1
|
Xiao Y, Gao L, Li Z. Unique high-temperature tolerance mechanisms of zoochlorellae Symbiochlorum hainanensis derived from scleractinian coral Porites lutea. mBio 2024; 15:e0278023. [PMID: 38385710 PMCID: PMC11326117 DOI: 10.1128/mbio.02780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Global warming is a key issue that causes coral bleaching mainly because of the thermosensitivity of zooxanthellae. Compared with the well-studied zooxanthellae Symbiodiniaceae in coral holobionts, we rarely know about other coral symbiotic algae, let alone their thermal tolerance. In this study, a zoochlorellae, Symbiochlorum hainanensis, isolated from the coral Porites lutea, was proven to have a threshold temperature of 38°C. Meanwhile, unique high-temperature tolerance mechanisms were suggested by integrated transcriptomics and real-time quantitative PCR, physiological and biochemical analyses, and electron microscopy observation. Under heat stress, S. hainanensis shared some similar response strategies with zooxanthellae Effrenium sp., such as increased ascorbate peroxidase, glutathione peroxidase, superoxide dismutase activities and chlorophyll a, thiamine, and thiamine phosphate contents. In particular, more chloroplast internal layered structure, increased CAT activity, enhanced selenate reduction, and thylakoid assembly pathways were highlighted for S. hainanensis's high-temperature tolerance. Notably, it is the first time to reveal a whole selenate reduction pathway from SeO42- to Se2- and its contribution to the high-temperature tolerance of S. hainanensis. These unique mechanisms, including antioxidation and maintaining photosynthesis homeostasis, efficiently ensure the high-temperature tolerance of S. hainanensis than Effrenium sp. Compared with the thermosensitivity of coral symbiotic zooxanthellae Symbiodiniaceae, this study provides novel insights into the high-temperature tolerance mechanisms of coral symbiotic zoochlorellae S. hainanensis, which will contribute to corals' survival in the warming oceans caused by global climate change. IMPORTANCE The increasing ocean temperature above 31°C-32°C might trigger a breakdown of the coral-Symbiodiniaceae symbioses or coral bleaching because of the thermosensitivity of Symbiodiniaceae; therefore, the exploration of alternative coral symbiotic algae with high-temperature tolerance is important for the corals' protection under warming oceans. This study proves that zoochlorellae Symbiochlorum hainanensis can tolerate 38°C, which is the highest temperature tolerance known for coral symbiotic algae to date, with unique high-temperature tolerance mechanisms. Particularly, for the first time, an internal selenium antioxidant mechanism of coral symbiotic S. hainanensis to high temperature was suggested.
Collapse
Affiliation(s)
- Yilin Xiao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Luyao Gao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Dupre C, Engert F. Cold Acclimation Provides a Robust Overwintering Strategy in Hydra vulgaris. THE BIOLOGICAL BULLETIN 2023; 245:161-177. [PMID: 39316738 DOI: 10.1086/732033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
AbstractCold acclimation is a biological process that allows animals to survive at low temperatures. The freshwater invertebrate Hydra is subject to broad changes in environmental temperature and does not have the required motility in order to move to warmer environments during the winter. For this reason, Hydra had to develop robust mechanisms to achieve cold acclimation at the onset of winter. How Hydra detects the onset of winter and activates its acclimation mechanism is unknown. Here, we used thermocyclers to induce cold acclimation in Hydra and study its properties. We found that Hydra cultured at room temperature does not survive an abrupt transition from 22 to 4 °C. However, it can be treated to become cold acclimated and survive at 4 °C by exposure to intermediate temperatures such as 12 °C if the treatment duration exceeds more than a week. Once cold acclimated, Hydra is considerably more robust to thermal changes. It survives repeated abrupt transitions from 4 to 22 °C and from 22 to 4 °C. However, acclimation is reversible, and if a cold-acclimated Hydra stays at room temperature for more than a week, it will gradually lose its cold acclimation. We developed a mathematical model representing the dynamics of this process and used it to predict survival according to temperature data recorded in one of their natural habitats. The results of these simulations provide an explanation for how Hydra survives winter under natural conditions. Accordingly, daily fluctuations are too short to cause injury, and seasonal fluctuations, which are long enough to be lethal, allow acclimation to incrementally build up and protect the animal. Cold acclimation in Hydra is therefore an example of a strategy that has adapted during evolution to match the animal's needs for survival.
Collapse
|
3
|
Bathia J, Schröder K, Fraune S, Lachnit T, Rosenstiel P, Bosch TCG. Symbiotic Algae of Hydra viridissima Play a Key Role in Maintaining Homeostatic Bacterial Colonization. Front Microbiol 2022; 13:869666. [PMID: 35733963 PMCID: PMC9207534 DOI: 10.3389/fmicb.2022.869666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023] Open
Abstract
The freshwater polyp Hydra viridissima (H. viridissima) harbors endosymbiotic Chlorella algae in addition to a species-specific microbiome. The molecular basis of the symbiosis between Hydra and Chlorella has been characterized to be metabolic in nature. Here, we studied the interaction between the extracellularly located microbiota and the algal photobiont, which resides in Hydra’s endodermal epithelium, with main focus on Legionella bacterium. We aimed at evaluating the influence of the symbiotic algae on microbial colonization and in shaping the host microbiome. We report that the microbiome composition of symbiotic and aposymbiotic (algae free) H. viridissima is significantly different and dominated by Legionella spp. Hvir in aposymbiotic animals. Co-cultivation of these animals resulted in horizontal transmission of Legionella spp. Hvir bacteria from aposymbiotic to symbiotic animals. Acquisition of this bacterium increased the release of algae into ambient water. From there, algae could subsequently be taken up again by the aposymbiotic animals. The presence of algal symbionts had negative impact on Legionella spp. Hvir and resulted in a decrease of the relative abundance of this bacterium. Prolonged co-cultivation ultimately resulted in the disappearance of the Legionella spp. Hvir bacterium from the Hydra tissue. Our observations suggest an important role of the photobiont in controlling an invasive species in a metacommunity and, thereby, shaping the microbiome.
Collapse
Affiliation(s)
- Jay Bathia
- Institute for Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Zoological Institute, Kiel University, Kiel, Germany
| | - Katja Schröder
- Zoological Institute, Kiel University, Kiel, Germany
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Zoological Institute, Kiel University, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Kiel University, Kiel, Germany
- *Correspondence: Thomas C. G. Bosch,
| |
Collapse
|
4
|
Díaz-Almeyda EM, Ryba T, Ohdera AH, Collins SM, Shafer N, Link C, Prado-Zapata M, Ruhnke C, Moore M, González Angel AM, Pollock FJ, Medina M. Thermal Stress Has Minimal Effects on Bacterial Communities of Thermotolerant Symbiodinium Cultures. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.764086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Algae in the dinoflagellate family Symbiodiniaceae are endocellular photosymbionts of corals and other cnidarians. This close relationship is disrupted when seawater temperature increases, causing coral bleaching eventually affecting entire coral reefs. Although the relationship between animal host and photosymbiont has been well-studied, little is known about the bacterial community associated with Symbiodiniaceae in culture. We compared the microbial communities of three isolates from different species of the genus Symbiodinium (formerly known as Symbiodinium clade A) with different ecophysiology, levels of interaction with the animal host, and thermal adaptations. Two species, Symbiodinium microadriaticum and Symbiodinium necroappettens, exhibit intermediate thermotolerance, with a decrease of both growth rate and photochemical efficiency with increased temperature. The third species, Symbiodinium pilosum, has high thermotolerance with no difference in growth rate or photochemical efficiency at 32°C. Microbial communities were characterized after 27 days of growth under control (26°C) and high temperature (32°C). Data shows stronger grouping of bacterial assemblages based on Symbiodinium species than temperature. Microbial communities did not group phylogenetically. We found a shared set of fifteen ASVs belonging to four genera and three families that remained in all three Symbiodiniaceae species. These included Labrenzia, Phycisphaeraceae (SM1A02), Roseovarius, and Muricauda, which are all commonly associated with corals and Symbiodiniaceae cultures. Few ASVs differed significantly by temperature within species. S. pilosum displayed significantly lower levels of microbial diversity and greater individual variability in community composition at 32°C compared to 26°C. These results suggest that bacteria associated or co-cultured with thermotolerant Symbiodinium might play an important role in thermotolerance. Further research on the functional metabolic pathways of these bacteria might hold the key to understanding Symbiodinium’s ability to tolerate thermal stress.
Collapse
|
5
|
Majeed MZ, Sayed S, Bo Z, Raza A, Ma CS. Bacterial Symbionts Confer Thermal Tolerance to Cereal Aphids Rhopalosiphum padi and Sitobion avenae. INSECTS 2022; 13:insects13030231. [PMID: 35323529 PMCID: PMC8949882 DOI: 10.3390/insects13030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary This study assesses the putative association between the chronic and acute thermal tolerance of cereal aphids Rhopalosiphum padi (L.) and Sitobion avenae (F.) and the abundance of their bacterial symbionts. Thermal tolerance indices were determined for 5-day-old apterous aphid individuals and were associated with the aphid-specific and total bacterial symbionts’ gene abundance (copy numbers). The results show a significantly higher bacterial symbionts’ gene abundance in temperature-tolerant aphid individuals than the susceptible ones for both aphid species. Moreover, the gene abundance of total (16S rRNA) bacteria and most of the aphid-specific bacterial symbionts for both cereal aphid species were significantly and positively associated with their critical thermal maxima values. Overall, the findings of the study suggest the potential role of the bacterial symbionts of aphids in conferring thermal tolerance to their hosts. Abstract High-temperature events are evidenced to exert significant influence on the population performance and thermal biology of insects, such as aphids. However, it is not yet clear whether the bacterial symbionts of insects mediate the thermal tolerance traits of their hosts. This study is intended to assess the putative association among the chronic and acute thermal tolerance of two cereal aphid species, Rhopalosiphum padi (L.) and Sitobion avenae (F.), and the abundance of their bacterial symbionts. The clones of aphids were collected randomly from different fields of wheat crops and were maintained under laboratory conditions. Basal and acclimated CTmax and chronic thermal tolerance indices were measured for 5-day-old apterous aphid individuals and the abundance (gene copy numbers) of aphid-specific and total (16S rRNA) bacterial symbionts were determined using real-time RT-qPCR. The results reveal that R. padi individuals were more temperature tolerant under chronic exposure to 31 °C and also exhibited about 1.0 °C higher acclimated and basal CTmax values than those of S. avenae. Moreover, a significantly higher bacterial symbionts’ gene abundance was recorded in temperature-tolerant aphid individuals than the susceptible ones for both aphid species. Although total bacterial (16S rRNA) abundance per aphid was higher in S. avenae than R. padi, the gene abundance of aphid-specific bacterial symbionts was nearly alike for both of the aphid species. Nevertheless, basal and acclimated CTmax values were positively and significantly associated with the gene abundance of total symbiont density, Buchnera aphidicola, Serratia symbiotica, Hamilton defensa, Regiella insecticola and Spiroplasma spp. for R. padi, and with the total symbiont density, total bacteria (16S rRNA) and with all aphid-specific bacterial symbionts (except Spiroplasma spp.) for S. avenae. The overall study results corroborate the potential role of the bacterial symbionts of aphids in conferring thermal tolerance to their hosts.
Collapse
Affiliation(s)
- Muhammad Zeeshan Majeed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (M.Z.M.); (C.-S.M.)
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zhang Bo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Ahmed Raza
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Cereal Fungal Diseases Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Pathology, Sub-Campus Depalpur, University of Agriculture, Okara 56300, Pakistan
| | - Chun-Sen Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (M.Z.M.); (C.-S.M.)
| |
Collapse
|
6
|
Zhu L, Hoffmann AA, Li S, Ma C. Extreme climate shifts pest dominance hierarchy through thermal evolution and transgenerational plasticity. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liang Zhu
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing PR China
| | - Ary A. Hoffmann
- Pest and Disease Vector Group School of BioSiences Bio21 Institutethe University of Melbourne Melbourne Vic. Australia
| | - Shi‐Min Li
- Wucheng observation and Experiment Station of National Agricultural Science and Plant Protection Luohe Academy of Agricultural Sciences Luohe PR China
| | - Chun‐Sen Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing PR China
| |
Collapse
|
7
|
Abstract
Endosymbiosis is found in all types of ecosystems and it can be sensitive to environmental changes due to the intimate interaction between the endosymbiont and the host. Indeed, global climate change disturbs the local ambient environment and threatens endosymbiotic species, and in some cases leads to local ecosystem collapse. Recent studies have revealed that the endosymbiont can affect holobiont (endosymbiont and host together) stress tolerance as much as the host does, and manipulation of the microbial partners in holobionts may mitigate the impacts of the environmental stress. Here, we first show how the endosymbiont presence affects holobiont stress tolerance by discussing three well-studied endosymbiotic systems, which include plant-fungi, aquatic organism-algae, and insect-bacteria systems. We then review how holobionts are able to alter their stress tolerance via associated endosymbionts by changing their endosymbiont composition, by adaptation of their endosymbionts, or by acclimation of their endosymbionts. Finally, we discuss how different transmission modes (vertical or horizontal transmission) might affect the adaptability of holobionts. We propose that the endosymbiont is a good target for modifying holobiont stress tolerance, which makes it critical to more fully investigate the role of endosymbionts in the adaptive responses of holobionts to stress.
Collapse
|