1
|
Bhat AH, Malik IM, Tak H, Ganai BA, Bharti P. Host, parasite, and microbiome interaction: Trichuris ovis and its effect on sheep gut microbiota. Vet Parasitol 2025; 333:110356. [PMID: 39608199 DOI: 10.1016/j.vetpar.2024.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Sheep that are infected with gastrointestinal helminths experience a significant impact on their health and productivity. Among the helminths, nematodes like Haemonchus contortus, Oesophagostomum spp., Bunostomum trigonocephalum, Nematodirus battus, Trichostrongylus spp. and Teladorsagia circumcincta are particularly pathogenic. Understanding the interactions among parasites, hosts, and their microbiomes is crucial in developing new approaches in the management of parasites. This study examines the bacterial profile of Trichuris ovis, a highly prevalent nematode among Kashmir Merino sheep, and the influence of nematode infection on the caecal microbiome of its host. Sheep were selected based on T. ovis infection status, and samples were collected from infected and non-infected caecum. The 16S rRNA metagenomic analysis revealed distinct microbial communities in T. ovis, infected caecum, and non-infected caecum. Proteobacteria dominated the T. ovis microbiome, while infected caecum was rich in Bacteroidota and Spirochaetota, and non-infected caecum had a higher proportion of Firmicutes and Verrucomicrobiota. At the genus level, T. ovis was predominantly associated with Escherichia/Shigella, while infected caecum had higher proportions of Bacteroides, Prevotella, and Treponema. Non-infected caecum was characterized by WCHB1-41, Prevotella, and Succiniclasticum like genera. Alpha and beta diversity indicated significant differences in microbiome among the groups, with higher diversity observed in infected caecum. The study found T. ovis infection significantly alters the caecal microbiome of sheep, introducing potentially pathogenic bacteria and reducing beneficial ones. These findings underscore the complex relationship between host, parasite, and microbiome, highlighting the need for comprehensive strategies to manage helminth infections and their broader ecological impacts.
Collapse
Affiliation(s)
- Abid Hussain Bhat
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, India.
| | - Ishfaq Majeed Malik
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Hidayatullah Tak
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Pooja Bharti
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, India
| |
Collapse
|
2
|
Paz EA, Chua EG, Palmer DG, Greeff JC, Liu S, Cheuquemán C, Hassan SU, Martin GB, Tay CY. Revealing the associated microflora hosted by the globally significant parasite Trichostrongylus colubriformis. Sci Rep 2024; 14:3723. [PMID: 38355890 PMCID: PMC10866999 DOI: 10.1038/s41598-024-53772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Trichostrongylus colubriformis is a parasitic helminth that primarily infects small ruminants, causing substantial economic losses in the livestock industry. Exploring the microbiome of this helminth might provide insights into the potential influence of its microbial community on the parasite's survival. We characterised the intestinal microbiome of T. colubriformis that had been collected from the duodenum of sheep, and compared the helminth microbiome with the duodenal microbiome of its host, aiming to identify contributions from the helminth's environment. At the same time, we explored the isolation of fastidious organisms from the harvested helminth. Primary alpha and beta diversity analyses of bacterial species revealed statistically significant differences between the parasite and the host, in terms of species richness and ecological composition. 16S rRNA differential abundance analysis showed that Mycoplasmoides and Stenotrophomonas were significantly present in T. colubriformis but not in the duodenal microbiome of the sheep. Furthermore, two bacteria, Aeromonas caviae and Aeromonas hydrophila, were isolated from T. colubriformis. Examinations of the genome highlight differences in genome size and profiles of antimicrobial resistance genes. Our results suggest that T. colubriformis carries a specific bacterial community that could be supporting the helminth's long-term survival in the host's digestive system.
Collapse
Affiliation(s)
- Erwin A Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Eng Guan Chua
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Dieter G Palmer
- Department of Primary Industries and Regional Development Western Australia, 3 Baron-Hay Court South Perth, Perth, WA, 6151, Australia
| | - Johan C Greeff
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Department of Primary Industries and Regional Development Western Australia, 3 Baron-Hay Court South Perth, Perth, WA, 6151, Australia
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Carolina Cheuquemán
- Medicina Veterinaria, Facultad de Ciencias Agropecuarias, Universidad del Alba, La Serena, Chile
| | - Shamshad Ul Hassan
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Graeme B Martin
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Chin Yen Tay
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Rooney J, Cantacessi C, Sotillo J, Cortés A. Gastrointestinal worms and bacteria: From association to intervention. Parasite Immunol 2023; 45:e12955. [PMID: 36300732 DOI: 10.1111/pim.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
A plethora of studies, both experimental and epidemiological, have indicated the occurrence of associations between infections by gastrointestinal (GI) helminths and the composition and function of the host gut microbiota. Given the worldwide risk and spread of anthelmintic resistance, particularly for GI parasites of livestock, a better understanding of the mechanisms underpinning the relationships between GI helminths and the gut microbiome, and between the latter and host health, may assist the development of novel microbiome-targeting and other bacteria-based strategies for parasite control. In this article, we review current and prospective methods to manipulate the host gut microbiome, and/or to exploit the immune stimulatory and modulatory properties of gut bacteria (and their products) to counteract the negative impact of GI worm infections; we also discuss the potential applications of these intervention strategies in programmes aimed to aid the fight against helminth diseases of humans and livestock.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, València, Spain
| |
Collapse
|
4
|
Eco-evolutionary implications of helminth microbiomes. J Helminthol 2023; 97:e22. [PMID: 36790127 DOI: 10.1017/s0022149x23000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The evolution of helminth parasites has long been seen as an interplay between host resistance to infection and the parasite's capacity to bypass such resistance. However, there has recently been an increasing appreciation of the role of symbiotic microbes in the interaction of helminth parasites and their hosts. It is now clear that helminths have a different microbiome from the organisms they parasitize, and sometimes amid large variability, components of the microbiome are shared among different life stages or among populations of the parasite. Helminths have been shown to acquire microbes from their parent generations (vertical transmission) and from their surroundings (horizontal transmission). In this latter case, natural selection has been strongly linked to the fact that helminth-associated microbiota is not simply a random assemblage of the pool of microbes available from their organismal hosts or environments. Indeed, some helminth parasites and specific microbial taxa have evolved complex ecological relationships, ranging from obligate mutualism to reproductive manipulation of the helminth by associated microbes. However, our understanding is still very elementary regarding the net effect of all microbiome components in the eco-evolution of helminths and their interaction with hosts. In this non-exhaustible review, we focus on the bacterial microbiome associated with helminths (as opposed to the microbiome of their hosts) and highlight relevant concepts and key findings in bacterial transmission, ecological associations, and taxonomic and functional diversity of the bacteriome. We integrate the microbiome dimension in a discussion of the evolution of helminth parasites and identify fundamental knowledge gaps, finally suggesting research avenues for understanding the eco-evolutionary impacts of the microbiome in host-parasite interactions in light of new technological developments.
Collapse
|
5
|
Multi-Omic Profiling, Structural Characterization, and Potent Inhibitor Screening of Evasion-Related Proteins of a Parasitic Nematode, Haemonchus contortus, Surviving Vaccine Treatment. Biomedicines 2023; 11:biomedicines11020411. [PMID: 36830947 PMCID: PMC9952990 DOI: 10.3390/biomedicines11020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of drug-resistant parasitic nematodes in both humans and livestock calls for development of alternative and cost-effective control strategies. Barbervax® is the only registered vaccine for the economically important ruminant strongylid Haemonchus contortus. In this study, we compared the microbiome, genome-wide diversity, and transcriptome of H. contortus adult male populations that survived vaccination with an experimental vaccine after inoculation in sheep. Our genome-wide SNP analysis revealed 16 putative candidate vaccine evasion genes. However, we did not identify any evidence for changes in microbial community profiling based on the 16S rRNA gene sequencing results of the vaccine-surviving parasite populations. A total of fifty-eight genes were identified as significantly differentially expressed, with six genes being long non-coding (lnc) RNAs and none being putative candidate SNP-associated genes. The genes that highly upregulated in surviving parasites from vaccinated animals were associated with GO terms belonging to predominantly molecular functions and a few biological processes that may have facilitated evasion or potentially lessened the effect of the vaccine. These included five targets: astacin (ASTL), carbonate dehydratase (CA2), phospholipase A2 (PLA2), glutamine synthetase (GLUL), and fatty acid-binding protein (FABP3). Our tertiary structure predictions and modelling analyses were used to perform in silico searches of all published and commercially available inhibitor molecules or substrate analogs with potential broad-spectrum efficacy against nematodes of human and veterinary importance.
Collapse
|
6
|
Bedenice D, Resnick-Sousa J, Bookbinder L, Trautwein V, Creasey HN, Widmer G. The association between fecal microbiota, age and endoparasitism in adult alpacas. PLoS One 2022; 17:e0272556. [PMID: 36006927 PMCID: PMC9409599 DOI: 10.1371/journal.pone.0272556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Endoparasitism is a major cause of morbidity and mortality in alpacas (Lama pacos), with growing emergence of anthelmintic resistance. The purpose of the study was to correlate nematode worm burden and selected host phenotypic characteristics, such as age and weight, with the composition of the intestinal microbiota of adult alpacas. Fecal samples were collected per rectum from 102 healthy adult (2.1-11.2 years) alpacas at 3 separate timepoints (pre- and post-treatment with 8.8 mg/kg oral Levamisole HCL, and 4.6 months later) at a single farm. The profile of the fecal bacterial microbiota was characterized using 16S amplicon sequencing. Serial clinical exams and fecal egg counts were compared using related-samples analyses. The fecal microbiota of identically managed, healthy alpacas was characterized by a high level of temporal stability, as both α and β-diversity significantly correlated between sampling timepoints. Pairwise β-diversity between samples collected at each timepoint was low, ranging from 0.16-0.21 UniFrac distance units. The intensity of strongylid nematode infection (including Haemonchus, Ostertagia, Trichostrongylus) was only significantly correlated with microbiota composition in samples collected 14 days after treatment with levamisole. Analysis of similarity revealed no clustering of microbiota from anthelmintic responders or non-responders. Alpaca age explained the largest proportion of fecal microbiota variation and was the only consistently significant predictor of fecal microbiota taxonomic composition, by impacting the ratio of relative Bacteroidetes and Firmicutes abundance. Firmicutes, mostly Clostridiales, was the most abundant taxon across all collections.
Collapse
Affiliation(s)
- Daniela Bedenice
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| | - Jessica Resnick-Sousa
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| | - Lauren Bookbinder
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| | - Victoria Trautwein
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| | - Hannah N. Creasey
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| | - Giovanni Widmer
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| |
Collapse
|
7
|
Untargeted Multimodal Metabolomics Investigation of the Haemonchus contortus Exsheathment Secretome. Cells 2022; 11:cells11162525. [PMID: 36010603 PMCID: PMC9406637 DOI: 10.3390/cells11162525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
In nematodes that invade the gastro-intestinal tract of the ruminant, the process of larval exsheathment marks the transition from the free-living to the parasitic stages of these parasites. To investigate the secretome associated with larval exsheathment, a closed in vitro system that effectively reproduces the two basic components of an anaerobic rumen environment (CO2 and 39 °C) was developed to trigger exsheathment in one of the most pathogenic and model gastrointestinal parasitic nematodes, Haemonchus contortus (barber‘s pole worm). This study reports the use of multimodal untargeted metabolomics and lipidomics methodologies to identify the metabolic signatures and compounds secreted during in vitro larval exsheathment in the H. contortus infective third-stage larva (iL3). A combination of statistical and chemoinformatic analyses using three analytical platforms revealed a panel of metabolites detected post exsheathment and associated with amino acids, purines, as well as select organic compounds. The major lipid classes identified by the non-targeted lipidomics method applied were lysophosphatidylglycerols, diglycerides, fatty acyls, glycerophospholipids, and a triglyceride. The identified metabolites may serve as metabolic signatures to improve tractability of parasitic nematodes for characterizing small molecule host–parasite interactions related to pathogenesis, vaccine and drug design, as well as the discovery of metabolic biomarkers.
Collapse
|
8
|
Jin X, Liu Y, Vallee I, Karadjian G, Liu M, Liu X. Lentinan -triggered butyrate-producing bacteria drive the expulsion of the intestinal helminth Trichinella spiralis in mice. Front Immunol 2022; 13:926765. [PMID: 35967395 PMCID: PMC9371446 DOI: 10.3389/fimmu.2022.926765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Trichinellosis caused by Trichinella spiralis is a serious zoonosis with a worldwide distribution. Lentinan (LNT) is known to modulate the intestinal environment with noted health benefits, yet the effect of LNT against intestinal helminth is unknown. In our study, we first observed that LNT could trigger worm expulsion by promoting mucus layer functions through alteration of gut microbiota. LNT restored the abundance of Bacteroidetes and Proteobacteria altered by T. spiralis infection to the control group level. Interestingly, LNT triggered the production of butyrate. Then, we determined the deworming capacity of probiotics (butyrate-producing bacteria) in mice. Collectively, these findings indicated that LNT could modulate intestinal dysbiosis by T. spiralis, drive the expulsion of intestinal helminth and provided an easily implementable strategy to improve the host defence against T. spiralis infection.
Collapse
Affiliation(s)
- Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yi Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Isabelle Vallee
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d’Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Gregory Karadjian
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d’Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Xiaolei Liu,
| |
Collapse
|
9
|
Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Sci Rep 2022; 12:8381. [PMID: 35589885 PMCID: PMC9120051 DOI: 10.1038/s41598-022-12472-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022] Open
Abstract
Burkholderia vietnamiensis B418 is a multifunctional plant growth-promoting rhizobacteria (PGPR) strain with nitrogen-fixing and phosphate-solubilizing capability which can be employed for root-knot nematode (RKN) management on various crops and vegetables. Here we investigated the control efficacy of B. vietnamiensis B418 inoculation against RKN on watermelon, applied either alone or combined with nematicides fosthiazate or avermectin, and their effects on bacterial and fungal microbiomes in rhizosphere soil. The results of field experiments showed individual application of B418 displayed the highest control efficacy against RKN by 71.15%. The combinations with fosthiazate and avermectin exhibited slight incompatibility with lower inhibitory effects of 62.71% and 67.87%, respectively, which were still notably higher than these nematicides applied separately. Analysis of microbiome assemblages revealed B418 inoculation resulted in a slight reduction for bacterial community and a significant increment for fungal community, suggesting that B418 could compete with other bacteria and stimulate fungal diversity in rhizosphere. The relative abundance of Xanthomonadales, Gemmatimonadales and Sphingomonadales increased while that of Actinomycetales reduced with B418 inoculation. The predominate Sordariomycetes of fungal community decreased dramatically in control treatment with B418 inoculation whereas there were increments in fosthiazate and avermectin treatments. Additionally, nitrogen (N) cycling by soil microbes was estimated by quantifying the abundance of microbial functional genes involved in N-transformation processes as B418 has the capability of N-fixation. The copy number of N-fixing gene nifH increased with B418 inoculation, and the highest increment reached 35.66% in control treatment. Our results demonstrate that B. vietnamiensis B418 is an effective biological nematicide for nematode management, which acts through the modulation of rhizosphere microbial community.
Collapse
|
10
|
β-Glucan-triggered Akkermansia muciniphila expansion facilitates the expulsion of intestinal helminth via TLR2 in mice. Carbohydr Polym 2022; 275:118719. [PMID: 34742442 DOI: 10.1016/j.carbpol.2021.118719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Trichinellosis caused by Trichinella spiralis is a serious zoonosis with a worldwide. β-Glucans (BG) are readily used across the world with noted health benefits, yet the effect and mechanism of BG on host defense against helminth infection remain poorly understood. We observed that BG could trigger worm expulsion via mucus layer independently of type 2 immunity, but was dependent on the gut microbiota in mice. BG restored the abundance of Bacteroidetes and Proteobacteria changed by T. spiralis infection to the control group level and markedly increased the relative abundance of Verrucomicrobia. Akkermansia (belonging to Verrucomicrobia) were significantly expanded in the BG + T. spiralis group. Notably, daily oral supplementation of pasteurized A. muciniphila has a stronger deworming effect than live bacteria and interacted with TLR2. These findings of this study is an easily implementable strategy to facilitate expulsion of gastrointestinal helminth.
Collapse
|
11
|
Kashinskaya EN, Simonov EP, Vlasenko PG, Markevich GN, Shokurova AV, Andree KB, Solovyev MM. The gut microbiota of Cystidicola farionis parasitizing the swim bladder of the nosed charr morph Salvelinus malma complex in Lake Kronotskoe (Kamchatka, Russia). J Nematol 2021; 53:e2021-106. [PMID: 34957411 PMCID: PMC8672423 DOI: 10.21307/jofnem-2021-106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/23/2022] Open
Abstract
Using the approach of sequencing the V3–V4 region of the 16S rRNA gene, we have analyzed the bacterial diversity associated with the gut and “body” (other parts of nematode after dissection: cuticle, epidermis and longitudinal muscles, etc) of Cystidicola farionis parasitizing the swim bladder of different morphotypes of the nosed charr. Comparisons of the gut microbiota of nematodes with their “body” has revealed that the associated microbiota are closely related to each other. Taxonomic analysis indicated that the relative abundances of the dominant nematode-associated bacteria varied with individual fish. The common dominant microbiota of the gut and “body” of nematodes were represented by Aeromonas, Pseudomonas, Shewanella, and Yersinia, while the associated microbiota of the swim bladder of the nosed charr was dominated by Acinetobacter, Cetobacterium, Pajaroellobacter, Paracoccus, Pseudomonas, Shewanella. By comparing the associated microbiota of nematode parasitizing the different morphotypes of the nosed charr the difference in richness estimates (number of OTU’s and Chao1) were revealed between the N1g and N2 morphs.
Collapse
Affiliation(s)
- E N Kashinskaya
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia
| | - E P Simonov
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia.,University of Tyumen, Institute of Environmental and Agricultural Biology (X-BIO), 25 Lenina St., Tyumen, 625003, Russia
| | - P G Vlasenko
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia
| | | | - A V Shokurova
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia
| | - K B Andree
- Instituto de Investigación y Tecnología Agroalimentarias; Cultius Aquàtics; San Carlos de la Rapita, Tarragona, ES 08140, Spain
| | - M M Solovyev
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia.,Tomsk State University; Institute of Biology, Ecology, Soil Science, Agriculture, and Forestry; 36 Lenin Ave, Tomsk, 634050, Russia
| |
Collapse
|
12
|
Describing the intestinal microbiota of Holstein Fasciola-positive and -negative cattle from a hyperendemic area of fascioliasis in central Colombia. PLoS Negl Trop Dis 2021; 15:e0009658. [PMID: 34370722 PMCID: PMC8375995 DOI: 10.1371/journal.pntd.0009658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/19/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
The ability to identify compositional changes in the intestinal microbiota of parasitized hosts is important for understanding the physiological processes that may affect animal productivity. Within the field of host–parasite interactions, many studies have suggested that helminths can influence the microbial composition of their hosts via their immunomodulatory effects. Bovine fascioliasis is a helminthiasis widely studied by immunologists, but with little information available regarding gut microbial communities. Thus, we aimed to describe the composition of the intestinal microbiota of Holstein Fasciola-positive and -negative cattle using parasitological methods and ELISA (enzyme-linked immunosorbent assay). Bovine fecal samples (n = 65) were obtained from livestock slaughter plants in the Cundi-Boyacense Colombian highlands (a hyperendemic region for bovine fascioliasis) and studied by amplicon-based next-generation 16S-rRNA and 18S-rRNA gene sequencing. From these samples, 35 were Fasciola hepatica-negative and, 30 were F. hepatica-positive in our detection analysis. Our results showed a reduction in the relative abundance of Bacteroidetes and Ascomycota in the Fasciola-positive samples, along with decreased relative abundances of the commensal taxa previously associated with fermentation and digestion processes. However, metabolomic approaches and functional analyzes of the intestinal microbiota are necessary to support these hypothesis. These findings are a small first step in the development of research aimed at understanding how microbial populations in bovines are modulated in liver helminth infections. Fasciola hepatica, a liver parasite, infects a wide variety of hosts, mostly ruminants. Ruminant infections with this parasite cause economic losses worldwide, mainly in livestock. Given its importance, much research has been carried out on this parasite, a lot of which has focused on its ability to alter the immune responses of its host. However, little is known about the numerous other interactions it has with the host and how they might affect the host’s intestinal microbiota. Here, we observed a reduction in the abundance of microorganisms associated with the fermentation and digestion of vegetable fiber, two important processes in animal health and productivity. Therefore, it is possible that F. hepatica, in addition to the previously documented liver alterations, also generates changes in the intestinal microbiota that may impact its bovine host. These findings are a small first step in the research of microbial populations in cattle infected with liver helminths which open the door to further research aimed at identifying alternative treatments for parasites such as F. hepatica.
Collapse
|
13
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol Res 2021; 248:126755. [PMID: 33845302 DOI: 10.1016/j.micres.2021.126755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
Plants interact with enormous biotic and abiotic components within ecosystem. For instance, microbes, insects, herbivores, animals, nematodes etc. In general, these interactions are studied independently with plants, that condenses only specific information about the interaction. However, the limitation to study the cross-interactions masks the collaborative role of organisms within ecosystem. Beneficial microbes are most prominent organisms that are needed to be studied due to their bidirectional nature towards plants. Fascinatingly, Plant-Parasitic Nematodes (PPNs) have been profoundly observed to cause mass destruction of agricultural crops worldwide. The huge demand for agriculture for present-day population requires optimization of production potential by curbing the damage caused by PPNs. Chemical nematicides combats their proliferation, but their extended usage has abruptly affected flora, fauna and human populations. Because of consistent pressing issues in regard to environment, the use of biocontrol agents are most favourable alternatives for managing agriculture. However, this association is somehow, tug of war, and understanding of plant-nematode-microbial relation would enable the agriculturists to monitor the overall development of plants along with limiting the use of agrochemicals. Soil microbes are contemporary bio-nematicides emerging in the market, that stimulates the plant growth and impedes PPNs populations. They form natural enemies and trap nematodes, henceforth, it is crucial to understand these interactions for ecological and biotechnological perspectives for commercial use. Moreover, acquiring the diversity of their relationship and molecular-based mechanisms, outlines their cascade of signaling events to serve as biotechnological ecosystem engineers. The omics based mechanisms encompassing hormone gene regulatory pathways and elicitors released by microbes are able to modulate pathogenesis-related (PR) genes within plants. This is achieved via Induced Systemic Resistance (ISR) or acquired systemic channels. Taking into account all these validations, the present review mainly advocates the relationship among microbes and nematodes in plants. It is believed that this review will boost zest and zeal within researchers to effectively understand the plant-nematodes-microbes relations and their ecological perspectives.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
14
|
Williams AR, Myhill LJ, Stolzenbach S, Nejsum P, Mejer H, Nielsen DS, Thamsborg SM. Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Vet Res 2021; 17:62. [PMID: 33514383 PMCID: PMC7845040 DOI: 10.1186/s12917-021-02752-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence suggests that nutritional manipulation of the commensal gut microbiota (GM) may play a key role in maintaining animal health and production in an era of reduced antimicrobial usage. Gastrointestinal helminth infections impose a considerable burden on animal performance, and recent studies suggest that infection may substantially alter the composition and function of the GM. Here, we discuss the potential interactions between different bioactive dietary components (prebiotics, probiotics and phytonutrients) and helminth infection on the GM in livestock. A number of recent studies suggest that host diet can strongly influence the nature of the helminth-GM interaction. Nutritional manipulation of the GM may thus impact helminth infection, and conversely infection may also influence how the GM responds to dietary interventions. Moreover, a dynamic interaction exists between helminths, the GM, intestinal immune responses, and inflammation. Deciphering the mechanisms underlying the diet-GM-helminth axis will likely inform future helminth control strategies, as well as having implications for how health-promoting feed additives, such as probiotics, can play a role in sustainable animal production.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Helminth Microbiota Profiling Using Bacterial 16S rRNA Gene Amplicon Sequencing: From Sampling to Sequence Data Mining. Methods Mol Biol 2021; 2369:263-298. [PMID: 34313994 DOI: 10.1007/978-1-0716-1681-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Symbiont microbial communities play important roles in animal biology and are thus considered integral components of metazoan organisms, including parasitic worms (helminths). Nevertheless, the study of helminth microbiomes has thus far been largely overlooked, and symbiotic relationships between helminths and their microbiomes have been only investigated in selected parasitic worms. Over the past decade, advances in next-generation sequencing technologies, coupled with their increased affordability, have spurred investigations of helminth-associated microbial communities aiming at enhancing current understanding of their fundamental biology and physiology, as well as of host-microbe interactions. Using the blood fluke Schistosoma mansoni as a key example of parasitic worms with complex life cycles involving multiple hosts, in this chapter we (1) provide an overview of protocols for sample collection and (2) outline an example workflow to characterize worm-associated microbial communities using high-throughput sequencing technologies and bioinformatics analyses of large-scale sequence data.
Collapse
|
16
|
Cortés A, Rooney J, Bartley DJ, Nisbet AJ, Cantacessi C. Helminths, hosts, and their microbiota: new avenues for managing gastrointestinal helminthiases in ruminants. Expert Rev Anti Infect Ther 2020; 18:977-985. [PMID: 32530331 DOI: 10.1080/14787210.2020.1782188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Evidence is emerging of complex interactions occurring between gastrointestinal (GI) parasites of ruminants and the resident gut flora, with likely implications for the pathophysiology of worm infection and disease. Similarly, recent data point toward the occurrence of a GI nematode (GIN)-specific microbiota, with potential roles in worm fundamental physiology and reproduction. Parasite-microbiota relationships might represent potential targets for the development of novel parasiticides. AREAS COVERED In this article, we review current knowledge of the role(s) that host- and helminth-associated microbiota play in ruminant host-parasite relationships, and outline potential avenues for the control of GIN of farmed ruminants via the manipulation of resident microbial species with putative functions in infection establishment, host-immune modulation, and/or parasite fitness and survival. EXPERT OPINION In order for this knowledge to be translated into practical applications, we argue that several aspects of the nematode-microbiota cross-talk must be addressed, including (i) the causality of interactions between the parasite, the gut microbiota, and the host immune system, (ii) the modes of action of dietary prebiotics and probiotics, (iii) the mechanisms by which diet supplementation aids the development of resistance/tolerance to GI helminth infections and (iv) the composition of the GIN microbiome and its role(s) in parasite biology and physiology.
Collapse
Affiliation(s)
- Alba Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasotologia, Facultat de Farmàcia, Universitat de València , València, Spain.,Department of Veterinary Medicine, University of Cambridge , Cambridge, UK
| | - James Rooney
- Department of Veterinary Medicine, University of Cambridge , Cambridge, UK
| | | | | | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge , Cambridge, UK
| |
Collapse
|
17
|
Sharpton TJ, Combrink L, Arnold HK, Gaulke CA, Kent M. Harnessing the gut microbiome in the fight against anthelminthic drug resistance. Curr Opin Microbiol 2020; 53:26-34. [PMID: 32114334 DOI: 10.1016/j.mib.2020.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023]
Abstract
Intestinal helminth parasites present major challenges to the welfare of humans and threaten the global food supply. While the discovery of anthelminthic drugs empowered our ability to offset these harms to society, the alarming rise of anthelminthic drug resistance mitigates contemporary efforts to treat and control intestinal helminthic infections. Fortunately, emerging research points to potential opportunities to combat anthelminthic drug resistance by harnessing the gut microbiome as a resource for discovering novel therapeutics and informing responsible drug administration. In this review, we highlight research that demonstrates this potential and provide rationale to support increased investment in efforts to uncover and translationally utilize knowledge about how the gut microbiome mediates intestinal helminthic infection and its outcomes.
Collapse
Affiliation(s)
- Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA; Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA.
| | - Leigh Combrink
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA; Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Holly K Arnold
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA; Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Michael Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA; Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
18
|
Liu F, Xie Y, Zajac AM, Hu Y, Aroian RV, Urban JF, Li RW. Gut microbial signatures associated with moxidectin treatment efficacy of Haemonchus contortus in infected goats. Vet Microbiol 2020; 242:108607. [PMID: 32122611 DOI: 10.1016/j.vetmic.2020.108607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Parasitic infections are associated with profound changes in the structure and function of the gut microbiome in various host-parasite systems. Here we examined the microbial composition and function in the abomasum, proximal colon and feces of Haemonchus contortus-infected goats after a partial anthelmintic drug clearance. A single-dose treatment of H. contortus-infected goats with Cydectin (moxidectin) resulted in an 83.9 % and 61.8 % reduction in fecal egg counts (EPG) and worm burden, respectively (P < 0.01), and restored abomasal pH to a normal baseline level. The treatment significantly increased the abundance of Proteobacteria, particularly that of Campylobacter, in the proximal colon. It also significantly affected several basic pathways, including bacterial secretion, butyrate metabolism, and LPS biosynthesis, and seemingly reduced the cellulolytic capacity in the colon. Several network modules displayed a strong correlation with EPG and worm burden. The Mantel test indicated a strong correlation between treatment related network topologies of the operational taxonomic units (OTU) belonging to Actinobacteria and Rikenellaceae and EPG and worm burden levels, respectively. Furthermore, microbial signatures that may better predict anthelmintic efficacy were identified. A signature or balance represented by the log ratio of the abundance of Verrucomicrobiaceae and Camplyobacteraceae had a strong correlation with EPG (r = 0.80). These novel insights into the interactions between H. contortus and gut microbiome in the caprine host and the consequence of a partial anthelmintic clearance on animal health and well-being may facilitate the design of more effective next-generation anthelmintics.
Collapse
Affiliation(s)
- Fang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yue Xie
- Sichuan Agricultural University, College of Veterinary Medicine, Department of Parasitology, Chengdu, Sichuan, China
| | - Anne M Zajac
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Yan Hu
- Biology Department, Worcester State University, Worcester, MA, USA
| | | | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA; United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Immunology, and Genomics Laboratory, Beltsville, MD, USA
| | - Robert W Li
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA.
| |
Collapse
|
19
|
Kraimi N, Dawkins M, Gebhardt-Henrich SG, Velge P, Rychlik I, Volf J, Creach P, Smith A, Colles F, Leterrier C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol Behav 2019; 210:112658. [PMID: 31430443 DOI: 10.1016/j.physbeh.2019.112658] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
There is increasing evidence of a pivotal role of the gut microbiota (GUT-M) in key physiological functions in vertebrates. Many studies discuss functional implications of the GUT-M not only on immunity, growth, metabolism, but also on brain development and behavior. However, while the influence of the microbiota-gut-brain axis (MGBA) on behavior is documented in rodents and humans, data on farm animals are scarce. This review will first report the well-known influence of the MGBA on behavior in rodent and human and then describe its influence on emotion, memory, social and feeding behaviors in farm animals. This corpus of experiments suggests that a better understanding of the effects of the MGBA on behavior could have large implications in various fields of animal production. Specifically, animal welfare and health could be improved by selection, nutrition and management processes that take into account the role of the GUT-M in behavior.
Collapse
Affiliation(s)
- Narjis Kraimi
- INRA, CNRS, IFCE, Université de Tours, UMR 85, Centre Val de Loire, 37380 Nouzilly, France
| | - Marian Dawkins
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | | | - Philippe Velge
- ISP, INRA, Université de Tours, UMR 1282, Centre Val de Loire, 37380 Nouzilly, France
| | - Ivan Rychlik
- Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jiří Volf
- Veterinary Research Institute, Brno 62100, Czech Republic
| | | | - Adrian Smith
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | - Frances Colles
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | - Christine Leterrier
- INRA, CNRS, IFCE, Université de Tours, UMR 85, Centre Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|