1
|
Zhang H, Li B, Liu X, Qian T, Zhao D, Wang J, Zhang L, Wang T. Pyrite-stimulated bio-reductive immobilization of perrhenate: Insights from integrated biotic and abiotic perspectives. WATER RESEARCH 2024; 262:122089. [PMID: 39018586 DOI: 10.1016/j.watres.2024.122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Microbes possessing electron transfer capabilities hold great promise for remediating subsurface contaminated by redox-active radionuclides such as technetium-99 (99TcO4-) through bio-transformation of soluble contaminants into their sparingly soluble forms. However, the practical application of this concept has been impeded due to the low electron transfer efficiency and long-term product stability under various biogeochemical conditions. Herein, we proposed and tested a pyrite-stimulated bio-immobilization strategy for immobilizing ReO4- (a nonradioactive analogue of 99TcO4-) using sulfate-reducing bacteria (SRB), with a focus on pure-cultured Desulfovibrio vulgaris. Pyrite acted as an effective stimulant for the bio-transformation of ReO4-, boosting the removal rate of ReO4- (50 mg/L) in a solution from 2.8 % (without pyrite) to 100 %. Moreover, the immobilized products showed almost no signs of remobilization during 168 days of monitoring. Dual lines of evidence were presented to elucidate the underlying mechanisms for the pyrite-enhanced bio-activity. Transcriptomic analysis revealed a global upregulation of genes associated with electron conductive cytochromes c network, extracellular tryptophan, and intracellular electron transfer units, leading to enhanced ReO4- bio-reduction. Spectroscopic analysis confirmed the long-term stability of the bio-immobilized products, wherein ReO4- is reduced to stable Re(IV) oxides and Re(IV) sulfides. This work provides a novel green strategy for remediation of radionuclides- or heavy metals-contaminated sites.
Collapse
Affiliation(s)
- Haoqing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States.
| | - Jianhui Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China; Shanxi Low-Carbon Environmental Protection Industry Group Co. Ltd. Taiyuan 030032, China
| | - Ting Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
2
|
Woo AYM, Aguilar Ramos MA, Narayan R, Richards-Corke KC, Wang ML, Sandoval-Espinola WJ, Balskus EP. Targeting the human gut microbiome with small-molecule inhibitors. NATURE REVIEWS. CHEMISTRY 2023; 7:319-339. [PMID: 37117817 DOI: 10.1038/s41570-023-00471-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 04/30/2023]
Abstract
The human gut microbiome is a complex microbial community that is strongly linked to both host health and disease. However, the detailed molecular mechanisms underlying the effects of these microorganisms on host biology remain largely uncharacterized. The development of non-lethal, small-molecule inhibitors that target specific gut microbial activities enables a powerful but underutilized approach to studying the gut microbiome and a promising therapeutic strategy. In this Review, we will discuss the challenges of studying this microbial community, the historic use of small-molecule inhibitors in microbial ecology, and recent applications of this strategy. We also discuss the evidence suggesting that host-targeted drugs can affect the growth and metabolism of gut microbes. Finally, we address the issues of developing and implementing microbiome-targeted small-molecule inhibitors and define important future directions for this research.
Collapse
Affiliation(s)
- Amelia Y M Woo
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Rohan Narayan
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Michelle L Wang
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | - Walter J Sandoval-Espinola
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Laboratorio de Biotecnología Microbiana, San Lorenzo, Paraguay
| | - Emily P Balskus
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Carlson HK, Youngblut MD, Redford SA, Williamson AJ, Coates JD. Sulfate adenylyl transferase kinetics and mechanisms of metabolic inhibitors of microbial sulfate respiration. ISME COMMUNICATIONS 2021; 1:67. [PMID: 37938298 PMCID: PMC9723548 DOI: 10.1038/s43705-021-00069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2023]
Abstract
Sulfate analog oxyanions that function as selective metabolic inhibitors of dissimilatory sulfate reducing microorganisms (SRM) are widely used in ecological studies and industrial applications. As such, it is important to understand the mode of action and mechanisms of tolerance or adaptation to these compounds. Different oxyanions vary widely in their inhibitory potency and mechanism of inhibition, but current evidence suggests that the sulfate adenylyl transferase/ATP sulfurylase (Sat) enzyme is an important target. We heterologously expressed and purified the Sat from the model SRM, Desulfovibrio alaskensis G20. With this enzyme we determined the turnover kinetics (kcat, KM) for alternative substrates (molybdate, selenate, arsenate, monofluorophosphate, and chromate) and inhibition constants (KI) for competitive inhibitors (perchlorate, chlorate, and nitrate). These measurements enable the first quantitative comparisons of these compounds as substrates or inhibitors of a purified Sat from a respiratory sulfate reducer. We compare predicted half-maximal inhibitory concentrations (IC50) based on Sat kinetics with measured IC50 values against D. alaskensis G20 growth and discuss our results in light of known mechanisms of sensitivity or resistance to oxyanions. This analysis helps with the interpretation of recent adaptive laboratory evolution studies and illustrates the value of interpreting gene-microbe-environment interactions through the lens of enzyme kinetics.
Collapse
Affiliation(s)
- Hans K Carlson
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94704, USA.
| | - Matthew D Youngblut
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Twist Bioscience, 681 Gateway Blvd, South San Francisco, CA, 94080, USA
| | - Steven A Redford
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
| | - Adam J Williamson
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- CENBG, Université de Bordeaux, CNRS-IN2P3/, 19 Chemin du Solarium, CS10120, 33175, Gradignan, France
| | - John D Coates
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Zhou J, Xing J. Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments. WATER RESEARCH 2021; 201:117354. [PMID: 34157573 DOI: 10.1016/j.watres.2021.117354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/17/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
As bridge in global cycles of carbon, nitrogen, and sulfur, sulfate-reducing bacteria (SRB) play more and more important role under various environments, especially the saline-alkali environments with significant increase in area caused by human activities. Sulfate reduction can be inhibited by environmental nitrate. However, how SRB cope with environmental nitrate stress in these extreme environments still remain unclear. Here, after a long-term enrichment of sediment from saline-alkali Qinghai Lake of China using anaerobic filter reactors, nitrate was added to evaluate the response of SRB. With the increase in nitrate concentrations, the inhibition on sulfate reduction was gradually observed. Interestingly, extension of hydraulic retention time can relieve the inhibition caused by high nitrate concentration. Mass balance analysis showed that nitrate reduction is prior to sulfate reduction. Further metatranscriptomic analysis shows that, genes of nitrite reductase (periplasmic cytochrome c nitrite reductase gene) and energy metabolisms (lactate dehydrogenase, formate dehydrogenase, pyruvate:ferredoxin-oxidoreductase, and fumarate reductase genes) in SRB was down-regulated, challenging the long-held opinion that up-regulation of these genes can relieve the nitrate inhibition. Most importantly, the nitrate addition activated the denitrification pathway in denitrifying bacteria (DB) via significantly up-regulating the expression of the corresponding genes (nitrite reductase, nitric oxide reductase c subunit, nitric oxide reductase activation protein and nitrous oxide reductase genes), quickly reducing the environmental nitrate and relieving the nitrate inhibition on SRB. Our findings unravel that in response to environmental nitrate stress, haloalkaliphilic SRB show dependency on DB, and expand our knowledge of microbial relationship during sulfur and nitrogen cycles.
Collapse
Affiliation(s)
- Jiemin Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianmin Xing
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Lui LM, Majumder ELW, Smith HJ, Carlson HK, von Netzer F, Fields MW, Stahl DA, Zhou J, Hazen TC, Baliga NS, Adams PD, Arkin AP. Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Front Microbiol 2021; 12:642422. [PMID: 33841364 PMCID: PMC8024649 DOI: 10.3389/fmicb.2021.642422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.
Collapse
Affiliation(s)
- Lauren M. Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Hans K. Carlson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Matthew W. Fields
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology & Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Paul D. Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Adam P. Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
6
|
Williamson AJ, Engelbrektson AL, Liu Y, Huang LL, Kumar A, Menon AR, Thieme J, Carlson HK, Coates JD. Tungstate Control of Microbial Sulfidogenesis and Souring of the Engineered Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:16119-16127. [PMID: 33253556 DOI: 10.1021/acs.est.0c04682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulfide accumulation in oil reservoir fluids (souring) from the activity of sulfate-reducing microorganisms (SRM) is of grave concern because of the associated health and facility failure risks. Here, we present an assessment of tungstate as a selective and potent inhibitor of SRM. Dose-response inhibitor experiments were conducted with a number of SRM isolates and enrichments at 30-80 °C and an increase in the effectiveness of tungstate treatment at higher temperatures was observed. To explore mixed inhibitor treatment modes, we tested synergy or antagonism between several inhibitors with tungstate, and found synergism between WO42- and NO2-, while additive effects were observed with ClO4- and NO3-. We also evaluated SRM inhibition by tungstate in advective upflow oil-sand-packed columns. Although 2 mM tungstate was initially sufficient to inhibit sulfidogenesis, subsequent temporal CaWO4 precipitation resulted in loss of the bioavailable inhibitor from solution and a concurrent increase in effluent sulfide. Mixing 4 mM sodium carbonate with the 2 mM tungstate was enough to promote tungstate solubility to reach inhibitory concentrations, without precipitation, and completely inhibit SRM activity. Overall, we demonstrate the effectiveness of tungstate as a potent SRM inhibitor, particularly at higher temperatures, and propose a novel carbonate-tungstate formulation for application to soured oil reservoirs.
Collapse
Affiliation(s)
- Adam J Williamson
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Anna L Engelbrektson
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Yi Liu
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Leah L Huang
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Aarti Kumar
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Aruna R Menon
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| | - Juergen Thieme
- NSLS-II Brookhaven National Laboratory, Brookhaven, New York 11973, United States
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John D Coates
- Energy Biosciences Institute, 2151 Berkeley Way, California 94704, United States
| |
Collapse
|