1
|
Fan J, Yang L, Li H, Sun Z, Mei M, Zhu W. A hydrogen passivation strategy for the electrocatalytic chlorine evolution reaction on metal-organic frameworks: a theoretical insight. Phys Chem Chem Phys 2024; 26:28565-28572. [PMID: 39523826 DOI: 10.1039/d4cp03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The chlorine evolution reaction (CER) is a crucial solution for treating chlorine-containing wastewater, a type of wastewater generated during the chemical production process. Electrocatalysts applied are mainly dimensionally stable anodes (DSAs) such as precious metals and their oxides. In order to reduce the amounts of rare metals in the catalysts and to improve the catalytic performance, a hydrogen-passivated transition metal site strategy based on a metal-organic framework, TM3(THT)2 (TM = Mn, Fe, Co, Ni, Tc, Ru, Rh, Pd, Re, Os, Ir, Pt), was proposed to force the CER to proceed at the sulfur (S) site. With the help of density functional theory (DFT), the CER process at the transition metal (TM) site and the S site in TM3(THT)2 before and after H passivation has been systematically researched. The results revealed that, for the same catalyst, the catalytic performance for the CER after passivation was significantly improved compared with that before the passivation. The Gibbs free energy of Re3(THT)2 was -0.085 eV after the H passivation. Meanwhile, at an external voltage of 0 V, the theoretical overpotential of the oxygen evolution reaction (OER) was obviously greater than that of the CER. Therefore, excellent activity and selectivity for the CER were demonstrated using the H-passivated Re3(THT)2. Electronic structure analysis revealed that the natural origin of the weak adsorption was the overlap of the p orbital of the S site with the p orbital of Cl, and the overlap area was smaller than the overlap of the d orbital of Re with the p orbital of Cl. To obtain excellent catalytic performance for the CER, the electro zcatalyst should activate Cl while minimizing the adsorption of Cl as much as possible. The strategy of the hydrogen passivation of highly active sites proposed in this article may be an effective means to improve the catalytic performance of metal-organic frameworks for the CER.
Collapse
Affiliation(s)
- Jiake Fan
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lei Yang
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hui Li
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zijian Sun
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mengyun Mei
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Lv PL, Jia C, Wei CH, Zhao HP, Chen R. Efficient perchlorate reduction in microaerobic environment facilitated by partner methane oxidizers. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133683. [PMID: 38310847 DOI: 10.1016/j.jhazmat.2024.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The conventional perchlorate (ClO4-) reduction typically necessitates anaerobic conditions. However, in this study, we observed efficient ClO4- reduction using CH4 as the electron donor in a microaerobic environment. The maximum ClO4- removal flux of 2.18 g/m2·d was achieved in CH4-based biofilm. The kinetics of ClO4- reduction showed significant differences, with trace oxygen increasing the reduction rate of ClO4-, whereas oxygen levels exceeding 2 mg/L decelerated the ClO4- reduction. In the absence of exogenous oxygen, anaerobic methanotrophic (ANME) archaea contribute more than 80% electrons through the reverse methanogenesis pathway for ClO4- reduction. Simultaneously, microorganisms activate CH4 by utilizing oxygen generated from chlorite (ClO2-) disproportionation. In the presence of exogenous oxygen, methane oxidizers predominantly consume oxygen to drive the aerobic oxidation of methane. It is indicated that methane oxidizers and perchlorate reducing bacteria can form aggregates to resist external oxygen shocks and achieve efficient ClO4- reduction under microaerobic condition. These findings provide new insights into biological CH4 mitigation and ClO4- removal in hypoxic environment.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - Chi-Hang Wei
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
3
|
Reyes-Umana V, Ewens SD, Meier DAO, Coates JD. Integration of molecular and computational approaches paints a holistic portrait of obscure metabolisms. mBio 2023; 14:e0043123. [PMID: 37855625 PMCID: PMC10746228 DOI: 10.1128/mbio.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Microorganisms are essential drivers of earth's geochemical cycles. However, the significance of elemental redox cycling mediated by microorganisms is often underestimated beyond the most well-studied nutrient cycles. Phosphite, (per)chlorate, and iodate are each considered esoteric substrates metabolized by microorganisms. However, recent investigations have indicated that these metabolisms are widespread and ubiquitous, affirming a need to continue studying the underlying microbiology to understand their biogeochemical effects and their interface with each other and our biosphere. This review focuses on combining canonical techniques of culturing microorganisms with modern omic approaches to further our understanding of obscure metabolic pathways and elucidate their importance in global biogeochemical cycles. Using these approaches, marker genes of interest have already been identified for phosphite, (per)chlorate, and iodate using traditional microbial physiology and genetics. Subsequently, their presence was queried to reveal the distribution of metabolic pathways in the environment using publicly available databases. In conjunction with each other, computational and experimental techniques provide a more comprehensive understanding of the location of these microorganisms, their underlying biochemistry and genetics, and how they tie into our planet's geochemical cycles.
Collapse
Affiliation(s)
- Victor Reyes-Umana
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Sophia D. Ewens
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - David A. O. Meier
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D. Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Reyes-Umana VM, Coates JD. A description of the genus Denitromonas nom. rev.: Denitromonas iodatirespirans sp. nov., a novel iodate-reducing bacterium, and two novel perchlorate-reducing bacteria, Denitromonas halophila and Denitromonas ohlonensis, isolated from San Francisco Bay intertidal mudflats. Microbiol Spectr 2023; 11:e0091523. [PMID: 37772843 PMCID: PMC10581121 DOI: 10.1128/spectrum.00915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
The genus Denitromonas is currently a non-validated taxon that has been identified in several recent publications as members of microbial communities arising from marine environments. Very little is known about the biology of Denitromonas spp., and no pure cultures are presently found in any culture collections. The current epitaph of Denitromonas was given to the organism under the assumption that all members of this genus are denitrifying bacteria. This study performs phenotypic and genomic analyses on three new Denitromonas spp. isolated from tidal mudflats in the San Francisco Bay. We demonstrate that Denitromonas spp. are indeed all facultative denitrifying bacteria that utilize a variety of carbon sources such as acetate, lactate, and succinate. In addition, individual strains also use the esoteric electron acceptors perchlorate, chlorate, and iodate. Both 16S and Rps/Rpl phylogenetic analyses place Denitromonas spp. as a deep branching clade in the family Zoogloeaceae, separate from either Thauera spp., Azoarcus spp., or Aromatoleum spp. Genome sequencing reveals a G + C content ranging from 63.72% to 66.54%, and genome sizes range between 4.39 and 5.18 Mb. Genes for salt tolerance and denitrification are distinguishing features that separate Denitromonas spp. from the closely related Azoarcus and Aromatoleum genera. IMPORTANCE The genus Denitromonas is currently a non-validated taxon that has been identified in several recent publications as members of microbial communities arising from marine environments. Very little is known about the biology of Denitromonas spp., and no pure cultures are presently found in any culture collections. The current epitaph of Denitromonas was given to the organism under the assumption that all members of this genus are denitrifying bacteria. This study performs phenotypic and genomic analyses on three Denitromonas spp., Denitromonas iodatirespirans sp. nov.-a novel iodate-reducing bacterium-and two novel perchlorate-reducing bacteria, Denitromonas halophila and Denitromonas ohlonensis, isolated from San Francisco Bay intertidal mudflats.
Collapse
Affiliation(s)
- Victor M. Reyes-Umana
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D. Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
5
|
Barnum TP, Coates JD. Chlorine redox chemistry is widespread in microbiology. THE ISME JOURNAL 2023; 17:70-83. [PMID: 36202926 PMCID: PMC9751292 DOI: 10.1038/s41396-022-01317-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022]
Abstract
Chlorine is abundant in cells and biomolecules, yet the biology of chlorine oxidation and reduction is poorly understood. Some bacteria encode the enzyme chlorite dismutase (Cld), which detoxifies chlorite (ClO2-) by converting it to chloride (Cl-) and molecular oxygen (O2). Cld is highly specific for chlorite and aside from low hydrogen peroxide activity has no known alternative substrate. Here, we reasoned that because chlorite is an intermediate oxidation state of chlorine, Cld can be used as a biomarker for oxidized chlorine species. Cld was abundant in metagenomes from various terrestrial habitats. About 5% of bacterial and archaeal genera contain a microorganism encoding Cld in its genome, and within some genera Cld is highly conserved. Cld has been subjected to extensive horizontal gene transfer. Genes found to have a genetic association with Cld include known genes for responding to reactive chlorine species and uncharacterized genes for transporters, regulatory elements, and putative oxidoreductases that present targets for future research. Cld was repeatedly co-located in genomes with genes for enzymes that can inadvertently reduce perchlorate (ClO4-) or chlorate (ClO3-), indicating that in situ (per)chlorate reduction does not only occur through specialized anaerobic respiratory metabolisms. The presence of Cld in genomes of obligate aerobes without such enzymes suggested that chlorite, like hypochlorous acid (HOCl), might be formed by oxidative processes within natural habitats. In summary, the comparative genomics of Cld has provided an atlas for a deeper understanding of chlorine oxidation and reduction reactions that are an underrecognized feature of biology.
Collapse
Affiliation(s)
- Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Dong X, Yu K, Jia X, Zhang Y, Peng X. Perchlorate reduction kinetics and genome-resolved metagenomics identify metabolic interactions in acclimated saline lake perchlorate-reducing consortia. WATER RESEARCH 2022; 227:119343. [PMID: 36371918 DOI: 10.1016/j.watres.2022.119343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Perchlorate is a widely detected environmental contaminant in surface and underground water, that seriously impacts human health by inhibiting the uptake of thyroidal radioiodine. Perchlorate reduction due to saline lake microorganisms is not as well understood as that in marine environments. In this study, we enriched a perchlorate-reducing microbial consortium collected from saline lake sediments and found that the perchlorate reduction kinetics of the enriched consortium fit the Michaelis-Menten kinetics well, with a maximum specific substrate reduction rate (qmax) of 0.596 ± 0.001 mg ClO4-/mg DW/h and half-saturation constant (Ks) of 16.549 ± 0.488 mg ClO4-/L. Furthermore, we used improved metagenome binning to reconstruct high-quality metagenome-assembled genomes from the metagenomes of the microbial consortia, including the perchlorate-reducing bacteria (PRB) Dechloromonas agitata and Wolinella succinogenes, with the genome of W. succinogenes harboring complete functional genes for perchlorate reduction being the first recovered. Given that the electrons were directly transferred to the electronic carrier cytochrome c-553 from the quinone pool, the electron transfer pathway of W. succinogenes was shorter and more efficient than the canonical pattern. This finding provides a theoretical basis for microbial remediation of sites contaminated by high concentrations of perchlorate. Metagenomic binning and metatranscriptomic analyses revealed the gene transcription variation of perchlorate reductase pcr and chlorite dismutase cld by PRB and the synergistic metabolic mechanism.
Collapse
Affiliation(s)
- Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Torres-Rojas F, Muñoz D, Pía Canales C, Vargas IT. Bioprospecting for electrochemically active perchlorate-reducing microorganisms. Bioelectrochemistry 2022; 147:108171. [DOI: 10.1016/j.bioelechem.2022.108171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
|
8
|
Levakov I, Han J, Ronen Z, Dahan O. Inhibition of perchlorate biodegradation by ferric and ferrous iron. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124555. [PMID: 33223313 DOI: 10.1016/j.jhazmat.2020.124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Previous observations from in-situ biological treatments in the subsurface of a perchlorate-contaminated site revealed multiple reduction processes occurring parallel to perchlorate degradation. Iron reduction was accelerated and correlated with a decline in the efficiency of the in-situ perchlorate reduction. In the current study, we examined the influence of iron forms on perchlorate reduction. A series of kinetic laboratory experiments were conducted, using an indigenous mixed perchlorate-reducing culture, enriched from the polluted soil that was undergoing bioremediation. The results show that ferrous iron was a non-competitive inhibitor with a 41% decrease in µmax for perchlorate reduction. Moreover, chlorate was accumulated in all samples treated with ferrous iron, indicating a disruption to the chlorate reduction step. Ferric iron, however, had less impact on perchlorate degradation with non-competitive inhibition reaching a 23% decrease in µmax. Scanning electron microscopy (SEM) revealed that the presence of ferrous iron in the perchlorate degradation enrichment culture initiated cell encrustation. We propose that during perchlorate reduction and the emission of oxygen from chlorite dismutation, the chemical oxidation of ferrous iron occurred near the bacteria's surface where the enzyme is located, forming an oxidized iron crust layer that can directly affect the perchlorate reduction enzymatic system.
Collapse
Affiliation(s)
- Ilil Levakov
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel.
| | - Jincheng Han
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel.
| | - Zeev Ronen
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel.
| | - Ofer Dahan
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel.
| |
Collapse
|
9
|
Barnum TP, Coates JD. An uncharacterized clade in the DMSO reductase family of molybdenum oxidoreductases is a new type of chlorate reductase. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:534-539. [PMID: 32627393 DOI: 10.1111/1758-2229.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The dimethylsulfoxide (DMSO) reductase family of enzymes has many subfamilies catalysing unique biogeochemical reactions. It also has many uncharacterized subfamilies. Comparative genomics predicted one such subfamily to participate in a key step of the chlorine cycle because of a conserved genetic association with chlorite dismutase, implying they produce chlorite through chlorate or perchlorate reduction. We determined the activity of the uncharacterized enzyme by comparing strains in the phototrophic genus Rhodoplanes that encode either a typical perchlorate reductase or the uncharacterized enzyme. Rpl. piscinae and Rpl. elegans, which encode perchlorate reductase, grew by using perchlorate as an electron acceptor. In contrast, Rpl. roseus, which encodes the uncharacterized enzyme, grew by chlorate reduction but not by perchlorate reduction. This is the first report of perchlorate and chlorate being used as respiratory electron acceptors by phototrophs. When both chlorate and perchlorate were present, Rpl. roseus consumed only chlorate. Highly concentrated Rpl. roseus cells showed some perchlorate consumption, but chlorate consumption occurred at a 10-fold higher rate. Together, these genomic and physiological data define a new group of chlorate reductases. Some organisms encode both this chlorate reductase and a perchlorate reductase, raising new questions about the physiology and evolution of chlorine oxyanion respiration.
Collapse
Affiliation(s)
- Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|