1
|
Balleux G, Höfte M, Arguelles-Arias A, Deleu M, Ongena M. Bacillus lipopeptides as key players in rhizosphere chemical ecology. Trends Microbiol 2025; 33:80-95. [PMID: 39214821 DOI: 10.1016/j.tim.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Microbial natural products are widely explored for their therapeutic potential. Understanding the underlying evolutionary and adaptive forces driving their production remains a fundamental question in biology. Amphiphilic cyclic lipopeptides (CLPs), a prominent category of bacterial specialized metabolites, show strong antimicrobial activity, particularly against phytopathogens. It is thus assumed that these compounds are deployed by soil- or rhizosphere-dwelling bacteria as microbial weapons in competitive natural environments. Here, we challenge this reductionist perspective and present evidence that Bacillus CLPs are prominent chemical mediators of ecological interactions. They help Bacillus to communicate, compete, defend against predators, or cooperate and establish mutualistic relationships with other (micro)organisms. Additional parallel examples are highlighted in other genera, such as Pseudomonas. This broader perspective underscores the need for further investigation into the role of CLPs in shaping the adaptive strategies of key rhizobacterial species.
Collapse
Affiliation(s)
- Guillaume Balleux
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Anthony Arguelles-Arias
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| |
Collapse
|
2
|
Rosazza T, Earl C, Eigentler L, Davidson FA, Stanley-Wall NR. Reciprocal sharing of extracellular proteases and extracellular matrix molecules facilitates Bacillus subtilis biofilm formation. Mol Microbiol 2024; 122:184-200. [PMID: 38922753 DOI: 10.1111/mmi.15288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Extracellular proteases are a class of public good that support growth of Bacillus subtilis when nutrients are in a polymeric form. Bacillus subtilis biofilm matrix molecules are another class of public good that are needed for biofilm formation and are prone to exploitation. In this study, we investigated the role of extracellular proteases in B. subtilis biofilm formation and explored interactions between different public good producer strains across various conditions. We confirmed that extracellular proteases support biofilm formation even when glutamic acid provides a freely available nitrogen source. Removal of AprE from the NCIB 3610 secretome adversely affects colony biofilm architecture, while sole induction of WprA activity into an otherwise extracellular protease-free strain is sufficient to promote wrinkle development within the colony biofilm. We found that changing the nutrient source used to support growth affected B. subtilis biofilm structure, hydrophobicity and architecture. We propose that the different phenotypes observed may be due to increased protease dependency for growth when a polymorphic protein presents the sole nitrogen source. We however cannot exclude that the phenotypic changes are due to alternative matrix molecules being made. Co-culture of biofilm matrix and extracellular protease mutants can rescue biofilm structure, yet reliance on extracellular proteases for growth influences population coexistence dynamics. Our findings highlight the intricate interplay between these two classes of public goods, providing insights into microbial social dynamics during biofilm formation across different ecological niches.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chris Earl
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Fordyce A Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
3
|
Richter A, Blei F, Hu G, Schwitalla JW, Lozano-Andrade CN, Xie J, Jarmusch SA, Wibowo M, Kjeldgaard B, Surabhi S, Xu X, Jautzus T, Phippen CBW, Tyc O, Arentshorst M, Wang Y, Garbeva P, Larsen TO, Ram AFJ, van den Hondel CAM, Maróti G, Kovács ÁT. Enhanced surface colonisation and competition during bacterial adaptation to a fungus. Nat Commun 2024; 15:4486. [PMID: 38802389 PMCID: PMC11130161 DOI: 10.1038/s41467-024-48812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.
Collapse
Affiliation(s)
- Anne Richter
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Felix Blei
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Department Pharmaceutical Microbiology, Hans-Knöll-Institute, Friedrich-Schiller-Universität, Jena, Germany
| | - Guohai Hu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, China
| | - Jan W Schwitalla
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Jiyu Xie
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Scott A Jarmusch
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Mario Wibowo
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Bodil Kjeldgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Surabhi Surabhi
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Theresa Jautzus
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Christopher B W Phippen
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Olaf Tyc
- Netherlands Institute of Ecology, Wageningen, The Netherlands
- Department of Internal Medicine I, Goethe University Hospital, Frankfurt, Germany
| | - Mark Arentshorst
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yue Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Thomas Ostenfeld Larsen
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Arthur F J Ram
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark.
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
4
|
Ma T, Rothschild J, Halabeya F, Zilman A, Milstein JN. Mechanics limits ecological diversity and promotes heterogeneity in confined bacterial communities. Proc Natl Acad Sci U S A 2024; 121:e2322321121. [PMID: 38728226 PMCID: PMC11098131 DOI: 10.1073/pnas.2322321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Jeremy Rothschild
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Faisal Halabeya
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Joshua N. Milstein
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| |
Collapse
|
5
|
Gaizer T, Juhász J, Pillér B, Szakadáti H, Pongor CI, Csikász-Nagy A. Integrative analysis of yeast colony growth. Commun Biol 2024; 7:511. [PMID: 38684888 PMCID: PMC11058853 DOI: 10.1038/s42003-024-06218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Yeast colonies are routinely grown on agar plates in everyday experimental settings to understand basic molecular processes, produce novel drugs, improve health, and so on. Standardized conditions ensure these colonies grow in a reproducible fashion, while in nature microbes are under a constantly changing environment. Here we combine the power of computational simulations and laboratory experiments to investigate the impact of non-standard environmental factors on colony growth. We present the developement and parameterization of a quantitative agent-based model for yeast colony growth to reproduce measurements on colony size and cell number in a colony at non-standard environmental conditions. Specifically, we establish experimental conditions that mimic the effects of humidity changes and nutrient gradients. Our results show how colony growth is affected by moisture changes, nutrient availability, and initial colony inoculation conditions. We show that initial colony spread, not initial cell number have higher impact on the final size and cell number of colonies. Parameters of the model were identified by fitting these experiments and the fitted model gives guidance to establish conditions which enable unlimited growth of yeast colonies.
Collapse
Affiliation(s)
- Tünde Gaizer
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - János Juhász
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Bíborka Pillér
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Helga Szakadáti
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Csaba I Pongor
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Attila Csikász-Nagy
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| |
Collapse
|
6
|
Petit C, Caudal F, Taupin L, Dufour A, Le Ker C, Giudicelli F, Rodrigues S, Bazire A. Antibiofilm Activity of the Marine Probiotic Bacillus subtilis C3 Against the Aquaculture-Relevant Pathogen Vibrio harveyi. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10229-z. [PMID: 38329698 DOI: 10.1007/s12602-024-10229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
V. harveyi is a well-known pathogen-inducing vibriosis, especially for shrimp, fish, and invertebrates. Its virulence is related to biofilm formation and this negatively impacts the aquaculture industry. Therapeutic strategies such as the utilization of probiotic bacteria may slow down Vibrio infections. In this study, we investigated the potential antibiofilm activity of the probiotic Bacillus subtilis C3 for aquaculture. First, B. subtilis C3 biofilm was characterized by confocal laser scanning microscopy (CLSM) before testing its bioactivities. We demonstrated antibiofilm activity of B. subtilis C3 culture supernatant, which is mainly composed-among other molecules-of lipopeptidic surfactants belonging to the surfactin family as identified by ultra-high-performance liquid chromatography (UHPLC)-MS/MS. Their antibiofilm activity was confirmed on V. harveyi ORM4 (pFD086) biofilm by CLSM. These findings suggest that the marine probiotic B. subtilis C3 might inhibit or reduce Vibrio colonization and thus decrease the associated animal mortalities.
Collapse
Affiliation(s)
- Coraline Petit
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
- Marine Akwa, 1 rue René Cassin, 22100, Dinan, France
| | - Flore Caudal
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
| | - Carine Le Ker
- Marine Akwa, 1 rue René Cassin, 22100, Dinan, France
| | | | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France.
| |
Collapse
|
7
|
Lyng M, Jørgensen JPB, Schostag MD, Jarmusch SA, Aguilar DKC, Lozano-Andrade CN, Kovács ÁT. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. THE ISME JOURNAL 2024; 18:wrad001. [PMID: 38365234 PMCID: PMC10811728 DOI: 10.1093/ismejo/wrad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Johan P B Jørgensen
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Morten D Schostag
- Bacterial Ecophysiology & Biotechnology, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Scott A Jarmusch
- Natural Product Discovery, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Diana K C Aguilar
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| |
Collapse
|
8
|
Belcijan Pandur K, Kraigher B, Tomac A, Stefanic P, Mandic Mulec I. Nonkin interactions between Bacillus subtilis soil isolates limit the spread of swarming deficient cheats. THE ISME JOURNAL 2024; 18:wrae199. [PMID: 39375016 PMCID: PMC11523185 DOI: 10.1093/ismejo/wrae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Cooperative behaviours in human, animal, and even microbial societies are vulnerable to exploitation. Kin discrimination has been hypothesized to help stabilize cooperation. However, the mechanisms that sustain cooperative behaviour remain poorly understood. Here, we investigate the role of kin discrimination in limiting the spread of cheats in adjoining populations during surfactant-dependent cooperative swarming over surfaces using the bacterium Bacillus subtilis as a model organism. We show that mixing surfactant secreting cooperators and cheats that do not produce surfactants at 1:1 initial ratio quickly leads to cooperation collapse. However, when such common swarms encounter nonkin B. subtilis swarms, the proportion of the surfactant nonproducers decreases, suggesting that kinship dependent interactions may limit cheats' advantage in an adjoining population. To further validate this finding, we subjected wild-type cooperators to multiple transient encounters with kin and nonkin swarms over 20 cycles of experimental evolution. The evolved populations exposed to nonkin swarms less frequently contained defective swarming phenotypes compared to those encountering kin swarms. Altogether, our results support the prediction that the spread of cheats in an adjoining bacterial population is impeded by kin discrimination interactions, which might have a role in stabilizing cooperative behaviour in evolving populations.
Collapse
Affiliation(s)
| | - Barbara Kraigher
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Tomac
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Stefanic
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Belcher LJ, Dewar AE, Hao C, Katz Z, Ghoul M, West SA. SOCfinder: a genomic tool for identifying social genes in bacteria. Microb Genom 2023; 9:001171. [PMID: 38117204 PMCID: PMC10763506 DOI: 10.1099/mgen.0.001171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.
Collapse
Affiliation(s)
| | - Anna E. Dewar
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Zohar Katz
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Stuart A. West
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
10
|
Spiga L, Fansler RT, Perera YR, Shealy NG, Munneke MJ, David HE, Torres TP, Lemoff A, Ran X, Richardson KL, Pudlo N, Martens EC, Folta-Stogniew E, Yang ZJ, Skaar EP, Byndloss MX, Chazin WJ, Zhu W. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe 2023; 31:1639-1654.e10. [PMID: 37776864 PMCID: PMC10599249 DOI: 10.1016/j.chom.2023.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron and sustains its resilience in the inflamed gut by utilizing siderophores produced by other bacteria, including Salmonella, via a secreted siderophore-binding lipoprotein XusB. Notably, XusB-bound enterobactin is less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella, allowing the pathogen to evade nutritional immunity. Because the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the host-pathogen interactions and nutritional immunity.
Collapse
Affiliation(s)
- Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan T Fansler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yasiru R Perera
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicolas G Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Holly E David
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Teresa P Torres
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Lemoff
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xinchun Ran
- Departments of Chemistry, Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Katrina L Richardson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicholas Pudlo
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ewa Folta-Stogniew
- Keck Foundation Biotechnology Resource Laboratory, Yale University, 300 George Street, New Haven, CT 06511, USA
| | - Zhongyue J Yang
- Departments of Chemistry, Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Belcher LJ, Dewar AE, Hao C, Ghoul M, West SA. Signatures of kin selection in a natural population of the bacteria Bacillus subtilis. Evol Lett 2023; 7:315-330. [PMID: 37829498 PMCID: PMC10565896 DOI: 10.1093/evlett/qrad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 10/14/2023] Open
Abstract
Laboratory experiments have suggested that bacteria perform a range of cooperative behaviors, which are favored because they are directed toward relatives (kin selection). However, there is a lack of evidence for cooperation and kin selection in natural bacterial populations. Molecular population genetics offers a promising method to study natural populations because the theory predicts that kin selection will lead to relaxed selection, which will result in increased polymorphism and divergence at cooperative genes. Examining a natural population of Bacillus subtilis, we found consistent evidence that putatively cooperative traits have higher polymorphism and greater divergence than putatively private traits expressed at the same rate. In addition, we were able to eliminate alternative explanations for these patterns and found more deleterious mutations in genes controlling putatively cooperative traits. Overall, our results suggest that cooperation is favored by kin selection, with an average relatedness of r = .79 between interacting individuals.
Collapse
Affiliation(s)
| | - Anna E Dewar
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Spiga L, Fansler RT, Perera YR, Shealy NG, Munneke MJ, Torres TP, David HE, Lemoff A, Ran X, Richardson KL, Pudlo N, Martens EC, Yang ZJ, Skaar EP, Byndloss MX, Chazin WJ, Zhu W. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546471. [PMID: 37425782 PMCID: PMC10326984 DOI: 10.1101/2023.06.25.546471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients such as iron. Pathogens scavenge iron using siderophores, which is counteracted by the host using lipocalin-2, a protein that sequesters iron-laden siderophores, including enterobactin. Although the host and pathogens compete for iron in the presence of gut commensal bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron in the inflamed gut by utilizing siderophores produced by other bacteria including Salmonella, via a secreted siderophore-binding lipoprotein termed XusB. Notably, XusB-bound siderophores are less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella , allowing the pathogen to evade nutritional immunity. As the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the interactions between pathogen and host nutritional immunity.
Collapse
|
13
|
Lyng M, Kovács ÁT. Frenemies of the soil: Bacillus and Pseudomonas interspecies interactions. Trends Microbiol 2023:S0966-842X(23)00050-1. [PMID: 36878770 DOI: 10.1016/j.tim.2023.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
Bacillus and Pseudomonas ubiquitously occur in natural environments and are two of the most intensively studied bacterial genera in the soil. They are often coisolated from environmental samples, and as a result, several studies have experimentally cocultured bacilli and pseudomonads to obtain emergent properties. Even so, the general interaction between members of these genera is virtually unknown. In the past decade, data on interspecies interactions between natural isolates of Bacillus and Pseudomonas has become more detailed, and now, molecular studies permit mapping of the mechanisms behind their pairwise ecology. This review addresses the current knowledge about microbe-microbe interactions between strains of Bacillus and Pseudomonas and discusses how we can attempt to generalize the interaction on a taxonomic and molecular level.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark; Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
14
|
Boza G, Barabás G, Scheuring I, Zachar I. Eco-evolutionary modelling of microbial syntrophy indicates the robustness of cross-feeding over cross-facilitation. Sci Rep 2023; 13:907. [PMID: 36650168 PMCID: PMC9845244 DOI: 10.1038/s41598-023-27421-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Syntrophic cooperation among prokaryotes is ubiquitous and diverse. It relies on unilateral or mutual aid that may be both catalytic and metabolic in nature. Hypotheses of eukaryotic origins claim that mitochondrial endosymbiosis emerged from mutually beneficial syntrophy of archaeal and bacterial partners. However, there are no other examples of prokaryotic syntrophy leading to endosymbiosis. One potential reason is that when externalized products become public goods, they incite social conflict due to selfish mutants that may undermine any mutualistic interactions. To rigorously evaluate these arguments, here we construct a general mathematical framework of the ecology and evolution of different types of syntrophic partnerships. We do so both in a general microbial and in a eukaryogenetic context. Studying the case where partners cross-feed on each other's self-inhibiting waste, we show that cooperative partnerships will eventually dominate over selfish mutants. By contrast, systems where producers actively secrete enzymes that cross-facilitate their partners' resource consumption are not robust against cheaters over evolutionary time. We conclude that cross-facilitation is unlikely to provide an adequate syntrophic origin for endosymbiosis, but that cross-feeding mutualisms may indeed have played that role.
Collapse
Affiliation(s)
- G Boza
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- ASA Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Centre for Social Sciences, Budapest, Hungary
| | - G Barabás
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- Division of Ecological and Environmental Modeling, Linköping University, Linköping, Sweden
| | - I Scheuring
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
| | - I Zachar
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.
- Parmenides Foundation, Centre for the Conceptual Foundation of Science, Pullach Im Isartal, Germany.
| |
Collapse
|