1
|
Scheffler MS, Martin CA, Dietz V, Faraji AH, Sayenko DG. Synergistic implications of combinatorial rehabilitation approaches using spinal stimulation on therapeutic outcomes in spinal cord injury. Clin Neurophysiol 2024; 165:166-179. [PMID: 39033698 PMCID: PMC11325878 DOI: 10.1016/j.clinph.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this narrative review was to locate and assess recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. We sought to provide relevant knowledge of recent literature and advance understanding on outcomes reported, to better equip those working in neurorehabilitation and neuromodulation. METHODS Articles were selected and analyzed based on study approach, stimulation parameters, outcome measures, and presence of neurophysiological data to support findings. RESULTS This narrative review analyzed 44 recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. Our findings showed that limited research exists regarding such combinatorial approaches, particularly when considering modalities beyond activity-based training. There is also limited consistency in neurophysiological and quality of life outcomes. CONCLUSION Articles involving transcutaneous spinal cord stimulation or epidural spinal cord stimulation with other modalities are limited in the current body of literature. Authors noted variety in approach, sample size, and use of participant perspective. Opportunities are present to add high quality research to this body of literature. SIGNIFICANCE Transcutaneous spinal cord stimulation and epidural spinal cord stimulation are emerging in research as viable avenues for targeting improvement of function after traumatic spinal cord injury, particularly when combined with activity-based training. This body of literature demonstrates viable areas for growth from both neurophysiological and functional perspectives. Further, exploration of novel combinatorial approaches holds potential to offer enhanced contributions to clinical and neurophysiological rehabilitation and research.
Collapse
Affiliation(s)
- Michelle S Scheffler
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Catherine A Martin
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Valerie Dietz
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Gadot R, Smith DN, Prablek M, Grochmal JK, Fuentes A, Ropper AE. Established and Emerging Therapies in Acute Spinal Cord Injury. Neurospine 2022; 19:283-296. [PMID: 35793931 PMCID: PMC9260540 DOI: 10.14245/ns.2244176.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Acute spinal cord injury (SCI) is devastating for patients and their caretakers and has an annual incidence of 20–50 per million people. Following initial assessment with appropriate physical examination and imaging, patients who are deemed surgical candidates should undergo decompression with stabilization. Earlier intervention can improve neurological recovery in the post-operative period while allowing earlier mobilization. Optimized medical management is paramount to improve outcomes. Emerging strategies for managing SCI in the acute period stem from an evolving understanding of the pathophysiology of the injury. General areas of focus include ischemia prevention, reduction of secondary injury due to inflammation, modulation of the cytotoxic and immune response, and promotion of cellular regeneration. In this article, we review established, emerging, and novel experimental therapies. Continued translational research on these methods will improve the feasibility of bench-to-bedside innovations in treating patients with acute SCI.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - David N. Smith
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Marc Prablek
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Joey K. Grochmal
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Alfonso Fuentes
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Alexander E. Ropper
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Corresponding Author Alexander E. Ropper Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge St. Suite 9A, Houston, TX, USA
| |
Collapse
|
3
|
Wang TY, Park C, Zhang H, Rahimpour S, Murphy KR, Goodwin CR, Karikari IO, Than KD, Shaffrey CI, Foster N, Abd-El-Barr MM. Management of Acute Traumatic Spinal Cord Injury: A Review of the Literature. Front Surg 2021; 8:698736. [PMID: 34966774 PMCID: PMC8710452 DOI: 10.3389/fsurg.2021.698736] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022] Open
Abstract
Traumatic spinal cord injury (TSCI) is a debilitating disease that poses significant functional and economic burden on both the individual and societal levels. Prognosis is dependent on the extent of the spinal injury and the severity of neurological dysfunction. If not treated rapidly, patients with TSCI can suffer further secondary damage and experience escalating disability and complications. It is important to quickly assess the patient to identify the location and severity of injury to make a decision to pursue a surgical and/or conservative management. However, there are many conditions that factor into the management of TSCI patients, ranging from the initial presentation of the patient to long-term care for optimal recovery. Here, we provide a comprehensive review of the etiologies of spinal cord injury and the complications that may arise, and present an algorithm to aid in the management of TSCI.
Collapse
Affiliation(s)
- Timothy Y Wang
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Christine Park
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Hanci Zhang
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, United States
| | - Shervin Rahimpour
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Kelly R Murphy
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - C Rory Goodwin
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Isaac O Karikari
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Khoi D Than
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Christopher I Shaffrey
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Norah Foster
- Premier Orthopedics, Centerville, OH, United States
| | - Muhammad M Abd-El-Barr
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
4
|
Cajigas I, Vedantam A. Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury. Neurosurg Clin N Am 2021; 32:407-417. [PMID: 34053728 DOI: 10.1016/j.nec.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As neural bypass interfacing, neuromodulation, and neurorehabilitation continue to evolve, there is growing recognition that combination therapies may achieve superior results. This article briefly introduces these broad areas of active research and lays out some of the current evidence for their use for patients with spinal cord injury.
Collapse
Affiliation(s)
- Iahn Cajigas
- Department of Neurosurgery, University of Miami, 1095 Northwest 14th Terrace (D4-6), Miami, FL 33136, USA.
| | - Aditya Vedantam
- Department of Neurosurgery, University of Miami, 1095 Northwest 14th Terrace (D4-6), Miami, FL 33136, USA
| |
Collapse
|
5
|
Huang H, Chen L, Chopp M, Young W, Robert Bach J, He X, Sarnowaska A, Xue M, Chunhua Zhao R, Shetty A, Siniscalco D, Guo X, Khoshnevisan A, Hawamdeh Z. The 2020 Yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2021; 9:1-12. [PMID: 37387779 PMCID: PMC10289216 DOI: 10.26599/jnr.2021.9040002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 09/23/2023] Open
Abstract
COVID-19 has been an emerging and rapidly evolving risk to people of the world in 2020. Facing this dangerous situation, many colleagues in Neurorestoratology did their best to avoid infection if themselves and their patients, and continued their work in the research areas described in the 2020 Yearbook of Neurorestoratology. Neurorestorative achievements and progress during 2020 includes recent findings on the pathogenesis of neurological diseases, neurorestorative mechanisms and clinical therapeutic achievements. Therapeutic progress during this year included advances in cell therapies, neurostimulation/neuromodulation, brain-computer interface (BCI), and pharmaceutical neurorestorative therapies, which improved neurological functions and quality of life for patients. Four clinical guidelines or standards of Neurorestoratology were published in 2020. Milestone examples include: 1) a multicenter randomized, double-blind, placebo-controlled study of olfactory ensheathing cell treatment of chronic stroke showed functional improvements; 2) patients after transhumeral amputation experienced increased sensory acuity and had improved effectiveness in work and other activities of daily life using a prosthesis; 3) a patient with amyotrophic lateral sclerosis used a steady-state visual evoked potential (SSVEP)-based BCI to achieve accurate and speedy computer input; 4) a patient with complete chronic spinal cord injury recovered both motor function and touch sensation with a BCI and restored ability to detect objects by touch and several sensorimotor functions. We hope these achievements motivate and encourage other scientists and physicians to increase neurorestorative research and its therapeutic applications.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, 100143, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine Beijing, Beijing, 100007, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Wise Young
- Department of Cell Biochemistry and Neuroscience, Rutgers University, New Jersey, USA
| | - John Robert Bach
- Center for Ventilator Management Alternatives, University Hospital, Newark, New Jersey, USA
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Anna Sarnowaska
- Translational Platform for Regenerative Medicine & Cell Therapy Team of The Central Nervous System Diseases, Polish Academy of Sciences, Warsaw, Poland
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury, Zhengzhou, 450001, Henan, China
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Ashok Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, USA
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli" via S. Maria di Costantinopoli, 16 80138, Naples, Italy
| | - Xiaoling Guo
- Neurological Center, The 981 Hospital of PLA, Chengde, 067000, Hebei, China
| | | | - Ziad Hawamdeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Alexander M. Enabling Health Equity for persons with disability due to spinal cord injury. Spinal Cord Ser Cases 2020; 6:100. [PMID: 33173038 PMCID: PMC7653664 DOI: 10.1038/s41394-020-00351-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/04/2022] Open
|