1
|
Qu R, Mao S, Wang X, Ren N. Nitrogen fate in riparian zones: Insights from experiments and analysis of sediment porosity and surface water-groundwater exchange. ENVIRONMENTAL RESEARCH 2024; 262:119914. [PMID: 39233031 DOI: 10.1016/j.envres.2024.119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Riparian zones play a vital role in the river ecosystem. Solutes in vertical riparian zones are transported being by alternating hydraulic gradients between river water and groundwater, due to natural or human activities. This study investigates the impacts of porous sediments and alternating rate of surface water-groundwater on nitrogen removal in the riparian zone through experiments based on the field sampled. The experimental results, combined with dimensionless numbers (Péclet and Damköhler) and Partial Least Squares-Path Modeling, analyze the nitrogen fate responding to hydrodynamics changes. The results show that increased sediment porosity contributes to the ammonium removal, particularly when the oxygen content of river water is low, with the removal rate up to 72.57%. High ammonium content and dissolved organic carbon (DOC) in rural rivers lead to a constant low-oxygen condition (4 mg/L) during surface water-groundwater alternation, and promote denitrification. This threatens groundwater with ammonium pollution and causes accumulation at the top of vertical riparian zones during upwelling, potentially causing secondary river pollution. However, increasing the alternating rate hinders the nitrate denitrification and drastically changes in the redox environment of the riparian zone, despite contributing to ammonium removal. Rapid oxygen consumption during aerobic metabolism and nitrification in groundwater-surface water exchange created favorable conditions for denitrification. Floodplains sediment porosity is unfavorable for nitrification. This study improves understanding of coupled hydrologic and solute processes in vertical riparian zones, informing strategies for optimizing nitrogen attenuation and riparian zone construction.
Collapse
Affiliation(s)
- Ruizhuo Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shuoyu Mao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
2
|
Ugolini GS, Wang M, Secchi E, Pioli R, Ackermann M, Stocker R. Microfluidic approaches in microbial ecology. LAB ON A CHIP 2024; 24:1394-1418. [PMID: 38344937 PMCID: PMC10898419 DOI: 10.1039/d3lc00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Microbial life is at the heart of many diverse environments and regulates most natural processes, from the functioning of animal organs to the cycling of global carbon. Yet, the study of microbial ecology is often limited by challenges in visualizing microbial processes and replicating the environmental conditions under which they unfold. Microfluidics operates at the characteristic scale at which microorganisms live and perform their functions, thus allowing for the observation and quantification of behaviors such as growth, motility, and responses to external cues, often with greater detail than classical techniques. By enabling a high degree of control in space and time of environmental conditions such as nutrient gradients, pH levels, and fluid flow patterns, microfluidics further provides the opportunity to study microbial processes in conditions that mimic the natural settings harboring microbial life. In this review, we describe how recent applications of microfluidic systems to microbial ecology have enriched our understanding of microbial life and microbial communities. We highlight discoveries enabled by microfluidic approaches ranging from single-cell behaviors to the functioning of multi-cellular communities, and we indicate potential future opportunities to use microfluidics to further advance our understanding of microbial processes and their implications.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Miaoxiao Wang
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
- Laboratory of Microbial Systems Ecology, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
3
|
Papadopoulos C, Larue AE, Toulouze C, Mokhtari O, Lefort J, Libert E, Assémat P, Swider P, Malaquin L, Davit Y. A versatile micromodel technology to explore biofilm development in porous media flows. LAB ON A CHIP 2024; 24:254-271. [PMID: 38059908 DOI: 10.1039/d3lc00293d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Bacterial biofilms that grow in porous media are critical to ecosystem processes and applications ranging from soil bioremediation to bioreactors for treating wastewater or producing value-added products. However, understanding and engineering the complex phenomena that drive the development of biofilms in such systems remains a challenge. Here we present a novel micromodel technology to explore bacterial biofilm development in porous media flows. The technology consists of a set of modules that can be combined as required for any given experiment and conveniently tuned for specific requirements. The core module is a 3D-printed micromodel where biofilm is grown into a perfusable porous substrate. High-precision additive manufacturing, in particular stereolithography, is used to fabricate porous scaffolds with precisely controlled architectures integrating flow channels with diameters down to several hundreds of micrometers. The system is instrumented with: ultraviolet-C light-emitting diodes; on-line measurements of oxygen consumption and pressure drop across the porous medium; camera and spectrophotometric cells for the detection of biofilm detachment events at the outlet. We demonstrate how this technology can be used to study the development of Pseudomonas aeruginosa biofilm for several days within a network of flow channels. We find complex dynamics whereby oxygen consumption reaches a steady-state but not the pressure drop, which instead features a permanent regime with large fluctuations. We further use X-ray computed microtomography to image the spatial distribution of biofilms and computational fluid dynamics to link biofilm development with local flow properties. By combining the advantages of additive manufacturing for the creation of reproducible 3D porous microarchitectures with the flow control and instrumentation accuracy of microfluidics, our system provides a platform to study the dynamics of biofilm development in 3D porous media and to rapidly test new concepts in process engineering.
Collapse
Affiliation(s)
- Christos Papadopoulos
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
- LAAS-CNRS, CNRS & Université de Toulouse, 31400 Toulouse, France
| | - Anne Edith Larue
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
- Transverse Lab, 271 rue des Fontaines, 31300 Toulouse, France
| | - Clara Toulouze
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Omar Mokhtari
- Physikalisches Institut, Universität Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
| | - Julien Lefort
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Emmanuel Libert
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Pauline Assémat
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Pascal Swider
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Laurent Malaquin
- LAAS-CNRS, CNRS & Université de Toulouse, 31400 Toulouse, France
| | - Yohan Davit
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| |
Collapse
|
4
|
Scheidweiler D, Bordoloi AD, Jiao W, Sentchilo V, Bollani M, Chhun A, Engel P, de Anna P. Spatial structure, chemotaxis and quorum sensing shape bacterial biomass accumulation in complex porous media. Nat Commun 2024; 15:191. [PMID: 38167276 PMCID: PMC10761857 DOI: 10.1038/s41467-023-44267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Biological tissues, sediments, or engineered systems are spatially structured media with a tortuous and porous structure that host the flow of fluids. Such complex environments can influence the spatial and temporal colonization patterns of bacteria by controlling the transport of individual bacterial cells, the availability of resources, and the distribution of chemical signals for communication. Yet, due to the multi-scale structure of these complex systems, it is hard to assess how different biotic and abiotic properties work together to control the accumulation of bacterial biomass. Here, we explore how flow-mediated interactions allow the gut commensal Escherichia coli to colonize a porous structure that is composed of heterogenous dead-end pores (DEPs) and connecting percolating channels, i.e. transmitting pores (TPs), mimicking the structured surface of mammalian guts. We find that in presence of flow, gradients of the quorum sensing (QS) signaling molecule autoinducer-2 (AI-2) promote E. coli chemotactic accumulation in the DEPs. In this crowded environment, the combination of growth and cell-to-cell collision favors the development of suspended bacterial aggregates. This results in hot-spots of resource consumption, which, upon resource limitation, triggers the mechanical evasion of biomass from nutrients and oxygen depleted DEPs. Our findings demonstrate that microscale medium structure and complex flow coupled with bacterial quorum sensing and chemotaxis control the heterogenous accumulation of bacterial biomass in a spatially structured environment, such as villi and crypts in the gut or in tortuous pores within soil and filters.
Collapse
Affiliation(s)
- David Scheidweiler
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Ankur Deep Bordoloi
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Wenqiao Jiao
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | | | - Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Tang Y, Tao C, Zhang Z, Liu S, Dong F, Zhang D, Zhang J, Wang X. The porous structure induced heterogeneous and localized failure of the biofilm in microfluidic channels. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:3181-3193. [PMID: 38154803 PMCID: wst_2023_384 DOI: 10.2166/wst.2023.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Understanding the mechanism of biofilm distribution and detachment is very important to effectively improve water treatment and prevent blockage in porous media. The existing research is more related to the local biofilm evolving around one or few microposts and the lack of the integral biofilm evolution in a micropost array for a longer growth period. This study combines microfluidic experiments and mathematical simulations to study the distribution and detachment of biofilm in porous media. Microfluidic chips with an array of microposts with different sizes are designed to simulate the physical pore structure of soil. The research shows that the initial formation and distribution of biofilm are influenced by bacterial transport velocity gradients within the pore space. Bacteria prefer to aggregate areas with smaller microposts, leading to the development of biofilm in those regions. Consequently, impermeable blockage structures form in this area. By analyzing experimental images of biofilm structures at the later stages, as well as coupling fluid flow and porous medium, and the finite element simulation, we find that the biofilm detachment is correlated with the morphology and permeability (kb) (from 10-15 to 10-9 m2) of the biofilm. The simulations show that there are two modes of biofilm detachment, such as internal detachment and external erosion.
Collapse
Affiliation(s)
- Yangyang Tang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China E-mail:
| | - Cong Tao
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zheng Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Song Liu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fulin Dong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Duohuai Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinchang Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Wu Y, Fu C, Peacock CL, Sørensen SJ, Redmile-Gordon MA, Xiao KQ, Gao C, Liu J, Huang Q, Li Z, Song P, Zhu Y, Zhou J, Cai P. Cooperative microbial interactions drive spatial segregation in porous environments. Nat Commun 2023; 14:4226. [PMID: 37454222 PMCID: PMC10349867 DOI: 10.1038/s41467-023-39991-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The role of microbial interactions and the underlying mechanisms that shape complex biofilm communities are poorly understood. Here we employ a microfluidic chip to represent porous subsurface environments and show that cooperative microbial interactions between free-living and biofilm-forming bacteria trigger active spatial segregation to promote their respective dominance in segregated microhabitats. During initial colonization, free-living and biofilm-forming microbes are segregated from the mixed planktonic inoculum to occupy the ambient fluid and grain surface. Contrary to spatial exclusion through competition, the active spatial segregation is induced by cooperative interactions which improves the fitness of both biofilm and planktonic populations. We further show that free-living Arthrobacter induces the surface colonization by scavenging the biofilm inhibitor, D-amino acids and receives benefits from the public goods secreted by the biofilm-forming strains. Collectively, our results reveal how cooperative microbial interactions may contribute to microbial coexistence in segregated microhabitats and drive subsurface biofilm community succession.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxia Fu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Caroline L Peacock
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marc A Redmile-Gordon
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley, Surrey, GU23 6QB, UK
| | - Ke-Qing Xiao
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunhui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zixue Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyi Song
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, USA
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
7
|
Markale I, Carrel M, Kurz DL, Morales VL, Holzner M, Jiménez-Martínez J. Internal Biofilm Heterogeneities Enhance Solute Mixing and Chemical Reactions in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8065-8074. [PMID: 37205794 DOI: 10.1021/acs.est.2c09082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial biofilms can form in porous media that are of interest in industrial applications ranging from medical implants to biofilters as well as in environmental applications such as in situ groundwater remediation, where they can be critical locations for biogeochemical reactions. The presence of biofilms modifies porous media topology and hydrodynamics by clogging pores and consequently solutes transport and reactions kinetics. The interplay between highly heterogeneous flow fields found in porous media and microbial behavior, including biofilm growth, results in a spatially heterogeneous biofilm distribution in the porous media as well as internal heterogeneity across the thickness of the biofilm. Our study leverages highly resolved three-dimensional X-ray computed microtomography images of bacterial biofilms in a tubular reactor to numerically compute pore-scale fluid flow and solute transport by considering multiple equivalent stochastically generated internal permeability fields for the biofilm. We show that the internal heterogeneous permeability mainly impacts intermediate velocities when compared with homogeneous biofilm permeability. While the equivalent internal permeability fields of the biofilm do not impact fluid-fluid mixing, they significantly control a fast reaction. For biologically driven reactions such as nutrient or contaminant uptake by the biofilm, its internal permeability field controls the efficiency of the process. This study highlights the importance of considering the internal heterogeneity of biofilms to better predict reactivity in industrial and environmental bioclogged porous systems.
Collapse
Affiliation(s)
- Ishaan Markale
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Dorothee L Kurz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Verónica L Morales
- Department of Civil and Environmental Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Markus Holzner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- WSL, Swiss Federal Institute of Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Joaquín Jiménez-Martínez
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Lee SH, Secchi E, Kang PK. Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows. Proc Natl Acad Sci U S A 2023; 120:e2204466120. [PMID: 36989304 PMCID: PMC10083537 DOI: 10.1073/pnas.2204466120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Bioaggregates are condensed porous materials comprising microbes, organic and inorganic matters, and water. They are commonly found in natural and engineered porous media and often cause clogging. Despite their importance, the formation mechanism of bioaggregates in porous media systems is largely unknown. Through microfluidic experiments and direct numerical simulations of fluid flow, we show that the rapid bioaggregation is driven by the interplay of the viscoelastic nature of biomass and hydrodynamic conditions at pore throats. At an early stage, unique flow structures around a pore throat promote the biomass attachment at the throat. Then, the attached biomass fluidizes when the shear stress at the partially clogged pore throat reaches a critical value. After the fluidization, the biomass is displaced and accumulated in the expansion region of throats forming bioaggregates. We further find that such criticality in shear stress triggers morphological changes in bioaggregates from rounded- to streamer-like shapes. This knowledge was used to control the clogging of throats by tuning the flow conditions: When the shear stress at the throat exceeded the critical value, clogging was prevented. The bioaggregation process did not depend on the detailed pore-throat geometry, as we reproduced the same dynamics in various pore-throat geometries. This study demonstrates that pore-throat structures, which are ubiquitous in porous media systems, induce bioaggregation and can lead to abrupt disruptions in flow.
Collapse
Affiliation(s)
- Sang Hyun Lee
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN55455
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
| | - Peter K. Kang
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN55455
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
9
|
Wang H, Zhang W, Li Y, Gao Y, Niu L, Zhang H, Wang L. Hydrodynamics-driven community coalescence determines ecological assembly processes and shifts bacterial network stability in river bends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159772. [PMID: 36309275 DOI: 10.1016/j.scitotenv.2022.159772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Community coalescence, i.e., the mixing and merging of microbial communities and their surrounding environments, is prevalent in various ecosystems and potentially acts on ecological processes. River bends are distinguished by significant cross-stream velocities and spiral flow. The flow in river bends causes the mixing of microbial communities, thus making the resultant community (after mixing) different from its precursors (before mixing) through ecological processes. However, so far, no studies have explored the effect of community coalescence on ecological processes and network stability under the hydrodynamic processes of river bends. Here, we explored bacterial community assembly and community coalescence in river bends by coupling hydrodynamic profiling, aqueous biogeochemistry, DNA sequencing, and ecological theory. The results showed that the water flow dominated the community coalescence by regulating the movement of suspended sediments. The main ecological process determining the bacterial community compositions in water was the dispersal process, whereas in sediments it was the selection process. Furthermore, the negative cohesion results showed that community coalescence determined the stability of bacterial networks through competition and predation. This study depicted the bacterial community coalescence in river bends and highlighted their associations with network stability, which might provide new insights into bacterial community assembly and coalescence under complex hydrodynamics in the aquatic environment.
Collapse
Affiliation(s)
- Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
10
|
Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms. Proc Natl Acad Sci U S A 2022; 119:e2122202119. [PMID: 35858419 PMCID: PMC9335220 DOI: 10.1073/pnas.2122202119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria in porous media, such as soils, aquifers, and filters, often form surface-attached communities known as biofilms. Biofilms are affected by fluid flow through the porous medium, for example, for nutrient supply, and they, in turn, affect the flow. A striking example of this interplay is the strong intermittency in flow that can occur when biofilms nearly clog the porous medium. Intermittency manifests itself as the rapid opening and slow closing of individual preferential flow paths (PFPs) through the biofilm-porous medium structure, leading to continual spatiotemporal rearrangement. The drastic changes to the flow and mass transport induced by intermittency can affect the functioning and efficiency of natural and industrial systems. Yet, the mechanistic origin of intermittency remains unexplained. Here, we show that the mechanism driving PFP intermittency is the competition between microbial growth and shear stress. We combined microfluidic experiments quantifying Bacillus subtilis biofilm formation and behavior in synthetic porous media for different pore sizes and flow rates with a mathematical model accounting for flow through the biofilm and biofilm poroelasticity to reveal the underlying mechanisms. We show that the closing of PFPs is driven by microbial growth, controlled by nutrient mass flow. Opposing this, we find that the opening of PFPs is driven by flow-induced shear stress, which increases as a PFP becomes narrower due to microbial growth, causing biofilm compression and rupture. Our results demonstrate that microbial growth and its competition with shear stresses can lead to strong temporal variability in flow and transport conditions in bioclogged porous media.
Collapse
|
11
|
Savorana G, Słomka J, Stocker R, Rusconi R, Secchi E. A microfluidic platform for characterizing the structure and rheology of biofilm streamers. SOFT MATTER 2022; 18:3878-3890. [PMID: 35535650 PMCID: PMC9131465 DOI: 10.1039/d2sm00258b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biofilm formation is the most successful survival strategy for bacterial communities. In the biofilm lifestyle, bacteria embed themselves in a self-secreted matrix of extracellular polymeric substances (EPS), which acts as a shield against mechanical and chemical insults. When ambient flow is present, this viscoelastic scaffold can take a streamlined shape, forming biofilm filaments suspended in flow, called streamers. Streamers significantly disrupt the fluid flow by causing rapid clogging and affect transport in aquatic environments. Despite their relevance, the structural and rheological characterization of biofilm streamers is still at an early stage. In this work, we present a microfluidic platform that allows the reproducible growth of biofilm streamers in controlled physico-chemical conditions and the characterization of their biochemical composition, morphology, and rheology in situ. We employed isolated micropillars as nucleation sites for the growth of single biofilm streamers under the continuous flow of a diluted bacterial suspension. By combining fluorescent staining of the EPS components and epifluorescence microscopy, we were able to characterize the biochemical composition and morphology of the streamers. Additionally, we optimized a protocol to perform hydrodynamic stress tests in situ, by inducing controlled variations of the fluid shear stress exerted on the streamers by the flow. Thus, the reproducibility of the formation process and the testing protocol make it possible to perform several consistent experimental replicates that provide statistically significant information. By allowing the systematic investigation of the role of biochemical composition on the structure and rheology of streamers, this platform will advance our understanding of biofilm formation.
Collapse
Affiliation(s)
- Giovanni Savorana
- Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland.
| | - Jonasz Słomka
- Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland.
| | - Roman Stocker
- Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland.
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, 20089, Rozzano, MI, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
12
|
Secchi E, Savorana G, Vitale A, Eberl L, Stocker R, Rusconi R. The structural role of bacterial eDNA in the formation of biofilm streamers. Proc Natl Acad Sci U S A 2022; 119:e2113723119. [PMID: 35290120 PMCID: PMC8944759 DOI: 10.1073/pnas.2113723119] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/01/2022] [Indexed: 12/23/2022] Open
Abstract
Across diverse habitats, bacteria are mainly found as biofilms, surface-attached communities embedded in a self-secreted matrix of extracellular polymeric substances (EPS), which enhance bacterial recalcitrance to antimicrobial treatment and mechanical stresses. In the presence of flow and geometric constraints such as corners or constrictions, biofilms can take the form of long, suspended filaments (streamers), which bear important consequences in industrial and clinical settings by causing clogging and fouling. The formation of streamers is thought to be driven by the viscoelastic nature of the biofilm matrix. Yet, little is known about the structural composition of streamers and how it affects their mechanical properties. Here, using a microfluidic platform that allows growing and precisely examining biofilm streamers, we show that extracellular DNA (eDNA) constitutes the backbone and is essential for the mechanical stability of Pseudomonas aeruginosa streamers. This finding is supported by the observations that DNA-degrading enzymes prevent the formation of streamers and clear already formed ones and that the antibiotic ciprofloxacin promotes their formation by increasing the release of eDNA. Furthermore, using mutants for the production of the exopolysaccharide Pel, an important component of P. aeruginosa EPS, we reveal an concurring role of Pel in tuning the mechanical properties of the streamers. Taken together, these results highlight the importance of eDNA and of its interplay with Pel in determining the mechanical properties of P. aeruginosa streamers and suggest that targeting the composition of streamers can be an effective approach to control the formation of these biofilm structures.
Collapse
Affiliation(s)
- Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Giovanni Savorana
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|
13
|
Perez LJ, Parashar R, Plymale A, Scheibe TD. Contributions of biofilm-induced flow heterogeneities to solute retention and anomalous transport features in porous media. WATER RESEARCH 2022; 209:117896. [PMID: 34922103 DOI: 10.1016/j.watres.2021.117896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Microbial biofilms are ubiquitous within porous media and the dynamics of their growth influence surface and subsurface flow patterns which impacts the physical properties of porous media and large-scale transport of solutes. A two-dimensional pore-scale numerical model was used to evaluate the impact of biofilm-induced flow heterogeneities on conservative transport. Our study integrates experimental biofilm images of Paenibacillus 300A strain in a microfluidic device packed with cylindrical grains in a hexagonal distribution, with mathematical modeling. Biofilm is represented as a synthetic porous structure with locally varying physical properties that honors the impact of biofilm on the porous medium. We find that biofilm plays a major role in shaping the observed conservative transport dynamics by enhancing anomalous characteristics. More specifically, when biofilm is present, the pore structure in our geometry becomes more spatially correlated. We observe intermittent behavior in the Lagrangian velocities that switches between fast transport periods and long trapping events. Our results suggest that intermittency enhances solute spreading in breakthrough curves which exhibit extreme anomalous slope at intermediate times and very marked late solute arrival due to solute retention. The efficiency of solute retention by the biofilm is controlled by a transport regime which can extend the tailing in the concentration breakthrough curves. These results indicate that solute retention by the biofilm exerts a strong control on conservative solute transport at pore-scale, a role that to date has not received enough attention.
Collapse
Affiliation(s)
| | | | - Andrew Plymale
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
14
|
Liang D, Song J, Xia J, Chang J, Kong F, Sun H, Cheng D, Zhang Y. Effects of heavy metals and hyporheic exchange on microbial community structure and functions in hyporheic zone. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114201. [PMID: 34861506 DOI: 10.1016/j.jenvman.2021.114201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 05/27/2023]
Abstract
The responses of microbial communities in hyporheic zone to the eco-hydrological process have been a hotspot in river ecological health research. However, the impact of different metal pollution levels and hyporheic exchange on the microbial communities are still unclear. In this study, we further explored the effects of different degrees of heavy metals pollution and the strength of hyporheic exchange on the structures and functions of microbial community in hyporheic zone sediment ecosystem. Sediments were collected from the Weihe River to determine the concentrations of heavy metals, grain size distribution, and hydraulic conductivity, and the microbial information were obtained by eDNA technology. The comprehensive pollution status of the study area was at the slight and moderate level. The hydraulic conductivity (Kv) varied between 0.20 and 3.65 (m/d). The microbial community structures had complex temporal and spatial heterogeneity. The microbial molecular ecological network had modular characteristics and significant differences in different periods (p < 0.05). Metabolic functional genes in microbial communities had the highest relative abundance. In particular, there is a significant negative correlation between heavy metals and microorganisms (p < 0.05), with Cu and Zn contributing the most to microbial community changes (p < 0.05). Moreover, grain size had a significant impact on microorganisms, heavy metals and grain size significantly affect the predictive functions of microbial communities. Our in-depth research on microorganisms in the hyporheic zone provides references for monitoring and bioremediation of aquatic ecosystems.
Collapse
Affiliation(s)
- Dong Liang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Institute of Qinling Mountains, Northwest University, Xi'an, 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Institute of Qinling Mountains, Northwest University, Xi'an, 710127, China.
| | - Jun Xia
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Research Institute for Water Security (RIWS), Wuhan University, Wuhan, 430072, China; Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianbo Chang
- Research Institute for Water Security (RIWS), Wuhan University, Wuhan, 430072, China
| | - Feihe Kong
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Institute of Qinling Mountains, Northwest University, Xi'an, 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Institute of Qinling Mountains, Northwest University, Xi'an, 710127, China
| | - Dandong Cheng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Institute of Qinling Mountains, Northwest University, Xi'an, 710127, China
| | - Yixuan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Institute of Qinling Mountains, Northwest University, Xi'an, 710127, China
| |
Collapse
|
15
|
Jimenez-Martinez J, Nguyen J, Or D. Controlling pore-scale processes to tame subsurface biomineralization. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:27-52. [PMID: 35221831 PMCID: PMC8831379 DOI: 10.1007/s11157-021-09603-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Microorganisms capable of biomineralization can catalyze mineral precipitation by modifying local physical and chemical conditions. In porous media, such as soil and rock, these microorganisms live and function in highly heterogeneous physical, chemical and ecological microenvironments, with strong local gradients created by both microbial activity and the pore-scale structure of the subsurface. Here, we focus on extracellular bacterial biomineralization, which is sensitive to external heterogeneity, and review the pore-scale processes controlling microbial biomineralization in natural and engineered porous media. We discuss how individual physical, chemical and ecological factors integrate to affect the spatial and temporal control of biomineralization, and how each of these factors contributes to a quantitative understanding of biomineralization in porous media. We find that an improved understanding of microbial behavior in heterogeneous microenvironments would promote understanding of natural systems and output in diverse technological applications, including improved representation and control of fluid mixing from pore to field scales. We suggest a range of directions by which future work can build from existing tools to advance each of these areas to improve understanding and predictability of biomineralization science and technology.
Collapse
Affiliation(s)
- Joaquin Jimenez-Martinez
- Department of Water Resources and Drinking Water, Eawag, Dübendorf, Switzerland
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zürich, Switzerland
| | - Jen Nguyen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Dani Or
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV USA
| |
Collapse
|
16
|
Zhu X, Wang K, Yan H, Liu C, Zhu X, Chen B. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:711-731. [PMID: 34985862 DOI: 10.1021/acs.est.1c03899] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating environmental processes, especially those occurring in soils, calls for innovative and multidisciplinary technologies that can provide insights at the microscale. The heterogeneity, opacity, and dynamics make the soil a "black box" where interactions and processes are elusive. Recently, microfluidics has emerged as a powerful research platform and experimental tool which can create artificial soil micromodels, enabling exploring soil processes on a chip. Micro/nanofabricated microfluidic devices can mimic some of the key features of soil with highly controlled physical and chemical microenvironments at the scale of pores, aggregates, and microbes. The combination of various techniques makes microfluidics an integrated approach for observation, reaction, analysis, and characterization. In this review, we systematically summarize the emerging applications of microfluidic soil platforms, from investigating soil interfacial processes and soil microbial processes to soil analysis and high-throughput screening. We highlight how innovative microfluidic devices are used to provide new insights into soil processes, mechanisms, and effects at the microscale, which contribute to an integrated interrogation of the soil systems across different scales. Critical discussions of the practical limitations of microfluidic soil platforms and perspectives of future research directions are summarized. We envisage that microfluidics will represent the technological advances toward microscopic, controllable, and in situ soil research.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
17
|
Zhang L, Graham N, Derlon N, Tang Y, Siddique MS, Xu L, Yu W. Biofouling by ultra-low pressure filtration of surface water: The paramount role of initial available biopolymers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Ghosh UU, Ali H, Ghosh R, Kumar A. Bacterial streamers as colloidal systems: Five grand challenges. J Colloid Interface Sci 2021; 594:265-278. [PMID: 33765646 DOI: 10.1016/j.jcis.2021.02.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Bacteria can thrive in biofilms, which are intricately organized communities with cells encased in a self-secreted matrix of extracellular polymeric substances (EPS). Imposed hydrodynamic stresses can transform this active colloidal dispersion of bacteria and EPS into slender thread-like entities called streamers. In this perspective article, the reader is introduced to the world of such deformable 'bacteria-EPS' composites that are a subclass of the generic flow-induced colloidal structures. While bacterial streamers have been shown to form in a variety of hydrodynamic conditions (turbulent and creeping flows), its abiotic analogues have only been demonstrated in low Reynolds number (Re < 1) particle-laden polymeric flows. Streamers are relevant to a variety of situations ranging from natural formations in caves and river beds to clogging of biomedical devices and filtration membranes. A critical review of the relevant biophysical aspects of streamer formation phenomena and unique attributes of its material behavior are distilled to unveil five grand scientific challenges. The coupling between colloidal hydrodynamics, device geometry and streamer formation are highlighted.
Collapse
Affiliation(s)
- Udita U Ghosh
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Hessein Ali
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
19
|
Influence of the Intrinsic Characteristics of Cementitious Materials on Biofouling in the Marine Environment. SUSTAINABILITY 2021. [DOI: 10.3390/su13052625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coastal marine ecosystems provide essential benefits and services to humanity, but many are rapidly degrading. Human activities are leading to significant land take along coastlines and to major changes in ecosystems. Ecological engineering tools capable of promoting large-scale restoration of coastal ecosystems are needed today in the face of intensifying climatic stress and human activities. Concrete is one of the materials most commonly used in the construction of coastal and marine infrastructure. Immersed in seawater, concretes are rapidly colonized by microorganisms and macroorganisms. Surface colonization and subsequent biofilm and biofouling formation provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. The new challenge of the 21st century is to develop innovative concretes that, in addition to their usual properties, provide improved bioreceptivity in order to enhance marine biodiversity. The aim of this study is to master and clarify the intrinsic parameters that influence the bioreceptivity (biocolonization) of cementitious materials in the marine environment. By coupling biofilm (culture-based methods) and biofouling (image-analysis-based method and wet-/dry-weight biomass measurement) quantification techniques, this study showed that the application of a curing compound to the concrete surface reduced the biocolonization of cementitious materials in seawater, whereas green formwork oil had the opposite effect. This study also found that certain surface conditions (faceted and patterned surface, rough surface) promote the bacterial and macroorganism colonization of cementitious materials. Among the parameters examined, surface roughness proved to be the factor that promotes biocolonization most effectively. These results could be taken up in future recommendations to enable engineers to eco-design more eco-friendly marine infrastructure and develop green-engineering projects.
Collapse
|
20
|
Depetris A, Peter H, Bordoloi AD, Bernard H, Niayifar A, Kühl M, de Anna P, Battin TJ. Morphogenesis and oxygen dynamics in phototrophic biofilms growing across a gradient of hydraulic conditions. iScience 2021; 24:102067. [PMID: 33598641 PMCID: PMC7868926 DOI: 10.1016/j.isci.2021.102067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 10/25/2022] Open
Abstract
Biofilms are surface-attached and matrix-enclosed microbial communities that dominate microbial life in numerous ecosystems. Using flumes and automated optical coherence tomography, we studied the morphogenesis of phototrophic biofilms along a gradient of hydraulic conditions. Compact and coalescent biofilms formed under elevated bed shear stress, whereas protruding clusters separated by troughs formed under reduced shear stress. This morphological differentiation did not linearly follow the hydraulic gradient, but a break point emerged around a shear stress of ~0.08 Pa. While community composition did not differ between high and low shear environments, our results suggest that the morphological differentiation was linked to biomass displacement and reciprocal interactions between the biofilm structure and hydraulics. Mapping oxygen concentrations within and around biofilm structures, we provide empirical evidence for biofilm-induced alterations of oxygen mass transfer. Our findings suggest that architectural plasticity, efficient mass transfer, and resistance to shear stress contribute to the success of phototrophic biofilms.
Collapse
Affiliation(s)
- Anna Depetris
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ankur Deep Bordoloi
- Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hippolyte Bernard
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amin Niayifar
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tom Jan Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
22
|
Lin X, Zheng X, Liu R, Wen Y, Huang M, Gou R, Yan Y, Shi Y, Tang J. Extracellular Polymeric Substances Production by ZL-02 For Microbial Enhanced Oil Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaosha Lin
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Xuecheng Zheng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Rui Liu
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Yiping Wen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Mengdie Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Rui Gou
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Yuru Yan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Yaoming Shi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Jia Tang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| |
Collapse
|
23
|
Cook S, Price O, King A, Finnegan C, van Egmond R, Schäfer H, Pearson JM, Abolfathi S, Bending GD. Bedform characteristics and biofilm community development interact to modify hyporheic exchange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141397. [PMID: 32841855 DOI: 10.1016/j.scitotenv.2020.141397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The physical and biological attributes of riverine ecosystems interact in a complex manner which can affect the hydrodynamic behaviour of the system. This can alter the mixing characteristics of a river at the sediment-water interface. Research on hyporheic exchange has increased in recent years driven by a greater appreciation for the importance of this dynamic ecotone in connecting and regulating river systems. An understanding of process-based interactions driving hyporheic exchange is still limited, specifically the feedbacks between the physical and biological controlling factors. The interplay between bed morphology and sediment size on biofilm community development and the impact on hyporheic exchange mechanisms, was experimentally considered. Purpose built recirculating flume systems were constructed and three profiles of bedform investigated: i) flat, ii) undulating λ = 1 m, ii) undulating λ = 0.2 m, across two different sized sediments (0.5 mm and 5 mm). The influence of biofilm growth and bedform interaction on hyporheic exchange was explored, over time, using discrete repeat injections of fluorescent dye into the flumes. Hyporheic exchange rates were greatest in systems with larger sediment sizes (5 mm) and with more bedforms (undulating λ = 0.2). Sediment size was a dominant control in governing biofilm growth and hyporheic exchange in systems with limited bedform. In systems where bedform was prevalent, sediment size and biofilm appeared to no longer be a control on exchange due to the physical influence of advective pumping. Here, exchange rates within these environments were more consistent overtime, despite greater microbial growth. As such, bedform has the potential to overcome the rate limiting effects of biotic factors on hyporheic exchange and sediment size on microbial penetration. This has implications for pollutant and nutrient penetration; bedforms increase hydrological connectivity, generating the opportunity to support microbial communities at depth and as such, improve the self-purification ability of river systems.
Collapse
Affiliation(s)
- Sarah Cook
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | - Andrew King
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
24
|
Furey PC, Lee SS, Clemans DL. Substratum-associated microbiota. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1629-1648. [PMID: 33463854 DOI: 10.1002/wer.1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/12/2023]
Abstract
Highlights of new, interesting, and emerging research findings on substratum-associated microbiota covered from a survey of 2019 literature from primarily freshwaters provide insight into research trends of interest to the Water Environment Federation and others interested in benthic, aquatic environments. Coverage of topics on bottom-associated or attached algae and cyanobacteria, though not comprehensive, includes new methods, taxa new-to-science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, and bloom-forming and harmful algae. Coverage of bacteria, also not comprehensive, focuses on the ecology of benthic biofilms and microbial communities, along with the ecology of microbes like Caulobacter crescentus, Rhodobacter, and other freshwater microbial species. Bacterial topics covered also include metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Readers may use this literature review to learn about or renew their interest in the recent advances and discoveries regarding substratum-associated microbiota. PRACTITIONER POINTS: This review of literature from 2019 on substratum-associated microbiota presents highlights of findings on algae, cyanobacteria, and bacteria from primarily freshwaters. Coverage of algae and cyanobacteria includes findings on new methods, taxa new to science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, bloom-forming and harmful algae. Coverage of bacteria includes findings on ecology of benthic biofilms and microbial communities, the ecology of microbes, metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Highlights of new, noteworthy and emerging topics build on those from 2018 and will be of relevance to the Water Environment Federation and others interested in benthic, aquatic environments.
Collapse
Affiliation(s)
- Paula C Furey
- Department Biology, St. Catherine University, St. Paul, Minnesota, USA
| | - Sylvia S Lee
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Daniel L Clemans
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, USA
| |
Collapse
|
25
|
Li Y, Zhu J, Wang L, Gao Y, Zhang W, Zhang H, Niu L. Grain size tunes microbial community assembly and nitrogen transformation activity under frequent hyporheic exchange: A column experiment. WATER RESEARCH 2020; 182:116040. [PMID: 32622134 DOI: 10.1016/j.watres.2020.116040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Hyporheic zones (HZ) are hotspots for biogeochemical reactions where groundwater and surface water mix. River dam buildings and other hydrologic controls alter the sediment grain size distribution and modify the downstream hyporheic exchange, with cascading effects on geochemical and microbial processes in river corridors. In this lab-scale column experiment, the N transformations in HZ filled with sediments in different grain sizes were investigated with a focus on understanding the interplay among variational hydraulic connectivity, microbial community structure, functional potential under frequent groundwater-surface water exchange. Porosity was identified as the main driver determining bacterial community assembly in HZ sediments. Significant microbial zonation was observed along the columns and the degree of co-occurrence of bacterial communities in the Fine column was lower than that in the Coarse and Mix columns. The Coarse column allowed for almost 2.47 times the exchange flux relative to the Fine column, and generates the fastest DO consumption rate (-6.52 μg O2/L·s). The enrichment of nitrifiers, i.e., Cytophagaceae and Bacillaceae and nitrification functional genes, i.e., amoA_AOA and amoA_AOB revealed the higher nitrification potential in column filled with coarse sediments. In comparison, the highest NH4+ production rates (2.4 × 10-3 μg N/L·s) took place in Fine column. The higher abundancies of denitrifiers such as Comamonadaceae and Lysobacter and enrichment of functional genes of nirK and nirS interestingly suggested the elevated denitrification potential in Fine column in a more anaerobic environment. The results implied that variations in microbial functional potential and associated nitrogen transformation may occur in size-fractioned HZ to dynamic hyporheic exchange, which added new knowledge to the underlying biogeochemical and ecological processes in regulated river corridors.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Jinxin Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
26
|
Wetzel M, Kempka T, Kühn M. Hydraulic and Mechanical Impacts of Pore Space Alterations within a Sandstone Quantified by a Flow Velocity-Dependent Precipitation Approach. MATERIALS 2020; 13:ma13143100. [PMID: 32664508 PMCID: PMC7411822 DOI: 10.3390/ma13143100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
Geochemical processes change the microstructure of rocks and thereby affect their physical behaviour at the macro scale. A micro-computer tomography (micro-CT) scan of a typical reservoir sandstone is used to numerically examine the impact of three spatial alteration patterns on pore morphology, permeability and elastic moduli by correlating precipitation with the local flow velocity magnitude. The results demonstrate that the location of mineral growth strongly affects the permeability decrease with variations by up to four orders in magnitude. Precipitation in regions of high flow velocities is characterised by a predominant clogging of pore throats and a drastic permeability reduction, which can be roughly described by the power law relation with an exponent of 20. A continuous alteration of the pore structure by uniform mineral growth reduces the permeability comparable to the power law with an exponent of four or the Kozeny–Carman relation. Preferential precipitation in regions of low flow velocities predominantly affects smaller throats and pores with a minor impact on the flow regime, where the permeability decrease is considerably below that calculated by the power law with an exponent of two. Despite their complete distinctive impact on hydraulics, the spatial precipitation patterns only slightly affect the increase in elastic rock properties with differences by up to 6.3% between the investigated scenarios. Hence, an adequate characterisation of the spatial precipitation pattern is crucial to quantify changes in hydraulic rock properties, whereas the present study shows that its impact on elastic rock parameters is limited. The calculated relations between porosity and permeability, as well as elastic moduli can be applied for upscaling micro-scale findings to reservoir-scale models to improve their predictive capabilities, what is of paramount importance for a sustainable utilisation of the geological subsurface.
Collapse
Affiliation(s)
- Maria Wetzel
- German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany; (T.K.); (M.K.)
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
- Correspondence:
| | - Thomas Kempka
- German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany; (T.K.); (M.K.)
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Michael Kühn
- German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany; (T.K.); (M.K.)
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| |
Collapse
|
27
|
Scheidweiler D, Miele F, Peter H, Battin TJ, de Anna P. Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale. J R Soc Interface 2020; 17:20200046. [PMID: 32208823 DOI: 10.1098/rsif.2020.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dispersal of organisms controls the structure and dynamics of populations and communities, and can regulate ecosystem functioning. Predicting dispersal patterns across scales is important to understand microbial life in heterogeneous porous environments such as soils and sediments. We developed a multi-scale approach, combining experiments with microfluidic devices and time-lapse microscopy to track individual bacterial trajectories and measure the overall breakthrough curves and bacterial deposition profiles: we, then, linked the two scales with a novel stochastic model. We show that motile cells of Pseudomonas putida disperse more efficiently than non-motile mutants through a designed heterogeneous porous system. Motile cells can evade flow-imposed trajectories, enabling them to explore larger pore areas than non-motile cells. While transported cells exhibited a rotation in response to hydrodynamic shear, motile cells were less susceptible to the torque, maintaining their body oriented towards the flow direction and thus changing the population velocity distribution with a significant impact on the overall transport properties. We also found, in a separate set of experiments, that if the suspension flows through a porous system already colonized by a biofilm, P. putida cells are channelled into preferential flow paths and the cell attachment rate is increased. These two effects were more pronounced for non-motile than for motile cells. Our findings suggest that motility coupled with heterogeneous flows can be beneficial to motile bacteria in confined environments as it enables them to actively explore the space for resources or evade regions with unfavourable conditions. Our study also underlines the benefit of a multi-scale approach to the study of bacterial dispersal in porous systems.
Collapse
Affiliation(s)
- David Scheidweiler
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Filippo Miele
- Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|