilevel linear regression.
RESULTS
Time since injury was significantly associated with a continuous decline in cardiac structure and systolic function, specifically, a reduction in left ventricular mass (0.197 g/month; P=.049), internal diameter during systole (0.255 mm/month; P<.001), and diastole (0.217 mm/month; P=.019), as well as cardiac output (0.048 L/month, P=.019), and left ventricular percent shortening (0.256 %/month; P=.027). These associations were not differentially affected by exercise (Control vs AO vs FES, P>.05).
CONCLUSIONS
These results indicate that within the subacute phase of recovery from SCI there is a linear loss of left ventricular cardiac structure and systolic function that is not attenuated by current rehabilitative aerobic exercise practices. Reductions in cardiac structure and function may increase the risk of cardiovascular disease in individuals with SCI and warrants further interventions to prevent cardiac decline.
Collapse