1
|
Fromm A, Hevroni G, Vincent F, Schatz D, Martinez-Gutierrez CA, Aylward FO, Vardi A. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat Microbiol 2024; 9:1619-1629. [PMID: 38605173 PMCID: PMC11265207 DOI: 10.1038/s41564-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems. They play fundamental roles as evolutionary drivers of eukaryotic plankton and regulators of global biogeochemical cycles. However, we lack knowledge about their native hosts, hindering our understanding of their life cycle and ecological importance. In the present study, we applied a single-cell RNA sequencing (scRNA-seq) approach to samples collected during an induced algal bloom, which enabled pairing active giant viruses with their native protist hosts. We detected hundreds of single cells from multiple host lineages infected by diverse giant viruses. These host cells included members of the algal groups Chrysophycae and Prymnesiophycae, as well as heterotrophic flagellates in the class Katablepharidaceae. Katablepharids were infected with a rare Imitervirales-07 giant virus lineage expressing a large repertoire of cell-fate regulation genes. Analysis of the temporal dynamics of these host-virus interactions revealed an important role for the Imitervirales-07 in controlling the population size of the host Katablepharid population. Our results demonstrate that scRNA-seq can be used to identify previously undescribed host-virus interactions and study their ecological importance and impact.
Collapse
Affiliation(s)
- Amir Fromm
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gur Hevroni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Google Geo, Tel Aviv, Israel
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Developmental Biology Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Brüwer JD, Sidhu C, Zhao Y, Eich A, Rößler L, Orellana LH, Fuchs BM. Globally occurring pelagiphage infections create ribosome-deprived cells. Nat Commun 2024; 15:3715. [PMID: 38698041 PMCID: PMC11066056 DOI: 10.1038/s41467-024-48172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.
Collapse
Affiliation(s)
- Jan D Brüwer
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| | - Chandni Sidhu
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Yanlin Zhao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Andreas Eich
- PSL Research University: EPHE-UPVD-CNRS,UAR 3278 CRIOBE, Moorea, French Polynesia
| | - Leonard Rößler
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Luis H Orellana
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| |
Collapse
|
3
|
Wallace BA, Varona NS, Hesketh-Best PJ, Stiffler AK, Silveira CB. Globally distributed bacteriophage genomes reveal mechanisms of tripartite phage-bacteria-coral interactions. THE ISME JOURNAL 2024; 18:wrae132. [PMID: 39030686 PMCID: PMC11309003 DOI: 10.1093/ismejo/wrae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Reef-building corals depend on an intricate community of microorganisms for functioning and resilience. The infection of coral-associated bacteria by bacteriophages can modify bacterial ecological interactions, yet very little is known about phage functions in the holobiont. This gap stems from methodological limitations that have prevented the recovery of high-quality viral genomes and bacterial host assignment from coral samples. Here, we introduce a size fractionation approach that increased bacterial and viral recovery in coral metagenomes by 9-fold and 2-fold, respectively, and enabled the assembly and binning of bacterial and viral genomes at relatively low sequencing coverage. We combined these viral genomes with those derived from 677 publicly available metagenomes, viromes, and bacterial isolates from stony corals to build a global coral virus database of over 20,000 viral genomic sequences spanning four viral realms. The tailed bacteriophage families Kyanoviridae and Autographiviridae were the most abundant, replacing groups formerly referred to as Myoviridae and Podoviridae, respectively. Prophage and CRISPR spacer linkages between these viruses and 626 bacterial metagenome-assembled genomes and bacterial isolates showed that most viruses infected Alphaproteobacteria, the most abundant class, and less abundant taxa like Halanaerobiia and Bacteroidia. A host-phage-gene network identified keystone viruses with the genomic capacity to modulate bacterial metabolic pathways and direct molecular interactions with eukaryotic cells. This study reveals the genomic basis of nested symbioses between bacteriophage, bacteria, and the coral host and its endosymbiotic algae.
Collapse
Affiliation(s)
- Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Alexandra K Stiffler
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| |
Collapse
|
4
|
Liu L, Zhong KX, Chen Q, Wang Y, Zhang T, Jiao N, Zheng Q. Selective cell lysis pressure on rare and abundant prokaryotic taxa across a shelf-to-slope continuum in the Northern South China Sea. Appl Environ Microbiol 2023; 89:e0139323. [PMID: 38014961 PMCID: PMC10734510 DOI: 10.1128/aem.01393-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Virus-induced host lysis contributes up to 40% of total prokaryotic mortality and plays crucial roles in shaping microbial composition and diversity in the ocean. Nonetheless, what taxon-specific cell lysis is caused by viruses remains to be studied. The present study, therefore, examined the taxon-specific cell lysis and estimated its contribution to the variations in the rare and abundant microbial taxa. The results demonstrate that taxon-specific mortality differed in surface and bottom of the coastal environment. In addition, active rare taxa are more susceptible to heightened lytic pressure and suggested the importance of viral lysis in regulating the microbial community composition. These results improve our understanding of bottom-up (abiotic environmental variables) and top-down (viral lysis) controls contributing to microbial community assembly in the ocean.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Qi Chen
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ting Zhang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Weinheimer AR, Aylward FO, Leray M, Scott JJ. Contrasting drivers of abundant phage and prokaryotic communities revealed in diverse coastal ecosystems. ISME COMMUNICATIONS 2023; 3:127. [PMID: 38049529 PMCID: PMC10695958 DOI: 10.1038/s43705-023-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Phages (viruses of bacteria and archaea) are a ubiquitous top-down control on microbial communities by selectively infecting and killing cells. As obligate parasites, phages are inherently linked to processes that impact their hosts' distribution and physiology, but phages can also be impacted by external, environmental factors, such as UV radiation degrading their virions. To better understand these complex links of phages to their hosts and the environment, we leverage the unique ecological context of the Isthmus of Panama, which narrowly disconnects the productive Tropical Eastern Pacific (EP) and nutrient-poor Tropical Western Atlantic (WA) provinces. We could thus compare patterns of phage and prokaryotic communities at both global scales (between oceans) and local-scales (between habitats within an ocean). Although both phage and prokaryotic communities differed sharply between the oceans, phage community composition did not significantly differ between mangroves and reefs of the WA, while prokaryotic communities were distinct. These results suggest phages are more shaped by dispersal processes than local conditions regardless of spatial scale, while prokaryotes tend to be shaped by local conditions at smaller spatial scales. Collectively, we provide a framework for addressing the co-variability between phages and prokaryotes in marine systems and identifying factors that drive consistent versus disparate trends in community shifts, essential to informing models of biogeochemical cycles that include these interactions.
Collapse
Affiliation(s)
- Alaina R Weinheimer
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0913, USA
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Jarrod J Scott
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.
| |
Collapse
|
6
|
Liu Y, Jiao N, Xu Zhong K, Zang L, Zhang R, Xiao X, Shi Y, Zhang Z, Tao Y, Bai L, Gao B, Yang Y, Huang X, Ji M, Liu J, Liu P, Yao T. Diversity and function of mountain and polar supraglacial DNA viruses. Sci Bull (Beijing) 2023; 68:2418-2433. [PMID: 37739838 DOI: 10.1016/j.scib.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/30/2023] [Indexed: 09/24/2023]
Abstract
Mountain and polar glaciers cover 10% of the Earth's surface and are typically extreme environments that challenge life of all forms. Viruses are abundant and active in supraglacial ecosystems and play a crucial role in controlling the supraglacial microbial communities. However, our understanding of virus ecology on glacier surfaces and their potential impacts on downstream ecosystems remains limited. Here, we present the supraglacial virus genome (SgVG) catalog, a 15-fold expanded genomic inventory of 10,840 DNA-virus species from 38 mountain and polar glaciers, spanning habitats such as snow, ice, meltwater, and cryoconite. Supraglacial DNA-viruses were highly specific compared to viruses in other ecosystems yet exhibited low public health risks. Supraglacial viral communities were primarily constrained by habitat, with cryoconite displaying the highest viral activity levels. We observed a prevalence of lytic viruses in all habitats, especially in cryoconite, but a high level of lysogenic viruses in snow and ice. Additionally, we found that supraglacial viruses could be linked to ∼83% of obtained prokaryotic phyla/classes and possessed the genetic potential to promote metabolism and increase cold adaptation, cell mobility, and phenolic carbon use of hosts in hostile environmental conditions using diverse auxiliary metabolic genes. Our results provide the first systematic characterization of the diversity, function, and public health risks evaluation of mountain and polar supraglacial DNA viruses. This understanding of glacial viruses is crucial for function assessments and ecological modeling of glacier ecosystems, especially for the Tibetan Plateau's Mountain glaciers, which support ∼20% of the human populations on Earth.
Collapse
Affiliation(s)
- Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Lin Zang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518000, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Shi
- University of Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Bianli Gao
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Yunlan Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xingyu Huang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Junzhi Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Tandong Yao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Complete Genome Sequence of Vibrio natriegens Strain PWH3a. Microbiol Resour Announc 2023; 12:e0110822. [PMID: 36598262 PMCID: PMC9872580 DOI: 10.1128/mra.01108-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vibrio natriegens strain PWH3a, isolated from the Texas Gulf Coast, is used as a model organism in marine microbiology. Here, we report the complete genome sequence of strain PWH3a, which has two circular chromosomes, 4,650 coding sequences, 34 rRNA, 4 noncoding RNA (ncRNA), 131 tRNA genes, and one Mu-like prophage sequence.
Collapse
|