1
|
Mrnjavac N, Martin WF. GTP before ATP: The energy currency at the origin of genes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149514. [PMID: 39326542 PMCID: PMC7616719 DOI: 10.1016/j.bbabio.2024.149514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Life is an exergonic chemical reaction. Many individual reactions in metabolism entail slightly endergonic steps that are coupled to free energy release, typically as ATP hydrolysis, in order to go forward. ATP is almost always supplied by the rotor-stator ATP synthase, which harnesses chemiosmotic ion gradients. Because the ATP synthase is a protein, it arose after the ribosome did. What was the energy currency of metabolism before the origin of the ATP synthase and how (and why) did ATP come to be the universal energy currency? About 27 % of a cell's energy budget is consumed as GTP during translation. The universality of GTP-dependence in ribosome function indicates that GTP was the ancestral energy currency of protein synthesis. The use of GTP in translation and ATP in small molecule synthesis are conserved across all lineages, representing energetic compartments that arose in the last universal common ancestor, LUCA. And what came before GTP? Recent findings indicate that the energy supporting the origin of LUCA's metabolism stemmed from H2-dependent CO2 reduction along routes that strongly resemble the reactions and transition metal catalysts of the acetyl-CoA pathway.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Beaud Benyahia B, Taib N, Beloin C, Gribaldo S. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Nat Rev Microbiol 2024:10.1038/s41579-024-01088-0. [PMID: 39198708 DOI: 10.1038/s41579-024-01088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
The bacterial envelope is one of the oldest and most essential cellular components and has been traditionally divided into Gram-positive (monoderm) and Gram-negative (diderm). Recent landmark studies have challenged a major paradigm in microbiology by inferring that the last bacterial common ancestor had a diderm envelope and that the outer membrane (OM) was lost repeatedly in evolution to give rise to monoderms. Intriguingly, OM losses appear to have occurred exclusively in the Terrabacteria, one of the two major clades of bacteria. In this Review, we present current knowledge about the Terrabacteria. We describe their diversity and phylogeny and then highlight the vast phenotypic diversity of the Terrabacteria cell envelopes, which display large deviations from the textbook examples of diderms and monoderms, challenging the classical Gram-positive-Gram-negative divide. We highlight the striking differences in the systems involved in OM biogenesis in Terrabacteria with respect to the classical diderm experimental models and how they provide novel insights into the diversity and biogenesis of the bacterial cell envelope. We also discuss the potential evolutionary steps that might have led to the multiple losses of the OM and speculate on how the very first OM might have emerged before the last bacterial common ancestor.
Collapse
Affiliation(s)
- Basile Beaud Benyahia
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Najwa Taib
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Mrnjavac N, Schwander L, Brabender M, Martin WF. Chemical Antiquity in Metabolism. Acc Chem Res 2024; 57:2267-2278. [PMID: 39083571 PMCID: PMC11339923 DOI: 10.1021/acs.accounts.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
ConspectusLife is an exergonic chemical reaction. The same was true when the very first cells emerged at life's origin. In order to live, all cells need a source of carbon, energy, and electrons to drive their overall reaction network (metabolism). In most cells, these are separate pathways. There is only one biochemical pathway that serves all three needs simultaneously: the acetyl-CoA pathway of CO2 fixation. In the acetyl-CoA pathway, electrons from H2 reduce CO2 to pyruvate for carbon supply, while methane or acetate synthesis are coupled to energy conservation as ATP. This simplicity and thermodynamic favorability prompted Georg Fuchs and Erhard Stupperich to propose in 1985 that the acetyl-CoA pathway might mark the origin of metabolism, at the same time that Steve Ragsdale and Harland Wood were uncovering catalytic roles for Fe, Co, and Ni in the enzymes of the pathway. Subsequent work has provided strong support for those proposals.In the presence of Fe, Co, and Ni in their native metallic state as catalysts, aqueous H2 and CO2 react specifically to formate, acetate, methane, and pyruvate overnight at 100 °C. These metals (and their alloys) thus replace the function of over 120 enzymes required for the conversion of H2 and CO2 to pyruvate via the pathway and its cofactors, an unprecedented set of findings in the study of biochemical evolution. The reactions require alkaline conditions, which promote hydrogen oxidation by proton removal and are naturally generated in serpentinizing (H2-producing) hydrothermal vents. Serpentinizing hydrothermal vents furthermore produce natural deposits of native Fe, Co, Ni, and their alloys. These are precisely the metals that reduce CO2 with H2 in the laboratory; they are also the metals found at the active sites of enzymes in the acetyl-CoA pathway. Iron, cobalt and nickel are relicts of the environments in which metabolism arose, environments that still harbor ancient methane- and acetate-producing autotrophs today. This convergence indicates bedrock-level antiquity for the acetyl-CoA pathway. In acetogens and methanogens growing on H2 as reductant, the acetyl-CoA pathway requires flavin-based electron bifurcation as a source of reduced ferredoxin (a 4Fe4S cluster-containing protein) in order to function. Recent findings show that H2 can reduce the 4Fe4S clusters of ferredoxin in the presence of native iron, uncovering an evolutionary precursor of flavin-based electron bifurcation and suggesting an origin of FeS-dependent electron transfer in proteins. Traditionally discussed as catalysts in early evolution, the most common function of FeS clusters in metabolism is one-electron transfer, also in radical SAM enzymes, a large and ancient enzyme family. The cofactors and active sites in enzymes of the acetyl-CoA pathway uncover chemical antiquity in metabolism involving metals, methyl groups, methyl transfer reactions, cobamides, pterins, GTP, S-adenosylmethionine, radical SAM enzymes, and carbon-metal bonds. The reaction sequence from H2 and CO2 to pyruvate on naturally deposited native metals is maximally simple. It requires neither nitrogen, sulfur, phosphorus, RNA, ion gradients, nor light. Solid-state metal catalysts tether the origin of metabolism to a H2-producing, serpentinizing hydrothermal vent.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Loraine Schwander
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Max Brabender
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - William F. Martin
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Suzuki S, Ishii S, Chadwick GL, Tanaka Y, Kouzuma A, Watanabe K, Inagaki F, Albertsen M, Nielsen PH, Nealson KH. A non-methanogenic archaeon within the order Methanocellales. Nat Commun 2024; 15:4858. [PMID: 38871712 DOI: 10.1038/s41467-024-48185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Serpentinization, a geochemical process found on modern and ancient Earth, provides an ultra-reducing environment that can support microbial methanogenesis and acetogenesis. Several groups of archaea, such as the order Methanocellales, are characterized by their ability to produce methane. Here, we generate metagenomic sequences from serpentinized springs in The Cedars, California, and construct a circularized metagenome-assembled genome of a Methanocellales archaeon, termed Met12, that lacks essential methanogenesis genes. The genome includes genes for an acetyl-CoA pathway, but lacks genes encoding methanogenesis enzymes such as methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses reveal high expression of a multi-heme c-type cytochrome, and heterologous expression of this protein in a model bacterium demonstrates that it is capable of accepting electrons. Our results suggest that Met12, within the order Methanocellales, is not a methanogen but a CO2-reducing, electron-fueled acetogen without electron bifurcation.
Collapse
Affiliation(s)
- Shino Suzuki
- Geobiology and Astrobiology Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan.
- School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Sagamihara, Kanagawa, Japan.
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine and Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Shun'ichi Ishii
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine and Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Grayson L Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yugo Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Fumio Inagaki
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Kanagawa, Japan
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Mads Albertsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Iqbal S, Begum F, Ullah I, Jalal N, Shaw P. Peeling off the layers from microbial dark matter (MDM): recent advances, future challenges, and opportunities. Crit Rev Microbiol 2024:1-21. [PMID: 38385313 DOI: 10.1080/1040841x.2024.2319669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Microbes represent the most common organisms on Earth; however, less than 2% of microbial species in the environment can undergo cultivation for study under laboratory conditions, and the rest of the enigmatic, microbial world remains mysterious, constituting a kind of "microbial dark matter" (MDM). In the last two decades, remarkable progress has been made in culture-dependent and culture-independent techniques. More recently, studies of MDM have relied on culture-independent techniques to recover genetic material through either unicellular genomics or shotgun metagenomics to construct single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs), respectively, which provide information about evolution and metabolism. Despite the remarkable progress made in the past decades, the functional diversity of MDM still remains uncharacterized. This review comprehensively summarizes the recently developed culture-dependent and culture-independent techniques for characterizing MDM, discussing major challenges, opportunities, and potential applications. These activities contribute to expanding our knowledge of the microbial world and have implications for various fields including Biotechnology, Bioprospecting, Functional genomics, Medicine, Evolutionary and Planetary biology. Overall, this review aims to peel off the layers from MDM, shed light on recent advancements, identify future challenges, and illuminate the exciting opportunities that lie ahead in unraveling the secrets of this intriguing microbial realm.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ihsan Ullah
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Nasir Jalal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| | - Peter Shaw
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| |
Collapse
|
6
|
Hirakata Y, Mei R, Morinaga K, Katayama T, Tamaki H, Meng XY, Watari T, Yamaguchi T, Hatamoto M, Nobu MK. Identification and cultivation of anaerobic bacterial scavengers of dead cells. THE ISME JOURNAL 2023; 17:2279-2289. [PMID: 37872273 PMCID: PMC10689501 DOI: 10.1038/s41396-023-01538-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
The cycle of life and death and Earth's carbon cycle(s) are intimately linked, yet how bacterial cells, one of the largest pools of biomass on Earth, are recycled back into the carbon cycle remains enigmatic. In particular, no bacteria capable of scavenging dead cells in oxygen-depleted environments have been reported thus far. In this study, we discover the first anaerobes that scavenge dead cells and the two isolated strains use distinct strategies. Based on live-cell imaging, transmission electron microscopy, and hydrolytic enzyme assays, one strain (designated CYCD) relied on cell-to-cell contact and cell invagination for degrading dead food bacteria where as the other strain (MGCD) degraded dead food bacteria via excretion of lytic extracellular enzymes. Both strains could degrade dead cells of differing taxonomy (bacteria and archaea) and differing extents of cell damage, including those without artificially inflicted physical damage. In addition, both depended on symbiotic metabolic interactions for maximizing cell degradation, representing the first cultured syntrophic Bacteroidota. We collectively revealed multiple symbiotic bacterial decomposition routes of dead prokaryotic cells, providing novel insight into the last step of the carbon cycle.
Collapse
Affiliation(s)
- Yuga Hirakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Ran Mei
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Kana Morinaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Taiki Katayama
- Geomicrobiology Research Group, Research Institute for Geo-Resources and Environment, Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 940-2188, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan.
| |
Collapse
|
7
|
Mrnjavac N, Wimmer JLE, Brabender M, Schwander L, Martin WF. The Moon-Forming Impact and the Autotrophic Origin of Life. Chempluschem 2023; 88:e202300270. [PMID: 37812146 PMCID: PMC7615287 DOI: 10.1002/cplu.202300270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The Moon-forming impact vaporized part of Earth's mantle, and turned the rest into a magma ocean, from which carbon dioxide degassed into the atmosphere, where it stayed until water rained out to form the oceans. The rain dissolved CO2 and made it available to react with transition metal catalysts in the Earth's crust so as to ultimately generate the organic compounds that form the backbone of microbial metabolism. The Moon-forming impact was key in building a planet with the capacity to generate life in that it converted carbon on Earth into a homogeneous and accessible substrate for organic synthesis. Today all ecosystems, without exception, depend upon primary producers, organisms that fix CO2 . According to theories of autotrophic origin, it has always been that way, because autotrophic theories posit that the first forms of life generated all the molecules needed to build a cell from CO2 , forging a direct line of continuity between Earth's initial CO2 -rich atmosphere and the first microorganisms. By modern accounts these were chemolithoautotrophic archaea and bacteria that initially colonized the crust and still inhabit that environment today.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Jessica L. E. Wimmer
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Max Brabender
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Loraine Schwander
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - William F. Martin
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| |
Collapse
|
8
|
Schwander L, Brabender M, Mrnjavac N, Wimmer JLE, Preiner M, Martin WF. Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life. Front Microbiol 2023; 14:1257597. [PMID: 37854333 PMCID: PMC10581274 DOI: 10.3389/fmicb.2023.1257597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Serpentinization in hydrothermal vents is central to some autotrophic theories for the origin of life because it generates compartments, reductants, catalysts and gradients. During the process of serpentinization, water circulates through hydrothermal systems in the crust where it oxidizes Fe (II) in ultramafic minerals to generate Fe (III) minerals and H2. Molecular hydrogen can, in turn, serve as a freely diffusible source of electrons for the reduction of CO2 to organic compounds, provided that suitable catalysts are present. Using catalysts that are naturally synthesized in hydrothermal vents during serpentinization H2 reduces CO2 to formate, acetate, pyruvate, and methane. These compounds represent the backbone of microbial carbon and energy metabolism in acetogens and methanogens, strictly anaerobic chemolithoautotrophs that use the acetyl-CoA pathway of CO2 fixation and that inhabit serpentinizing environments today. Serpentinization generates reduced carbon, nitrogen and - as newer findings suggest - reduced phosphorous compounds that were likely conducive to the origins process. In addition, it gives rise to inorganic microcompartments and proton gradients of the right polarity and of sufficient magnitude to support chemiosmotic ATP synthesis by the rotor-stator ATP synthase. This would help to explain why the principle of chemiosmotic energy harnessing is more conserved (older) than the machinery to generate ion gradients via pumping coupled to exergonic chemical reactions, which in the case of acetogens and methanogens involve H2-dependent CO2 reduction. Serpentinizing systems exist in terrestrial and deep ocean environments. On the early Earth they were probably more abundant than today. There is evidence that serpentinization once occurred on Mars and is likely still occurring on Saturn's icy moon Enceladus, providing a perspective on serpentinization as a source of reductants, catalysts and chemical disequilibrium for life on other worlds.
Collapse
Affiliation(s)
- Loraine Schwander
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Max Brabender
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Natalia Mrnjavac
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jessica L. E. Wimmer
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Martina Preiner
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps-Universität, Marburg, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
9
|
Popall RM, Postec A, Lecoeuvre A, Quéméneur M, Erauso G. Metabolic challenges and key players in serpentinite-hosted microbial ecosystems. Front Microbiol 2023; 14:1197823. [PMID: 37555067 PMCID: PMC10404738 DOI: 10.3389/fmicb.2023.1197823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Serpentinite-hosted systems are amongst the most challenging environments for life on Earth. Serpentinization, a geochemical alteration of exposed ultramafic rock, produces hydrothermal fluids enriched in abiotically derived hydrogen (H2), methane (CH4), and small organic molecules. The hyperalkaline pH of these fluids poses a great challenge for metabolic energy and nutrient acquisition, curbing the cellular membrane potential and limiting electron acceptor, carbon, and phosphorous availability. Nevertheless, serpentinization supports the growth of diverse microbial communities whose metabolic make-up might shed light on the beginning of life on Earth and potentially elsewhere. Here, we outline current hypotheses on metabolic energy production, carbon fixation, and nutrient acquisition in serpentinizing environments. A taxonomic survey is performed for each important metabolic function, highlighting potential key players such as H2 and CH4 cycling Serpentinimonas, Hydrogenophaga, Methanobacteriales, Methanosarcinales, and novel candidate phyla. Methodological biases of the available data and future approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Gaël Erauso
- Aix-Marseille Univ, Univ Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
10
|
Leng H, Wang Y, Zhao W, Sievert SM, Xiao X. Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution. Nat Commun 2023; 14:4354. [PMID: 37468486 DOI: 10.1038/s41467-023-39960-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
It has been proposed that early bacteria, or even the last universal common ancestor of all cells, were thermophilic. However, research on the origin and evolution of thermophily is hampered by the difficulties associated with the isolation of deep-branching thermophilic microorganisms in pure culture. Here, we isolate a deep-branching thermophilic bacterium from a deep-sea hydrothermal vent, using a two-step cultivation strategy ("Subtraction-Suboptimal", StS) designed to isolate rare organisms. The bacterium, which we name Zhurongbacter thermophilus 3DAC, is a sulfur-reducing heterotroph that is phylogenetically related to Coprothermobacterota and other thermophilic bacterial groups, forming a clade that seems to represent a major, early-diverging bacterial lineage. The ancestor of this clade might be a thermophilic, strictly anaerobic, motile, hydrogen-dependent, and mixotrophic bacterium. Thus, our study provides insights into the early evolution of thermophilic bacteria.
Collapse
Affiliation(s)
- Hao Leng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
11
|
Okazaki Y, Nguyen TT, Nishihara A, Endo H, Ogata H, Nakano SI, Tamaki H. A Fast and Easy Method to Co-extract DNA and RNA from an Environmental Microbial Sample. Microbes Environ 2023; 38. [PMID: 36928278 PMCID: PMC10037101 DOI: 10.1264/jsme2.me22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
We herein propose a fast and easy DNA and RNA co-extraction method for environmental microbial samples. It combines bead beating and phenol-chloroform phase separation followed by the separation and purification of DNA and RNA using the Qiagen AllPrep DNA/RNA mini kit. With a handling time of ~3 h, our method simultaneously extracted high-quality DNA (peak size >10-15 kb) and RNA (RNA integrity number >6) from lake bacterioplankton filtered samples. The method is also applicable to low-biomass samples (expected DNA or RNA yield <50 ng) and eukaryotic microbial samples, providing an easy option for more versatile eco-genomic applications.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Institute for Chemical Research, Kyoto University
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | - Arisa Nishihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University
| | | | | | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
12
|
Narrowing gaps between Earth and life. Proc Natl Acad Sci U S A 2022; 119:e2216017119. [PMID: 36288265 PMCID: PMC9674954 DOI: 10.1073/pnas.2216017119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Zhao M, Zhao Y, Lin W, Xiao KQ. An overview of experimental simulations of microbial activity in early Earth. Front Microbiol 2022; 13:1052831. [PMID: 36713221 PMCID: PMC9878457 DOI: 10.3389/fmicb.2022.1052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Microbial activity has shaped the evolution of the ocean and atmosphere throughout the Earth history. Thus, experimental simulations of microbial metabolism under the environment conditions of the early Earth can provide vital information regarding biogeochemical cycles and the interaction and coevolution between life and environment, with important implications for extraterrestrial exploration. In this review, we discuss the current scope and knowledge of experimental simulations of microbial activity in environments representative of those of early Earth, with perspectives on future studies. Inclusive experimental simulations involving multiple species, and cultivation experiments with more constraints on environmental conditions similar to early Earth would significantly advance our understanding of the biogeochemical cycles of the geological past.
Collapse
Affiliation(s)
- Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Ke-Qing Xiao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|