1
|
Farooq T, Hussain MD, Wang Y, Kamran A, Umar M, Tang Y, He Z, She X. Enhanced antiviral defense against begomoviral infection in Nicotiana benthamiana through strategic utilization of fluorescent carbon quantum dots to activate plant immunity. J Nanobiotechnology 2024; 22:707. [PMID: 39543670 PMCID: PMC11562592 DOI: 10.1186/s12951-024-02994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Owing to their unique physiochemical properties, low toxicity, antipathogenic effects and tunability, fluorescent carbon quantum dots (CQDs) represent a new generation of carbon-based nanomaterials. Despite the mounting research on the efficacy of CQDs against resilient plant pathogens, their potential ability to mitigate viral pathogens and the underlying molecular mechanism(s) remain understudied. In this study, we optimized the CQDs to maximize their antiviral effects against a highly pathogenic Begomovirus (cotton leaf curl Multan virus, CLCuMuV) and elucidated the mechanistic pathways associated with CQDs-mediated viral inhibition. To fine-tune the CQDs-induced antiviral effects against CLCuMuV and investigate the underlying molecular mechanisms,we used HR-TEM, XRD, FT-IR, XPS, and UV‒Vis spectrophotometry to characterize the CQDs. SPAD and FluorCam were used for physiological and photosynthetic performance analysis. Transcriptome, RT‒qPCR, integrated bioinformatics and molecular biology were employed to investigate gene expression, viral quantification and data validation. RESULTS The application of fluorescent, hexagonal crystalline, UV-absorptive and water-soluble CQDs (0.01 mg/ml) significantly reduced the CLCuMuV titer and mitigated viral symptoms in N. benthamiana at the early (5 dpi) and late (20 dpi) stages of infection. CQDs significantly increased the morphophysiological properties, relative chlorophyll contents and photosynthetic (Fv/Fm, QY_max, NPQ and Rfd) performance of the CLCuMuV-infected plants. While CLCuMuV infection disrupted plant immunity, the CQDs improved the antiviral defense response by regulating important immunity-related genes involved in endocytosis/necroptosis, Tam3-transposase, the ABC transporter/sphingolipid signaling pathway and serine/threonine protein kinase activities. CQDs potentially triggered TSS and TTS alternative splicing events in CLCuMuV-infected plants. CONCLUSIONS Overall, these findings underscore the antiviral potential of CQDs, their impact on plant resilience, and their ability to modulate gene expression in response to viral stress. This study's molecular insights provide a foundation for further research on nanomaterial applications in plant virology and crop protection, emphasizing the promising role of CQDs in enhancing plant health and combating viral infections.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Muhammad Dilshad Hussain
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, P. R. China
| | - Yuan Wang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Ali Kamran
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, P. R. China
| | - Muhammad Umar
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS, 7008, Australia
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China.
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China.
| |
Collapse
|
2
|
Deja-Sikora E, Gołębiewski M, Hrynkiewicz K. Transcriptomic responses of Solanum tuberosum cv. Pirol to arbuscular mycorrhiza and potato virus Y (PVY) infection. PLANT MOLECULAR BIOLOGY 2024; 114:123. [PMID: 39527333 PMCID: PMC11554710 DOI: 10.1007/s11103-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) serve as both plant symbionts and allies in resisting pathogens and environmental stresses. Mycorrhizal colonization of plant roots can influence the outcomes of plant-pathogen interactions by enhancing specific host defense mechanisms. The transcriptional responses induced by AMF in virus-infected plants remain largely unexplored. In the presented study, we employed a comprehensive transcriptomic approach and qPCR to investigate the molecular determinants underlying the interaction between AMF and potato virus Y (PVY) in Solanum tuberosum L. Our primary goal was to identify the symbiosis- and defense-related determinants activated in mycorrhizal potatoes facing PVY. Through a comparative analysis of mRNA transcriptomes in experimental treatments comprising healthy and PVY-infected potatoes colonized by two AMF species, Rhizophagus regularis or Funneliformis mosseae, we unveiled the overexpression of genes associated with mycorrhiza, including nutrient exchange, lipid transfer, and cell wall remodeling. Furthermore, we identified several differentially expressed genes upregulated in all mycorrhizal treatments that encoded pathogenesis-related proteins involved in plant immune responses, thus verifying the bioprotective role of AMF. We investigated the relationship between mycorrhiza levels and PVY levels in potato leaves and roots. We found accumulation of the virus in the leaves of mycorrhizal plants, but our studies additionally showed a reduced PVY content in potato roots colonized by AMF, which has not been previously demonstrated. Furthermore, we observed that a virus-dependent reduction in nutrient exchange could occur in mycorrhizal roots in the presence of PVY. These findings provide an insights into the interplay between virus and AMF.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
3
|
Tabara M, Uraguchi S, Kiyono M, Watanabe I, Takeda A, Takahashi H, Fukuhara T. A resilient mutualistic interaction between cucumber mosaic virus and its natural host to adapt to an excess zinc environment and drought stress. JOURNAL OF PLANT RESEARCH 2024; 137:1151-1164. [PMID: 39190237 DOI: 10.1007/s10265-024-01573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A perennial pseudometallophyte Arabidopsis halleri is frequently infected with cucumber mosaic virus (CMV) in its natural habitat. The purpose of this study was to characterize the effect of CMV infection on the environmental adaptation of its natural host A. halleri. The CMV(Ho) strain isolated from A. halleri was inoculated into clonal virus-free A. halleri plants, and a unique plant-virus system consisting of CMV(Ho) and its natural wild plant host was established. In a control environment with ambient zinc supplementation, CMV(Ho) infection retarded growth in the above-ground part of host plants but conferred strong drought tolerance. On the other hand, in an excess zinc environment, simulating a natural edaphic environment of A halleri, host plants hyperaccumulated zinc and CMV(Ho) infection did not cause any symptoms to host plants while conferring mild drought tolerance. We also demonstrated in Nicotiana benthamiana as another host that similar effects were induced by the combination of excess zinc and CMV(Ho) infection. Transcriptomic analysis indicated that the host plant recognized CMV(Ho) as a mutualistic symbiont rather than a parasitic pathogen. These results suggest a resilient mutualistic interaction between CMV(Ho) and its natural host A. halleri in its natural habitat.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Izumi Watanabe
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aza-Aoba, 468-1, Sendai, 980-0845, Japan
| | - Toshiyuki Fukuhara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
4
|
Topham K, Stockwell V, Grinstead S, Mollov D. Genomic characterization and survey of a second luteovirus infecting blueberries. Virus Res 2024; 350:199480. [PMID: 39428039 PMCID: PMC11559629 DOI: 10.1016/j.virusres.2024.199480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
New and emerging viral problems may be contributing to blueberry decline. In this research we described a new virus detected in Oregon blueberry production field and surveyed the region for its potential spread. The complete genome sequence of a putative new member of the genus Luteovirus was obtained from blueberry (Vaccinium corymbosum L.) by high throughput sequencing and 5'/3'-RACE. The new virus was tentatively named blueberry virus M (BlVM). Its genome is 5,018 nt long with four putative open reading frames. Similarly to some recently discovered luteoviruses, BlVM does not possess any movement protein (MP). Phylogenetic analysis confirmed clustering of BlVM with the group of non-MP luteoviruses, showing blueberry virus L as the most similar species. Through a small-scale high throughput sequencing survey we obtained 14 additional near complete genomic sequences. A larger survey of 2,654 samples by RT-PCR in Oregon and Washington (USA) found 52 BlVM-positive plants collected from four locations in Oregon. These findings will facilitate monitoring virus distribution and assessment of potential disease associated with this new and emerging blueberry virus.
Collapse
Affiliation(s)
- Katherine Topham
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States; USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States
| | - Virginia Stockwell
- USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States
| | - Samuel Grinstead
- USDA ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, United States
| | - Dimitre Mollov
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States; USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States.
| |
Collapse
|
5
|
Zhu L, Zhu Y, Zou C, Su L, Zhang C, Wang C, Bai Y, Chen B, Li R, Wu Q, Ding S, Wu J, Han Y. New persistent plant RNA virus carries mutations to weaken viral suppression of antiviral RNA interference. MOLECULAR PLANT PATHOLOGY 2024; 25:e70020. [PMID: 39462907 PMCID: PMC11513406 DOI: 10.1111/mpp.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Persistent plant viruses are widespread in natural ecosystems. However, little is known about why persistent infection with these viruses may cause little or no harm to their host. Here, we discovered a new polerovirus that persistently infected wild rice plants by deep sequencing and assembly of virus-derived small-interfering RNAs (siRNAs). The new virus was named Rice tiller inhibition virus 2 (RTIV2) based on the symptoms developed in cultivated rice varieties following Agrobacterium-mediated inoculation with an infectious RTIV2 clone. We showed that RTIV2 infection induced antiviral RNA interference (RNAi) in both the wild and cultivated rice plants as well as Nicotiana benthamiana. It is known that virulent virus infection in plants depends on effective suppression of antiviral RNAi by viral suppressors of RNAi (VSRs). Notably, the P0 protein of RTIV2 exhibited weak VSR activity and carries alanine substitutions of two amino acids broadly conserved among diverse poleroviruses. Mixed infection with umbraviruses enhanced RTIV2 accumulation and/or enabled its mechanical transmission in N. benthamiana. Moreover, replacing the alanine at either one or both positions of RTIV2 P0 enhanced the VSR activity in a co-infiltration assay, and RTIV2 mutants carrying the corresponding substitutions replicated to significantly higher levels in both rice and N. benthamiana plants. Together, our findings show that as a persistent plant virus, RTIV2 carries specific mutations in its VSR gene to weaken viral suppression of antiviral RNAi. Our work reveals a new strategy for persistent viruses to maintain long-term infection by weak suppression of the host defence response.
Collapse
Affiliation(s)
- Li‐Juan Zhu
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu Zhu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of AgricultureGuangxi UniversityNanningChina
| | - Lan‐Yi Su
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chong‐Tao Zhang
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chi Wang
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya‐Ni Bai
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of AgricultureGuangxi UniversityNanningChina
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of AgricultureGuangxi UniversityNanningChina
| | - Qingfa Wu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Shou‐Wei Ding
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jian‐Guo Wu
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan‐Hong Han
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
6
|
Fiaboe KR, Fening KO, Gbewonyo WSK, Deshmukh S. Bionomic responses of Spodoptera frugiperda (J. E. Smith) to lethal and sublethal concentrations of selected insecticides. PLoS One 2023; 18:e0290390. [PMID: 37967118 PMCID: PMC10650980 DOI: 10.1371/journal.pone.0290390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/08/2023] [Indexed: 11/17/2023] Open
Abstract
Since 2016, the invasive insect Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) from the Americas has made maize production unattainable without pesticides in parts of Sub-Saharan Africa and Asia. To counteract this pest, farmers often resort to the use hazardous pesticides. This study aimed to investigate botanicals, microbials, and semi-synthetic insecticides in Ghana for pest control without harming local ecosystems. Under laboratory and on-station conditions, the present study evaluated the acute and sublethal responses of S. frugiperda to: (i) Pieris rapae Granulovirus (PrGV) + Bacillus thuringiensis sub sp. kurstaki (Btk) 5 WP, (ii) Btk + monosultap 55 WP, (iii) ethyl palmitate 5 SC, (iv) azadirachtin 0.3 SC, (v) acetamiprid (20 g/l) + λ-cyhalothrin (15 g/l) 35 EC, (vi) acetamiprid (30 g/l) + indoxacarb (16 g/l) 46 EC, and (vii) emamectin benzoate 1.9 EC. The results showed that at 96 hours post-exposure emamectin benzoate-based formulation has the highest acute larvicidal effect with lower LC50 values of 0.019 mL/L. However, the results suggested strong sublethal effects of PrGV + Btk, azadirachtin, and ethyl palmitate on the bionomics of S. frugiperda. Two seasons on-station experiments, showed that the semi-synthetic emamectin benzoate and the bioinsecticide PrGV + Btk are good candidates for managing S. frugiperda. The promising efficacy of emamectin benzoate and PrGV + Btk on the bionomics of S. frugiperda in the laboratory and on-station demonstrated that they are viable options for managing this pest.
Collapse
Affiliation(s)
- Kokou Rodrigue Fiaboe
- African Regional Postgraduate Programme in Insect Science (ARPPIS), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Soil and Irrigation Research Centre (SIREC), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ken Okwae Fening
- African Regional Postgraduate Programme in Insect Science (ARPPIS), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Soil and Irrigation Research Centre (SIREC), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Winfred Seth Kofi Gbewonyo
- African Regional Postgraduate Programme in Insect Science (ARPPIS), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
| | - Sharanabasappa Deshmukh
- Department of Entomology, College of Agriculture, Keladi Shivappa Nayak University of Agricultural and Horticultural Sciences (UAHS), Shivamogga, Karnataka, India
| |
Collapse
|
7
|
Xu C, Sato Y, Yamazaki M, Brasser M, Barbour MA, Bascompte J, Shimizu KK. Genome-wide association study of aphid abundance highlights a locus affecting plant growth and flowering in Arabidopsis thaliana. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230399. [PMID: 37621664 PMCID: PMC10445015 DOI: 10.1098/rsos.230399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Plant life-history traits, such as size and flowering, contribute to shaping variation in herbivore abundance. Although plant genes involved in physical and chemical traits have been well studied, less is known about the loci linking plant life-history traits and herbivore abundance. Here, we conducted a genome-wide association study (GWAS) of aphid abundance in a field population of Arabidopsis thaliana. This GWAS of aphid abundance detected a relatively rare but significant variant on the third chromosome of A. thaliana, which was also suggestively but non-significantly associated with the presence or absence of inflorescence. Out of candidate genes near this significant variant, a mutant of a ribosomal gene (AT3G13882) exhibited slower growth and later flowering than a wild type under laboratory conditions. A no-choice assay with the turnip aphid, Lipaphis erysimi, found that aphids were unable to successfully establish on the mutant. Our GWAS of aphid abundance unexpectedly found a locus affecting plant growth and flowering.
Collapse
Affiliation(s)
- Chongmeng Xu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marcel Brasser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthew A. Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Départemente de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Quebec, Canada J1K 2R1
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka-ward, Yokohama 244-0813, Japan
| |
Collapse
|
8
|
Ibrahim E, Rychlá A, Alquicer G, Slavíková L, Peng Q, Klíma M, Vrbovský V, Trebicki P, Kundu JK. Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:2501. [PMID: 37447062 DOI: 10.3390/plants12132501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Turnip yellows virus (TuYV), is one of the most important pathogens of oilseed rape, which has caused enormous yield losses in all growing regions of the world in recent years. Therefore, there is a need for resistant varieties for sustainable crop protection. We have investigated the resistance of known varieties and newly developed advanced-breeding lines of oilseed rape to TuYV in greenhouse and field trials. We have analysed the TuYV titre of individual genotypes inoculated with the virus using viruliferous aphids Myzus persicae. The genotypes 'DK Temptation' and 'Rescator' had the lowest and highest virus titres, respectively, and were used as resistant and susceptible models for comparative analyses with other genotypes. In the greenhouse, the best results were obtained with the genotypes 'OP-8143 DH' (2.94 × 105 copies), OP-BN-72 (3.29 × 105 copies), 'Navajo' (3.58 × 105 copies) and 'SG-C 21215' (4.09 × 105 copies), which reached virus titres about 2 times higher than the minimum virus concentration measured in 'DK Temptation' (1.80 × 105 copies). In the field trials, the genotypes 'Navajo' (3.39 × 105 copies), 'OP-8148 DH' (4.44 × 105 copies), 'SG-C 21215' (6.80 × 105 copies) and OP-8480 (7.19 × 105 copies) had the lowest virus titres and reached about 3 times the virus titre of DK Temptation (2.54 × 105 copies). Both trials showed that at least two commercial varieties (e.g., DK Temptation, Navajo) and three advanced breeding lines (e.g., OP-8143 DH, OP-BN-72, SG-C 21215) had low titres of the virus after TuYV infection. This indicates a high level of resistance to TuYV in 'Navajo' or the newly developed breeding lines and the basis of resistance is probably different from R54 (as in 'DK Temptation'). Furthermore, the greenhouse trials together with RT -qPCR-based virus titre analysis could be a cost-effective and efficient method to assess the level of resistance of a given genotype to TuYV infection compared to the field trials. However, further research is needed to identify the underlying mechanisms causing this difference in susceptibility.
Collapse
Affiliation(s)
- Emad Ibrahim
- Crop Research Institute, 16106 Prague, Czech Republic
| | - Andrea Rychlá
- OSEVA Development and Research Ltd., Oilseed Research Institute, 74601 Opava, Czech Republic
| | | | | | - Qi Peng
- Crop Research Institute, 16106 Prague, Czech Republic
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | - Viktor Vrbovský
- OSEVA Development and Research Ltd., Oilseed Research Institute, 74601 Opava, Czech Republic
| | - Piotr Trebicki
- Applied BioSciences, Macquarie University, Sydney 2109, Australia
| | | |
Collapse
|
9
|
Howe-Kerr LI, Grupstra CGB, Rabbitt KM, Conetta D, Coy SR, Klinges JG, Maher RL, McConnell KM, Meiling SS, Messyasz A, Schmeltzer ER, Seabrook S, Sims JA, Veglia AJ, Thurber AR, Thurber RLV, Correa AMS. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME COMMUNICATIONS 2023; 3:27. [PMID: 37009785 PMCID: PMC10068613 DOI: 10.1038/s43705-023-00227-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types ('aminotypes'), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.
Collapse
Affiliation(s)
| | - Carsten G B Grupstra
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Kristen M Rabbitt
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Dennis Conetta
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Samantha R Coy
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Oceanography, Texas A & M University, College Station, TX, USA
| | - J Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, USA
| | - Rebecca L Maher
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Sonora S Meiling
- University of the Virgin Islands, St. Thomas, US Virgin Islands, USA
| | - Adriana Messyasz
- Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | | | - Sarah Seabrook
- Oregon State University, Corvallis, OR, USA
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Jordan A Sims
- Department of BioSciences, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Alex J Veglia
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | | | | |
Collapse
|
10
|
Ribeiro C, Xu J, Hendrich C, Pandey SS, Yu Q, Gmitter FG, Wang N. Seasonal Transcriptome Profiling of Susceptible and Tolerant Citrus Cultivars to Citrus Huanglongbing. PHYTOPATHOLOGY 2023; 113:286-298. [PMID: 36001783 DOI: 10.1094/phyto-05-22-0179-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Citrus huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. Most commercial citrus cultivars are susceptible to HLB, with a few more tolerant exceptions such as 'LB8-9' Sugar Belle mandarin. Transcriptomic analyses have been widely used to investigate the potential mechanisms for disease susceptibility, resistance, or tolerance. Previous transcriptomic studies related to HLB mostly focused on single time point data collection. We hypothesize that changes in day length and temperature throughout the seasons have profound effects on citrus-CLas interactions. Here, we conducted RNA-seq analyses on HLB-susceptible Valencia sweet orange and HLB-tolerant mandarin 'LB8-9' in winter, spring, summer, and fall. Significant variations in differentially expressed genes (DEGs) related to HLB were observed among the four seasons. For both cultivars, the highest number of DEGs were found in the spring. CLas infection stimulates the expression of immune-related genes such as NBS-LRR, RLK, RLCK, CDPK, MAPK pathway, reactive oxygen species (ROS), and PR genes in both cultivars, consistent with the model that HLB is a pathogen-triggered immune disease. HLB-positive mandarin 'LB8-9' trees contained higher concentrations of maltose and sucrose, which are known to scavenge ROS. In addition, mandarin 'LB8-9' showed higher expression of genes involved in phloem regeneration, which might contribute to its HLB tolerance. This study shed light on the pathogenicity mechanism of the HLB pathosystem and the tolerance mechanism against HLB, providing valuable insights into HLB management.
Collapse
Affiliation(s)
- Camila Ribeiro
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL 33850
| | - Jin Xu
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL 33850
| | - Connor Hendrich
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL 33850
| | - Sheo Shankar Pandey
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL 33850
| | - Qibin Yu
- Citrus Research & Education Center, Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL 33850
| | - Frederick G Gmitter
- Citrus Research & Education Center, Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
11
|
Rumbaugh AC, Durbin-Johnson B, Padhi E, Lerno L, Cauduro Girardello R, Britton M, Slupsky C, Sudarshana MR, Oberholster A. Investigating Grapevine Red Blotch Virus Infection in Vitis vinifera L. cv. Cabernet Sauvignon Grapes: A Multi-Omics Approach. Int J Mol Sci 2022; 23:ijms232113248. [PMID: 36362035 PMCID: PMC9658657 DOI: 10.3390/ijms232113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Grapevine red blotch virus (GRBV) is a recently identified virus. Previous research indicates primarily a substantial impact on berry ripening in all varieties studied. The current study analyzed grapes’ primary and secondary metabolism across grapevine genotypes and seasons to reveal both conserved and variable impacts to GRBV infection. Vitis vinifera cv. Cabernet Sauvignon (CS) grapevines grafted on two different rootstocks (110R and 420A) were analyzed in 2016 and 2017. Metabolite profiling revealed a considerable impact on amino acid and malate acid levels, volatile aroma compounds derived from the lipoxygenase pathway, and anthocyanins synthesized in the phenylpropanoid pathway. Conserved transcriptional responses to GRBV showed induction of auxin-mediated pathways and photosynthesis with inhibition of transcription and translation processes mainly at harvest. There was an induction of plant-pathogen interactions at pre-veraison, for all genotypes and seasons, except for CS 110R in 2017. Lastly, differential co-expression analysis revealed a transcriptional shift from metabolic synthesis and energy metabolism to transcription and translation processes associated with a virus-induced gene silencing transcript. This plant-derived defense response transcript was only significantly upregulated at veraison for all genotypes and seasons, suggesting a phenological association with disease expression and plant immune responses.
Collapse
Affiliation(s)
- Arran C. Rumbaugh
- United States Department of Agriculture, Department of Viticulture and Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Blythe Durbin-Johnson
- Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Emily Padhi
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Larry Lerno
- Department of Viticulture & Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Raul Cauduro Girardello
- Department of Viticulture & Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mysore R. Sudarshana
- United States Department of Agriculture, Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Anita Oberholster
- Department of Viticulture & Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
12
|
Sheridan R, Spelman K. Polyphenolic promiscuity, inflammation-coupled selectivity: Whether PAINs filters mask an antiviral asset. Front Pharmacol 2022; 13:909945. [PMID: 36339544 PMCID: PMC9634583 DOI: 10.3389/fphar.2022.909945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
The Covid-19 pandemic has elicited much laboratory and clinical research attention on vaccines, mAbs, and certain small-molecule antivirals against SARS-CoV-2 infection. By contrast, there has been comparatively little attention on plant-derived compounds, especially those that are understood to be safely ingested at common doses and are frequently consumed in the diet in herbs, spices, fruits and vegetables. Examining plant secondary metabolites, we review recent elucidations into the pharmacological activity of flavonoids and other polyphenolic compounds and also survey their putative frequent-hitter behavior. Polyphenols, like many drugs, are glucuronidated post-ingestion. In an inflammatory milieu such as infection, a reversion back to the active aglycone by the release of β-glucuronidase from neutrophils and macrophages allows cellular entry of the aglycone. In the context of viral infection, virions and intracellular virus particles may be exposed to promiscuous binding by the polyphenol aglycones resulting in viral inhibition. As the mechanism's scope would apply to the diverse range of virus species that elicit inflammation in infected hosts, we highlight pre-clinical studies of polyphenol aglycones, such as luteolin, isoginkgetin, quercetin, quercetagetin, baicalein, curcumin, fisetin and hesperetin that reduce virion replication spanning multiple distinct virus genera. It is hoped that greater awareness of the potential spatial selectivity of polyphenolic activation to sites of pathogenic infection will spur renewed research and clinical attention for natural products antiviral assaying and trialing over a wide array of infectious viral diseases.
Collapse
Affiliation(s)
| | - Kevin Spelman
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
- Health Education and Research, Driggs, ID, United States
| |
Collapse
|
13
|
McLeish MJ, Zamfir AD, Babalola BM, Peláez A, Fraile A, García-Arenal F. Metagenomics show high spatiotemporal virus diversity and ecological compartmentalisation: Virus infections of melon, Cucumis melo, crops, and adjacent wild communities. Virus Evol 2022; 8:veac095. [PMID: 36405340 PMCID: PMC9667876 DOI: 10.1093/ve/veac095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/24/2022] [Accepted: 09/30/2022] [Indexed: 07/22/2023] Open
Abstract
The emergence of viral diseases results from novel transmission dynamics between wild and crop plant communities. The bias of studies towards pathogenic viruses of crops has distracted from knowledge of non-antagonistic symbioses in wild plants. Here, we implemented a high-throughput approach to compare the viromes of melon (Cucumis melo) and wild plants of crop (Crop) and adjacent boundaries (Edge). Each of the 41-plant species examined was infected by at least one virus. The interactions of 104 virus operational taxonomic units (OTUs) with these hosts occurred largely within ecological compartments of either Crop or Edge, with Edge having traits of a reservoir community. Local scale patterns of infection were characterised by the positive correlation between plant and virus richness at each site, the tendency for increased specialist host use through seasons, and specialist host use by OTUs observed only in Crop, characterised local-scale patterns of infection. In this study of systematically sampled viromes of a crop and adjacent wild communities, most hosts showed no disease symptoms, suggesting non-antagonistic symbioses are common. The coexistence of viruses within species-rich ecological compartments of agro-systems might promote the evolution of a diversity of virus strategies for survival and transmission. These communities, including those suspected as reservoirs, are subject to sporadic changes in assemblages, and so too are the conditions that favour the emergence of disease.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián D Zamfir
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Bisola M Babalola
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
14
|
Hamim I, Suzuki JY, Borth WB, Melzer MJ, Wall MM, Hu JS. Preserving plant samples from remote locations for detection of RNA and DNA viruses. Front Microbiol 2022; 13:930329. [PMID: 36090110 PMCID: PMC9453036 DOI: 10.3389/fmicb.2022.930329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Viral diseases in plants have a significant impact on agricultural productivity. Effective detection is needed to facilitate accurate diagnosis and characterization of virus infections essential for crop protection and disease management. For sensitive polymerase chain reaction (PCR)-based methods, it is important to preserve the integrity of nucleic acids in plant tissue samples. This is especially critical when samples are collected from isolated areas, regions distant from a laboratory, or in developing countries that lack appropriate facilities or equipment for diagnostic analyses. RNAlater® provides effective, reliable sample storage by stabilizing both RNA and DNA in plant tissue samples. Our work indicated that total RNA or DNA extracted from virus-infected leaf samples preserved in RNAlater® was suitable for reverse transcription polymerase chain reaction (RT-PCR), PCR, Sanger sequencing, high-throughput sequencing (HTS), and enzyme-linked immunosorbent assay (ELISA)-based diagnostic analyses. We demonstrated the effectiveness of this technology using leaf tissue samples from plants with virus symptoms grown in farmers’ fields in Bangladesh. The results revealed that RNAlater® technology was effective for detection and characterization of viruses from samples collected from remote areas and stored for extended periods. Adoption of this technology by developing countries with limited laboratory facilities could greatly increase their capacity to detect and diagnose viral infections in crop plants using modern analytical techniques.
Collapse
Affiliation(s)
- Islam Hamim
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- *Correspondence: Islam Hamim,
| | - Jon Y. Suzuki
- USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, United States
| | - Wayne B. Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael J. Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Marisa M. Wall
- USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, United States
| | - John S. Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
- John S. Hu,
| |
Collapse
|
15
|
Lelwala RV, LeBlanc Z, Gauthier MEA, Elliott CE, Constable FE, Murphy G, Tyle C, Dinsdale A, Whattam M, Pattemore J, Barrero RA. Implementation of GA-VirReport, a Web-Based Bioinformatics Toolkit for Post-Entry Quarantine Screening of Virus and Viroids in Plants. Viruses 2022; 14:v14071480. [PMID: 35891459 PMCID: PMC9317486 DOI: 10.3390/v14071480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
High-throughput sequencing (HTS) of host plant small RNA (sRNA) is a popular approach for plant virus and viroid detection. The major bottlenecks for implementing this approach in routine virus screening of plants in quarantine include lack of computational resources and/or expertise in command-line environments and limited availability of curated plant virus and viroid databases. We developed: (1) virus and viroid report web-based bioinformatics workflows on Galaxy Australia called GA-VirReport and GA-VirReport-Stats for detecting viruses and viroids from host plant sRNA extracts and (2) a curated higher plant virus and viroid database (PVirDB). We implemented sRNA sequencing with unique dual indexing on a set of plants with known viruses. Sequencing data were analyzed using GA-VirReport and PVirDB to validate these resources. We detected all known viruses in this pilot study with no cross-sample contamination. We then conducted a large-scale diagnosis of 105 imported plants processed at the post-entry quarantine facility (PEQ), Australia. We detected various pathogens in 14 imported plants and discovered that de novo assembly using 21–22 nt sRNA fraction and the megablast algorithm yielded better sensitivity and specificity. This study reports the successful, large-scale implementation of HTS and a user-friendly bioinformatics workflow for virus and viroid screening of imported plants at the PEQ.
Collapse
Affiliation(s)
- Ruvini V. Lelwala
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (R.V.L.); (Z.L.); (M.-E.A.G.)
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Zacharie LeBlanc
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (R.V.L.); (Z.L.); (M.-E.A.G.)
| | - Marie-Emilie A. Gauthier
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (R.V.L.); (Z.L.); (M.-E.A.G.)
| | - Candace E. Elliott
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Fiona E. Constable
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia;
| | - Greg Murphy
- Technology Infrastructure Branch, Information Services Division, Department of Agriculture, Fisheries and Forestry, Canberra, ACT 2601, Australia; (G.M.); (C.T.)
| | - Callum Tyle
- Technology Infrastructure Branch, Information Services Division, Department of Agriculture, Fisheries and Forestry, Canberra, ACT 2601, Australia; (G.M.); (C.T.)
| | - Adrian Dinsdale
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (A.D.); (M.W.)
| | - Mark Whattam
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (A.D.); (M.W.)
| | - Julie Pattemore
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Roberto A. Barrero
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (R.V.L.); (Z.L.); (M.-E.A.G.)
- Correspondence:
| |
Collapse
|
16
|
Grupstra CGB, Howe-Kerr LI, Veglia AJ, Bryant RL, Coy SR, Blackwelder PL, Correa AMS. Thermal stress triggers productive viral infection of a key coral reef symbiont. THE ISME JOURNAL 2022; 16:1430-1441. [PMID: 35046559 PMCID: PMC9038915 DOI: 10.1038/s41396-022-01194-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 04/27/2023]
Abstract
Climate change-driven ocean warming is increasing the frequency and severity of bleaching events, in which corals appear whitened after losing their dinoflagellate endosymbionts (family Symbiodiniaceae). Viral infections of Symbiodiniaceae may contribute to some bleaching signs, but little empirical evidence exists to support this hypothesis. We present the first temporal analysis of a lineage of Symbiodiniaceae-infecting positive-sense single-stranded RNA viruses ("dinoRNAVs") in coral colonies, which were exposed to a 5-day heat treatment (+2.1 °C). A total of 124 dinoRNAV major capsid protein gene "aminotypes" (unique amino acid sequences) were detected from five colonies of two closely related Pocillopora-Cladocopium (coral-symbiont) combinations in the experiment; most dinoRNAV aminotypes were shared between the two coral-symbiont combinations (64%) and among multiple colonies (82%). Throughout the experiment, seventeen dinoRNAV aminotypes were found only in heat-treated fragments, and 22 aminotypes were detected at higher relative abundances in heat-treated fragments. DinoRNAVs in fragments of some colonies exhibited higher alpha diversity and dispersion under heat stress. Together, these findings provide the first empirical evidence that exposure to high temperatures triggers some dinoRNAVs to switch from a persistent to a productive infection mode within heat-stressed corals. Over extended time frames, we hypothesize that cumulative dinoRNAV production in the Pocillopora-Cladocopium system could affect colony symbiotic status, for example, by decreasing Symbiodiniaceae densities within corals. This study sets the stage for reef-scale investigations of dinoRNAV dynamics during bleaching events.
Collapse
Affiliation(s)
| | | | - Alex J Veglia
- BioSciences at Rice, Rice University, Houston, TX, USA
| | - Reb L Bryant
- BioSciences at Rice, Rice University, Houston, TX, USA
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
| | | | - Patricia L Blackwelder
- Department of Chemistry, University of Miami Center for Advanced Microscopy (UMCAM), 1301 Memorial Dr, Coral Gables, FL, 33146-0630, USA
| | | |
Collapse
|
17
|
Resistance Management through Brassica Crop–TuMV–Aphid Interactions: Retrospect and Prospects. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Turnip mosaic virus (TuMV) is an important threat to the yield and quality of brassica crops in China, and has brought serious losses to brassica crops in the Far East, including China and the north. Aphids (Hemiptera, Aphidoidea) are the main mediators of TuMV transmission in field production, and not only have strong virus transmission ability (small individuals, strong concealment, and strong fecundity), but are also influenced by the environment, making them difficult to control. Till now, there have been few studies on the resistance to aphids in brassica crops, which depended mainly on pesticide control in agriculture production. However, the control effect was temporarily effective, which also brought environmental pollution, pesticide residues in food products, and destroyed the ecological balance. This study reviews the relationship among brassica crop–TuMV, TuMV–aphid, and brassica crop–aphid interactions, and reveals the influence factors (light, temperature, and CO2 concentration) on brassica crop–TuMV–aphid interactions, summarizing the current research status and main scientific problems about brassica crop–TuMV–aphid interactions. It may provide theoretical guidance for opening up new ways of aphid and TuMV management in brassica crops.
Collapse
|
18
|
Villamor DEV, Keller KE, Martin RR, Tzanetakis IE. Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops. PLANT DISEASE 2022; 106:518-525. [PMID: 34282931 DOI: 10.1094/pdis-05-21-0949-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We completed a comprehensive study comparing virus detection between high throughput sequencing (HTS) and standard protocols in 30 berry selections (12 Fragaria, 10 Vaccinium, and eight Rubus) with known virus profiles. The study examined temporal detection of viruses at four sampling times encompassing two growing seasons. Within the standard protocols, reverse transcription (RT) PCR proved better than biological indexing. Detection of known viruses by HTS and RT-PCR nearly mirrored each other. HTS provided superior detection compared with RT-PCR on a wide spectrum of variants and discovery of novel viruses. More importantly, in most cases in which the two protocols showed parallel virus detection, 11 viruses in 16 selections were not consistently detected by both methods at all sampling points. Based on these data, we propose a testing requirement of four sampling times over two growing seasons for berry and potentially other crops, to ensure that no virus remains undetected independent of titer, distribution, or other virus-virus or virus-host interactions.
Collapse
Affiliation(s)
- D E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - K E Keller
- U.S. Department of Agriculture Agricultural Research Service, Corvallis, OR 97330
| | - R R Martin
- U.S. Department of Agriculture Agricultural Research Service, Corvallis, OR 97330
| | - I E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
19
|
Simkovich AJ, Li Y, Kohalmi SE, Griffiths JS, Wang A. Molecular Identification of Prune Dwarf Virus (PDV) Infecting Sweet Cherry in Canada and Development of a PDV Full-Length Infectious cDNA Clone. Viruses 2021; 13:2025. [PMID: 34696454 PMCID: PMC8541084 DOI: 10.3390/v13102025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2023] Open
Abstract
Prune dwarf virus (PDV) is a member of ilarviruses that infects stone fruit species such as cherry, plum and peach, and ornamentally grown trees worldwide. The virus lacks an RNA silencing suppressor. Infection by PDV either alone, or its mixed infection with other viruses causes deteriorated fruit marketability and reduced fruit yields. Here, we report the molecular identification of PDV from sweet cherry in the prominent fruit growing region of Ontario, Canada known as the Niagara fruit belt using next generation sequencing of small interfering RNAs (siRNAs). We assessed its incidence in an experimental farm and determined the full genome sequence of this PDV isolate. We further constructed an infectious cDNA clone. Inoculation of the natural host cherry with this clone induced a dwarfing phenotype. We also examined its infectivity on several common experimental hosts. We found that it was infectious on cucurbits (cucumber and squash) with clear symptoms and Nicotiana benthamiana without causing noticeable symptoms, and it was unable to infect Arabidopsis thaliana. As generating infectious clones for woody plants is very challenging with limited success, the PDV infectious clone developed from this study will be a useful tool to facilitate molecular studies on PDV and related Prunus-infecting viruses.
Collapse
Affiliation(s)
- Aaron J. Simkovich
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
| | - Susanne E. Kohalmi
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| | - Jonathan S. Griffiths
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| |
Collapse
|
20
|
Hasiów-Jaroszewska B, Boezen D, Zwart MP. Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses 2021; 13:1939. [PMID: 34696369 PMCID: PMC8539035 DOI: 10.3390/v13101939] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
High throughput sequencing (HTS) has revolutionised virus detection and discovery, allowing for the untargeted characterisation of whole viromes. Viral metagenomics studies have demonstrated the ubiquity of virus infection - often in the absence of disease symptoms - and tend to discover many novel viruses, highlighting the small fraction of virus biodiversity described to date. The majority of the studies using high-throughput sequencing to characterise plant viromes have focused on economically important crops, and only a small number of studies have considered weeds and wild plants. Characterising the viromes of wild plants is highly relevant, as these plants can affect disease dynamics in crops, often by acting as viral reservoirs. Moreover, the viruses in unmanaged systems may also have important effects on wild plant populations and communities. Here, we review metagenomic studies on weeds and wild plants to show the benefits and limitations of this approach and identify knowledge gaps. We consider key genomics developments that are likely to benefit the field in the near future. Although only a small number of HTS studies have been performed on weeds and wild plants, these studies have already discovered many novel viruses, demonstrated unexpected trends in virus distributions, and highlighted the potential of metagenomics as an approach.
Collapse
Affiliation(s)
- Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznań, Poland
| | - Dieke Boezen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| | - Mark P. Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| |
Collapse
|
21
|
Ahamedemujtaba V, Atheena PV, Bhat AI, Krishnamurthy KS, Srinivasan V. Symptoms of piper yellow mottle virus in black pepper as influenced by temperature and relative humidity. Virusdisease 2021; 32:305-313. [PMID: 34423100 DOI: 10.1007/s13337-021-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 11/26/2022] Open
Abstract
Masking of symptoms in winter and their re-appearance in black pepper (Piper nigrum L.) infected with piper yellow mottle virus (PYMoV) in summer is common, especially on new flushes that appear after pre-monsoon showers. Plants of nineteen cultivars of black pepper infected with PYMoV but without any visible symptoms were grown in a polyhouse under natural conditions and in a greenhouse under controlled conditions from January 2019 to January 2020. The number of plants expressing symptoms in the polyhouse increased gradually from 1% during the 3rd standard meteorological week (SMW) (16 January) to 41% during the 21st SMW (22 May), when the afternoon temperature was 30-40 °C and relative humidity (RH) was 75-93%, but began declining thereafter until the 53rd SMW (1 January), when the afternoon temperature was 30-36 °C and RH was 65-86%. The proportion of plants expressing symptoms varied with the cultivar. However, in the greenhouse, in which temperature and RH were maintained at approximately 26 °C and 80%, respectively, not more than 2% of the plants expressed symptoms. The number of symptomatic plants was positively correlated to maximum temperature (T Max) and maximum relative humidity (RH Max) in the afternoon. Based on this observation, a model for predicting the percentage of symptomatic plants was developed using stepwise regression analysis. Plants at the two sites did not differ significantly in the concentration of virus (virus titre) but differed significantly in the content of total carbohydrates, lipid peroxidase, and phenols. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00686-3.
Collapse
Affiliation(s)
- V Ahamedemujtaba
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - P V Atheena
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - A I Bhat
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - K S Krishnamurthy
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - V Srinivasan
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| |
Collapse
|
22
|
HTS-Based Diagnostics of Sugarcane Viruses: Seasonal Variation and Its Implications for Accurate Detection. Viruses 2021; 13:v13081627. [PMID: 34452491 PMCID: PMC8402784 DOI: 10.3390/v13081627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/26/2023] Open
Abstract
Rapid global germplasm trade has increased concern about the spread of plant pathogens and pests across borders that could become established, affecting agriculture and environment systems. Viral pathogens are of particular concern due to their difficulty to control once established. A comprehensive diagnostic platform that accurately detects both known and unknown virus species, as well as unreported variants, is playing a pivotal role across plant germplasm quarantine programs. Here we propose the addition of high-throughput sequencing (HTS) from total RNA to the routine quarantine diagnostic workflow of sugarcane viruses. We evaluated the impact of sequencing depth needed for the HTS-based identification of seven regulated sugarcane RNA/DNA viruses across two different growing seasons (spring and fall). Our HTS analysis revealed that viral normalized read counts (RPKM) was up to 23-times higher in spring than in the fall season for six out of the seven viruses. Random read subsampling analyses suggested that the minimum number of reads required for reliable detection of RNA viruses was 0.5 million, with a viral genome coverage of at least 92%. Using an HTS-based total RNA metagenomics approach, we identified all targeted viruses independent of the time of the year, highlighting that higher sequencing depth is needed for the identification of DNA viruses.
Collapse
|
23
|
Espindola AS, Sempertegui-Bayas D, Bravo-Padilla DF, Freire-Zapata V, Ochoa-Corona F, Cardwell KF. TASPERT: Target-Specific Reverse Transcript Pools to Improve HTS Plant Virus Diagnostics. Viruses 2021; 13:v13071223. [PMID: 34202758 PMCID: PMC8310100 DOI: 10.3390/v13071223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
High-throughput sequencing (HTS) is becoming the new norm of diagnostics in plant quarantine settings. HTS can be used to detect, in theory, all pathogens present in any given sample. The technique’s success depends on various factors, including methods for sample management/preparation and suitable bioinformatic analysis. The Limit of Detection (LoD) of HTS for plant diagnostic tests can be higher than that of PCR, increasing the risk of false negatives in the case of low titer of the target pathogen. Several solutions have been suggested, particularly for RNA viruses, including rRNA depletion of the host, dsRNA, and siRNA extractions, which increase the relative pathogen titer in a metagenomic sample. However, these solutions are costly and time-consuming. Here we present a faster and cost-effective alternative method with lower HTS-LoD similar to or lower than PCR. The technique is called TArget-SPecific Reverse Transcript (TASPERT) pool. It relies on pathogen-specific reverse primers, targeting all RNA viruses of interest, pooled and used in double-stranded cDNA synthesis. These reverse primers enrich the sample for only pathogens of interest. Evidence on how TASPERT is significantly superior to oligodT, random 6-mer, and 20-mer in generating metagenomic libraries containing the pathogen of interest is presented in this proof of concept.
Collapse
Affiliation(s)
- Andres S. Espindola
- Institute of Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK 74078, USA; (D.S.-B.); (D.F.B.-P.); (V.F.-Z.); (F.O.-C.); (K.F.C.)
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence:
| | - Daniela Sempertegui-Bayas
- Institute of Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK 74078, USA; (D.S.-B.); (D.F.B.-P.); (V.F.-Z.); (F.O.-C.); (K.F.C.)
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Danny F. Bravo-Padilla
- Institute of Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK 74078, USA; (D.S.-B.); (D.F.B.-P.); (V.F.-Z.); (F.O.-C.); (K.F.C.)
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Viviana Freire-Zapata
- Institute of Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK 74078, USA; (D.S.-B.); (D.F.B.-P.); (V.F.-Z.); (F.O.-C.); (K.F.C.)
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francisco Ochoa-Corona
- Institute of Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK 74078, USA; (D.S.-B.); (D.F.B.-P.); (V.F.-Z.); (F.O.-C.); (K.F.C.)
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kitty F. Cardwell
- Institute of Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK 74078, USA; (D.S.-B.); (D.F.B.-P.); (V.F.-Z.); (F.O.-C.); (K.F.C.)
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
24
|
Differences in Virulence among PVY Isolates of Different Geographical Origins When Infecting an Experimental Host under Two Growing Environments Are Not Determined by HCPro. PLANTS 2021; 10:plants10061086. [PMID: 34071353 PMCID: PMC8228399 DOI: 10.3390/plants10061086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022]
Abstract
The contribution of the HCPro factors expressed by several PVY isolates of different geographical origins (one from Scotland, one from Spain, and several from Tunisia) to differences in their virulence in Nicotiana benthamiana plants was investigated under two growing conditions: standard (st; 26 °C and current ambient levels of CO2), and climate change-associated (cc; 31 °C and elevated levels of CO2). In all cases, relative infection symptoms and viral titers were determined. The viral HCPro cistrons were also sequenced and amino-acid features of the encoded proteins were established, as well as phylogenetic distances. Additionally, the abilities of the HCPros of several isolates to suppress silencing were assessed under either growing condition. Overall, viral titers and infection symptoms decreased under cc vs. st conditions. However, within each growing condition, relative titers and symptoms were found to be isolate-specific, with titers and symptom severities not always correlating. Crucially, isolates expressing identical HCPros displayed different symptoms. In addition, all HCPro variants tested displayed comparable silencing suppression strengths. Therefore, HCPro alone could not be the main determinant of the relative differences in pathogenicity observed among the PVY isolates tested in this host, under the environments considered.
Collapse
|
25
|
Poelaert KCK, Williams RM, Matullo CM, Rall GF. Noncanonical Transmission of a Measles Virus Vaccine Strain from Neurons to Astrocytes. mBio 2021; 12:e00288-21. [PMID: 33758092 PMCID: PMC8092232 DOI: 10.1128/mbio.00288-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/20/2023] Open
Abstract
Viruses, including members of the herpes-, entero-, and morbillivirus families, are the most common cause of infectious encephalitis in mammals worldwide. During most instances of acute viral encephalitis, neurons are typically the initial cell type that is infected. However, as replication and spread ensue, other parenchymal cells can become viral targets, especially in chronic infections. Consequently, to ascertain how neurotropic viruses trigger neuropathology, it is crucial to identify which central nervous system (CNS) cell populations are susceptible and permissive throughout the course of infection, and to define how viruses spread between distinct cell types. Using a measles virus (MV) transgenic mouse model that expresses human CD46 (hCD46), the MV vaccine strain receptor, under the control of a neuron-specific enolase promoter (NSE-hCD46+ mice), a novel mode of viral spread between neurons and astrocytes was identified. Although hCD46 is required for initial neuronal infection, it is dispensable for heterotypic spread to astrocytes, which instead depends on glutamate transporters and direct neuron-astrocyte contact. Moreover, in the presence of RNase A, astrocyte infection is reduced, suggesting that nonenveloped ribonucleoproteins (RNP) may cross the neuron-astrocyte synaptic cleft. The characterization of this novel mode of intercellular transport offers insights into the unique interaction of neurons and glia and may reveal therapeutic targets to mitigate the life-threatening consequences of measles encephalitis.IMPORTANCE Viruses are the most important cause of infectious encephalitis in mammals worldwide; several thousand people, primarily the very young and the elderly, are impacted annually, and few therapies are reliably successful once neuroinvasion has occurred. To understand how viruses contribute to neuropathology, and to develop tools to prevent or ameliorate such infections, it is crucial to define if and how viruses disseminate among the different cell populations within the highly complex central nervous system. This study defines a noncanonical mode of viral transmission between neurons and astrocytes within the brain.
Collapse
Affiliation(s)
- Katrien C K Poelaert
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
| | - Riley M Williams
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, USA
| | - Christine M Matullo
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
| | - Glenn F Rall
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Kim Y, Kim YJ, Paek KH. Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1432-1448. [PMID: 33165515 DOI: 10.1093/jxb/eraa527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 05/12/2023]
Abstract
Resistance (R) gene-mediated resistance is a robust and efficient antiviral immune system in the plants. Thus, when R-mediated resistance was suppressed at elevated temperatures, resistance towards viruses was expected to be completely collapsed. Nonetheless, the multiplication of Tobacco mosaic virus pathotype P0 (TMV-P0) was inhibited, and TMV-P0 particles were only occasionally present in the systemic leaves of pepper plants (Capsicum annuum). RNAi-mediated RNA silencing is a well-known antiviral immune mechanism. At elevated temperatures, RNAi-mediated antiviral resistance was induced and virus-derived siRNAs (vsiRNAs) were dramatically increased. Through sRNA-sequencing (sRNA-Seq) analysis, we revealed that vsiRNAs derived from TMV-P0 were greatly increased. Intriguingly, virus-infected plants could select the temperature-specific vsiRNAs for antiviral resistance from the amplified vsiRNAs at elevated temperatures. Pre-application of these temperature-specific vsiRNAs endowed antiviral resistance of the plants. Therefore, plants sustain antiviral resistance by activating RNAi-mediated resistance, based on temperature-specific vsiRNAs at elevated temperatures.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyung-Hee Paek
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Alcaide C, Sardanyés J, Elena SF, Gómez P. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 2021; 7:veab017. [PMID: 33815829 PMCID: PMC8007957 DOI: 10.1093/ve/veab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus coexisted in tomato plants in a temperature-dependent continuum between neutral and antagonistic interactions. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. These results suggest that the temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses that are co-infecting an individual host. This research provides insights into the effect that changes in host growth temperatures might have on the evolutionary dynamics of viral populations in mixed infections.
Collapse
Affiliation(s)
- Cristina Alcaide
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
- Dynamical Systems and Computational Virology Associated Unit Instituto de Biología Integrativa de Sistemas (I2SysBio) - CRM, Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Santiago F Elena
- I2SysBio, CSIC-Universitat de València, Paterna, 46980 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
- Corresponding author: E-mail:
| |
Collapse
|
28
|
Amari K, Huang C, Heinlein M. Potential Impact of Global Warming on Virus Propagation in Infected Plants and Agricultural Productivity. FRONTIERS IN PLANT SCIENCE 2021; 12:649768. [PMID: 33868349 PMCID: PMC8045756 DOI: 10.3389/fpls.2021.649768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 05/14/2023]
Abstract
The increasing pace of global warming and climate instability will challenge the management of pests and diseases of cultivated plants. Several reports have shown that increases in environmental temperature can enhance the cell-to-cell and systemic propagation of viruses within their infected hosts. These observations suggest that earlier and longer periods of warmer weather may cause important changes in the interaction between viruses and their host's plants, thus posing risks of new viral diseases and outbreaks in agriculture and the wild. As viruses target plasmodesmata (PD) for cell-to-cell spread, these cell wall pores may play yet unknown roles in the temperature-sensitive regulation of intercellular communication and virus infection. Understanding the temperature-sensitive mechanisms in plant-virus interactions will provide important knowledge for protecting crops against diseases in a warmer climate.
Collapse
|
29
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
30
|
Zhou Z, Zhang P, Cui Y, Zhang Y, Qin X, Li R, Liu P, Dou Y, Wang L, Zhao Y. Experiments Investigating the Competitive Growth Advantage of Two Different Genotypes of Human Metapneumovirus: Implications for the Alternation of Genotype Prevalence. Sci Rep 2020; 10:2852. [PMID: 32071381 PMCID: PMC7029021 DOI: 10.1038/s41598-020-59150-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/23/2020] [Indexed: 12/03/2022] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen that causes upper and lower respiratory tract infections in children worldwide. hMPV has two major genotypes, hMPV-A and hMPV-B. Epidemiological studies have shown that the two hMPV genotypes alternate in predominance worldwide in recent years. Co-circulation of the two genotypes of hMPV was usually observed and there is no study about the interaction between them, such as competitive replication, which maybe the possible mechanisms for alternating prevalence of subtypes. Our present study have used two different genotypes of hMPV (genotype A: NL/1/00; B: NL/1/99) in different proportions in animal model (BALB/c mice) and cell model (Vero-E6) separately. The result showed that the competitive growth does exist in BALB/c mice, genotype B had a strong competitive advantage. However, genotype B did not cause more severe disease than non-predominant (genotype A) or mixed strains in the study, which were evaluated by the body weight, airway hyperresponsiveness and lung pathology of mouse. In cell model, competitive growth and the two genotypes alternately prevalence were observed. In summary, we confirmed that there was a competitive replication between hMPV genotype A and B, and no difference in disease severity caused by the two subtypes. This study shows a new insight to understand the alternation of hMPV genotype prevalence through genotype competition and provide experimental evidence for disease control and vaccine design.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Pan Zhang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Yuxia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Yongbo Zhang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Xian Qin
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Rongpei Li
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Ping Liu
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Ying Dou
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Lijia Wang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Yao Zhao
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China. .,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China.
| |
Collapse
|
31
|
Honjo MN, Kudoh H. Arabidopsis halleri: a perennial model system for studying population differentiation and local adaptation. AOB PLANTS 2019; 11:plz076. [PMID: 31832127 PMCID: PMC6899346 DOI: 10.1093/aobpla/plz076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 05/21/2023]
Abstract
Local adaptation is assumed to occur when populations differ in a phenotypic trait or a set of traits, and such variation has a genetic basis. Here, we introduce Arabidopsis halleri and its life history as a perennial model system to study population differentiation and local adaptation. Studies on altitudinal adaptation have been conducted in two regions: Mt. Ibuki in Japan and the European Alps. Several studies have demonstrated altitudinal adaptation in ultraviolet-B (UV-B) tolerance, leaf water repellency against spring frost and anti-herbivore defences. Studies on population differentiation in A. halleri have also focused on metal hyperaccumulation and tolerance to heavy metal contamination. In these study systems, genome scans to identify candidate genes under selection have been applied. Lastly, we briefly discuss how RNA-Seq can broaden phenotypic space and serve as a link to underlying mechanisms. In conclusion, A. halleri provides us with opportunities to study population differentiation and local adaptation, and relate these to the genetic systems underlying target functional traits.
Collapse
Affiliation(s)
- Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga, Japan
| |
Collapse
|