1
|
Bulka O, Picott K, Mahadevan R, Edwards EA. From mec cassette to rdhA: a key Dehalobacter genomic neighborhood in a chloroform and dichloromethane-transforming microbial consortium. Appl Environ Microbiol 2024; 90:e0073224. [PMID: 38819127 PMCID: PMC11218628 DOI: 10.1128/aem.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Chloroform (CF) and dichloromethane (DCM) are groundwater contaminants of concern due to their high toxicity and inhibition of important biogeochemical processes such as methanogenesis. Anaerobic biotransformation of CF and DCM has been well documented but typically independently of one another. CF is the electron acceptor for certain organohalide-respiring bacteria that use reductive dehalogenases (RDases) to dechlorinate CF to DCM. In contrast, known DCM degraders use DCM as their electron donor, which is oxidized using a series of methyltransferases and associated proteins encoded by the mec cassette to facilitate the entry of DCM to the Wood-Ljungdahl pathway. The SC05 culture is an enrichment culture sold commercially for bioaugmentation, which transforms CF via DCM to CO2. This culture has the unique ability to dechlorinate CF to DCM using electron equivalents provided by the oxidation of DCM to CO2. Here, we use metagenomic and metaproteomic analyses to identify the functional genes involved in each of these transformations. Though 91 metagenome-assembled genomes were assembled, the genes for an RDase-named acdA-and a complete mec cassette were found to be encoded on a single contig belonging to Dehalobacter. AcdA and critical Mec proteins were also highly expressed by the culture. Heterologously expressed AcdA dechlorinated CF and other chloroalkanes but had 100-fold lower activity on DCM. Overall, the high expression of Mec proteins and the activity of AcdA suggest a Dehalobacter capable of dechlorination of CF to DCM and subsequent mineralization of DCM using the mec cassette. IMPORTANCE Chloroform (CF) and dichloromethane (DCM) are regulated groundwater contaminants. A cost-effective approach to remove these pollutants from contaminated groundwater is to employ microbes that transform CF and DCM as part of their metabolism, thus depleting the contamination as the microbes continue to grow. In this work, we investigate bioaugmentation culture SC05, a mixed microbial consortium that effectively and simultaneously degrades both CF and DCM coupled to the growth of Dehalobacter. We identified the functional genes responsible for the transformation of CF and DCM in SC05. These genetic biomarkers provide a means to monitor the remediation process in the field.
Collapse
Affiliation(s)
- Olivia Bulka
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Picott
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Exchange of Vitamin B 1 and Its Biosynthesis Intermediates Shapes the Composition of Synthetic Microbial Cocultures and Reveals Complexities of Nutrient Sharing. J Bacteriol 2022; 204:e0050321. [PMID: 35357164 DOI: 10.1128/jb.00503-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Microbial communities occupy diverse niches in nature, and community members routinely exchange a variety of nutrients among themselves. While large-scale metagenomic and metabolomic studies shed some light on these exchanges, the contribution of individual species and the molecular details of specific interactions are difficult to track. In this study, we follow the exchange of vitamin B1 (thiamin) and its intermediates between microbes within synthetic cocultures of Escherichia coli and Vibrio anguillarum. Thiamin contains two moieties, 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 4-methyl-5-(2-hydroxyethyl)thiazole (THZ), which are synthesized by distinct pathways using enzymes ThiC and ThiG, respectively, and then coupled by ThiE to form thiamin. Even though E. coli ΔthiC, ΔthiE, and ΔthiG mutants are thiamin auxotrophs, we observed that cocultures of ΔthiC-ΔthiE and ΔthiC-ΔthiG mutants are able to grow in a thiamin-deficient medium, whereas the ΔthiE-ΔthiG coculture does not. Further, the exchange of thiamin and its intermediates in V. anguillarum cocultures and in mixed cocultures of V. anguillarum and E. coli revealed that there exist specific patterns for thiamin metabolism and exchange among these microbes. Our findings show that HMP is shared more frequently than THZ, concurrent with previous observations that free HMP and HMP auxotrophy is commonly found in various environments. Furthermore, we observe that the availability of exogenous thiamin in the media affects whether these strains interact with each other or grow independently. These findings collectively underscore the importance of the exchange of essential metabolites as a defining factor in building and modulating synthetic or natural microbial communities. IMPORTANCE Vitamin B1 (thiamin) is an essential nutrient for cellular metabolism. Microorganisms that are unable to synthesize thiamin either fully or in part exogenously obtain it from their environment or via exchanges with other microbial members in their community. In this study, we created synthetic microbial cocultures that rely on sharing thiamin and its biosynthesis intermediates and observed that some of them are preferentially exchanged. We also observed that the coculture composition is dictated by the production and/or availability of thiamin and its intermediates. Our studies with synthetic cocultures provide the molecular basis for understanding thiamin sharing among microorganisms and lay out broad guidelines for setting up synthetic microbial cocultures by using the exchange of an essential metabolite as their foundation.
Collapse
|
3
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|
4
|
Giannari D, Ho CH, Mahadevan R. A gap-filling algorithm for prediction of metabolic interactions in microbial communities. PLoS Comput Biol 2021; 17:e1009060. [PMID: 34723959 PMCID: PMC8584699 DOI: 10.1371/journal.pcbi.1009060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/11/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The study of microbial communities and their interactions has attracted the interest of the scientific community, because of their potential for applications in biotechnology, ecology and medicine. The complexity of interspecies interactions, which are key for the macroscopic behavior of microbial communities, cannot be studied easily experimentally. For this reason, the modeling of microbial communities has begun to leverage the knowledge of established constraint-based methods, which have long been used for studying and analyzing the microbial metabolism of individual species based on genome-scale metabolic reconstructions of microorganisms. A main problem of genome-scale metabolic reconstructions is that they usually contain metabolic gaps due to genome misannotations and unknown enzyme functions. This problem is traditionally solved by using gap-filling algorithms that add biochemical reactions from external databases to the metabolic reconstruction, in order to restore model growth. However, gap-filling algorithms could evolve by taking into account metabolic interactions among species that coexist in microbial communities. In this work, a gap-filling method that resolves metabolic gaps at the community level was developed. The efficacy of the algorithm was tested by analyzing its ability to resolve metabolic gaps on a synthetic community of auxotrophic Escherichia coli strains. Subsequently, the algorithm was applied to resolve metabolic gaps and predict metabolic interactions in a community of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, two species present in the human gut microbiota, and in an experimentally studied community of Dehalobacter and Bacteroidales species of the ACT-3 community. The community gap-filling method can facilitate the improvement of metabolic models and the identification of metabolic interactions that are difficult to identify experimentally in microbial communities.
Collapse
Affiliation(s)
- Dafni Giannari
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- The Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Yang MI, Previdsa M, Edwards EA, Sleep BE. Two distinct Dehalobacter strains sequentially dechlorinate 1,1,1-trichloroethane and 1,1-dichloroethane at a field site treated with granular zero valent iron and guar gum. WATER RESEARCH 2020; 186:116310. [PMID: 32858243 DOI: 10.1016/j.watres.2020.116310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated ethanes are environmental pollutants found frequently at many contaminated industrial sites. 1,1,1-Trichloroethane (1,1,1-TCA) can be dechlorinated and detoxified via abiotic transformation or biologically by the action of dechlorinating microorganisms such as Dehalobacter (Dhb). At a field site, it is challenging to distinguish abiotic vs. biotic mechanisms as both processes share common transformation products. In this study, we evaluated using the Dhb 16S rRNA gene and specific reductive dehalogenase genes as biomarkers for 1,1,1-TCA and 1,1-dichloroethane (1,1-DCA) dechlorination. We analyzed samples from laboratory groundwater microcosms and from an industrial site where a mixture of granular zero valent iron (ZVI) and guar gum was injected for 1,1,1-TCA remediation. Abiotic and biotic transformation products were monitored and the changes in dechlorinating organisms were tracked using quantitative PCR (qPCR) with primers targeting the Dhb 16S rRNA gene and two functional genes cfrA and dcrA encoding enzymes that dechlorinate 1,1,1-TCA to 1,1-DCA and 1,1-DCA to chloroethane (CA), respectively. The abundance of the cfrA- and dcrA-like genes confirmed that the two dechlorination steps were carried out by two distinct Dhb populations at the site. The biomarkers used in this study proved useful for monitoring different Dhb populations responsible for step-wise dechlorination and tracking biodegradation of 1,1,1-TCA and 1,1-DCA where both abiotic (e.g., with ZVI) and biotic processes co-occur.
Collapse
Affiliation(s)
- M Ivy Yang
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, M5S 1A4, Canada
| | - Michael Previdsa
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, M5S 1A4, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5, Canada.
| | - Brent E Sleep
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, M5S 1A4, Canada.
| |
Collapse
|
6
|
Murray A, Maillard J, Rolle M, Broholm M, Holliger C. Impact of iron- and/or sulfate-reduction on a cis-1,2-dichloroethene and vinyl chloride respiring bacterial consortium: experiments and model-based interpretation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:740-750. [PMID: 32003373 DOI: 10.1039/c9em00544g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Process understanding of microbial communities containing organohalide-respiring bacteria (OHRB) is important for effective bioremediation of chlorinated ethenes. The impact of iron and sulfate reduction on cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) dechlorination by a consortium containing the OHRB Dehalococcoides spp. was investigated using multiphase batch experiments. The OHRB consortium was found to contain endogenous iron- and sulfate-reducing bacteria (FeRB and SRB). A biogeochemical model was developed and used to quantify the mass transfer, aquatic geochemical, and microbial processes that occurred in the multiphase batch system. It was determined that the added SRB had the most significant impact on contaminant degradation. Addition of the SRB increased maximum specific substrate utilization rates, kmax, of cDCE and VC by 129% and 294%, respectively. The added FeRB had a slight stimulating effect on VC dechlorination when exogenous SRB were absent, but when cultured with the added SRB, FeRB moderated the SRB's stimulating effect. This study demonstrates that subsurface microbial community interactions are more complex than categorical, guild-based competition for resources such as electron donor.
Collapse
Affiliation(s)
- Alexandra Murray
- Department of Environmental Engineering, Technical University of Denmark, Bld 115, 2800 Lyngby, DK-2800, Denmark.
| | | | | | | | | |
Collapse
|
7
|
Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Löffler FE, O'Malley MA, García Martín H, Pfleger BF, Raskin L, Venturelli OS, Weissbrodt DG, Noguera DR, McMahon KD. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol 2019; 17:725-741. [PMID: 31548653 PMCID: PMC8323346 DOI: 10.1038/s41579-019-0255-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.
Collapse
Affiliation(s)
- Christopher E Lawson
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - William R Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | | | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee-Knoxville, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbra, CA, USA
- DOE Joint Bioenergy Institute, Emeryville, CA, USA
| | - Héctor García Martín
- DOE Joint Bioenergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
- Basque Center for Applied Mathematics, Bilbao, Spain
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ophelia S Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Daniel R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, Madison, WI, USA
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Murray AM, Ottosen CB, Maillard J, Holliger C, Johansen A, Brabæk L, Kristensen IL, Zimmermann J, Hunkeler D, Broholm MM. Chlorinated ethene plume evolution after source thermal remediation: Determination of degradation rates and mechanisms. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 227:103551. [PMID: 31526529 DOI: 10.1016/j.jconhyd.2019.103551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The extent, mechanism(s), and rate of chlorinated ethene degradation in a large tetrachloroethene (PCE) plume were investigated in an extensive sampling campaign. Multiple lines of evidence for this degradation were explored, including compound-specific isotope analysis (CSIA), dual C-Cl isotope analysis, and quantitative real-time polymerase chain reaction (qPCR) analysis targeting the genera Dehalococcoides and Dehalogenimonas and the genes vcrA, bvcA, and cerA. A decade prior to this sampling campaign, the plume source was thermally remediated by steam injection. This released dissolved organic carbon (DOC) that stimulated microbial activity and created reduced conditions within the plume. Based on an inclusive analysis of minor and major sampling campaigns since the initial site characterization, it was estimated that reduced conditions peaked 4 years after the remediation event. At the time of this study, 11 years after the remediation event, the redox conditions in the aquifer are returning to their original state. However, the DOC released from the remediated source zone matches levels measured 3 years prior and plume conditions are still suitable for biotic reductive dechlorination. Dehalococcoides spp., Dehalogenimonas spp., and vcrA, bvcA, and cerA reductive dehalogenase genes were detected close to the source, and suggest that complete, biotic PCE degradation occurs here. Further downgradient, qPCR analysis and enriched δ13C values for cis-dichloroethene (cDCE) suggest that cDCE is biodegraded in a sulfate-reducing zone in the plume. In the most downgradient portion of the plume, lower levels of specific degraders supported by dual C-Cl analysis indicate that the biodegradation occurs in combination with abiotic degradation. Additionally, 16S rRNA gene amplicon sequencing shows that organizational taxonomic units known to contain organohalide-respiring bacteria are relatively abundant throughout the plume. Hydraulic conductivity testing was also conducted, and local degradation rates for PCE and cDCE were determined at various locations throughout the plume. PCE degradation rates from sampling campaigns after the thermal remediation event range from 0.11 to 0.35 yr-1. PCE and cDCE degradation rates from the second to the third sampling campaigns ranged from 0.08 to 0.10 yr-1 and 0.01 to 0.07 yr-1, respectively. This is consistent with cDCE as the dominant daughter product in the majority of the plume and cDCE degradation as the time-limiting step. The extensive temporal and spatial analysis allowed for tracking the evolution of the plume and the lasting impact of the source remediation and illustrates that the multiple lines of evidence approach is essential to elucidate the primary degradation mechanisms in a plume of such size and complexity.
Collapse
Affiliation(s)
- Alexandra Marie Murray
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Cecilie B Ottosen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, ENAC-IIE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, ENAC-IIE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lærke Brabæk
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Inge Lise Kristensen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Jeremy Zimmermann
- Centre for Hydrogeology & Geothermics (CHYN), University of Neuchatel, Rue Emile Argand 11, CH 2000 Neuchatel, Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology & Geothermics (CHYN), University of Neuchatel, Rue Emile Argand 11, CH 2000 Neuchatel, Switzerland
| | - Mette M Broholm
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|