1
|
Chen B, Liu G, Chen Q, Wang H, Liu L, Tang K. Discovery of a novel marine Bacteroidetes with a rich repertoire of carbohydrate-active enzymes. Comput Struct Biotechnol J 2024; 23:406-416. [PMID: 38235362 PMCID: PMC10792170 DOI: 10.1016/j.csbj.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Members of the phylum Bacteroidetes play a key role in the marine carbon cycle through their degradation of polysaccharides via carbohydrate-active enzymes (CAZymes) and polysaccharide utilization loci (PULs). The discovery of novel CAZymes and PULs is important for our understanding of the marine carbon cycle. In this study, we isolated and identified a potential new genus of the family Catalimonadaceae, in the phylum Bacteroidetes, from the southwest Indian Ocean. Strain TK19036, the type strain of the new genus, is predicted to encode CAZymes that are relatively abundant in marine Bacteroidetes genomes. Tunicatimonas pelagia NBRC 107804T, Porifericola rhodea NBRC 107748T and Catalinimonas niigatensis NBRC 109829T, which exhibit 16 S rRNA similarities exceeding 90% with strain TK19036, and belong to the same family, were selected as reference strains. These organisms possess a highly diverse repertoire of CAZymes and PULs, which may enable them to degrade a wide range of polysaccharides, especially pectin and alginate. In addition, some secretory CAZymes in strain TK19036 and its relatives were predicted to be transported by type IX secretion system (T9SS). Further, to the best of our knowledge, we propose the first reported "hybrid" PUL targeting alginates in T. pelagia NBRC 107804T. Our findings provide new insights into the polysaccharide degradation capacity of marine Bacteroidetes, and suggest that T9SS may play a more important role in this process than previously believed.
Collapse
Affiliation(s)
- Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Huanyu Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Borowska-Beszta M, Smoktunowicz M, Horoszkiewicz D, Jonca J, Waleron MM, Gawor J, Mika A, Sledzinski T, Waleron K, Waleron M. Comparative genomics, pangenomics, and phenomic studies of Pectobacterium betavasculorum strains isolated from sugar beet, potato, sunflower, and artichoke: insights into pathogenicity, virulence determinants, and adaptation to the host plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1352318. [PMID: 38576793 PMCID: PMC10991766 DOI: 10.3389/fpls.2024.1352318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Introduction Bacteria of genus Pectobacterium, encompassing economically significant pathogens affecting various plants, includes the species P. betavasculorum, initially associated with beetroot infection. However, its host range is much broader. It causes diseases of sunflower, potato, tomato, carrots, sweet potato, radish, squash, cucumber, and chrysanthemum. To explain this phenomenon, a comprehensive pathogenomic and phenomic characterisation of P. betavasculorum species was performed. Methods Genomes of P. betavasculorum strains isolated from potato, sunflower, and artichoke were sequenced and compared with those from sugar beet isolates. Metabolic profiling and pathogenomic analyses were conducted to assess virulence determinants and adaptation potential. Pathogenicity assays were performed on potato tubers and chicory leaves to confirm in silico predictions of disease symptoms. Phenotypic assays were also conducted to assess the strains ability to synthesise homoserine lactones and siderophores. Results The genome size ranged from 4.675 to 4.931 kbp, and GC % was between 51.0% and 51.2%. The pangenome of P. betavasculorum is open and comprises, on average, 4,220 gene families. Of these, 83% of genes are the core genome, and 2% of the entire pangenome are unique genes. Strains isolated from sugar beet have a smaller pangenome size and a higher number of unique genes than those from other plants. Interestingly, genomes of strains from artichoke and sunflower share 391 common CDS that are not present in the genomes of other strains from sugar beet or potato. Those strains have only one unique gene. All strains could use numerous sugars as building materials and energy sources and possessed a high repertoire of virulence determinants in the genomes. P. betavasculorum strains were able to cause disease symptoms on potato tubers and chicory leaves. They were also able to synthesise homoserine lactones and siderophores. Discussion The findings underscore the adaptability of P. betavasculorum to diverse hosts and environments. Strains adapted to plants with high sugar content in tissues have a different composition of fatty acids in membranes and a different mechanism of replenishing nitrogen in case of deficiency of this compound than strains derived from other plant species. Extensive phenomics and genomic analyses performed in this study have shown that P. betavasculorum species is an agronomically relevant pathogen.
Collapse
Affiliation(s)
- Maria Borowska-Beszta
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Smoktunowicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Daria Horoszkiewicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Joanna Jonca
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Michal Mateusz Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Jan Gawor
- DNA Sequencing & Synthesis Facility, Institute of Biochemistry & Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
3
|
Liu L, Gao X, Dong C, Wang H, Chen X, Ma X, Liu S, Chen Q, Lin D, Jiao N, Tang K. Enantioselective transformation of phytoplankton-derived dihydroxypropanesulfonate by marine bacteria. THE ISME JOURNAL 2024; 18:wrae084. [PMID: 38709871 PMCID: PMC11131964 DOI: 10.1093/ismejo/wrae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Chirality, a fundamental property of matter, is often overlooked in the studies of marine organic matter cycles. Dihydroxypropanesulfonate (DHPS), a globally abundant organosulfur compound, serves as an ecologically important currency for nutrient and energy transfer from phytoplankton to bacteria in the ocean. However, the chirality of DHPS in nature and its transformation remain unclear. Here, we developed a novel approach using chiral phosphorus-reagent labeling to separate DHPS enantiomers. Our findings demonstrated that at least one enantiomer of DHPS is present in marine diatoms and coccolithophores, and that both enantiomers are widespread in marine environments. A novel chiral-selective DHPS catabolic pathway was identified in marine Roseobacteraceae strains, where HpsO and HpsP dehydrogenases at the gateway to DHPS catabolism act specifically on R-DHPS and S-DHPS, respectively. R-DHPS is also a substrate for the dehydrogenase HpsN. All three dehydrogenases generate stable hydrogen bonds between the chirality-center hydroxyls of DHPS and highly conserved residues, and HpsP also form coordinate-covalent bonds between the chirality-center hydroxyls and Zn2+, which determines the mechanistic basis of strict stereoselectivity. We further illustrated the role of enzymatic promiscuity in the evolution of DHPS metabolism in Roseobacteraceae and SAR11. This study provides the first evidence of chirality's involvement in phytoplankton-bacteria metabolic currencies, opening a new avenue for understanding the ocean organosulfur cycle.
Collapse
Affiliation(s)
- Le Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Xiang Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Huanyu Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Xiaofeng Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361001, China
| | - Xiaoyi Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Shujing Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| |
Collapse
|
4
|
Li J, Mui JWY, da Silva BM, Pires DEV, Ascher DB, Madiedo Soler N, Goddard-Borger ED, Williams SJ. A Broad-Spectrum α-Glucosidase of Glycoside Hydrolase Family 13 from Marinovum sp., a Member of the Roseobacter Clade. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04820-3. [PMID: 38180643 DOI: 10.1007/s12010-023-04820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Glycoside hydrolases (GHs) are a diverse group of enzymes that catalyze the hydrolysis of glycosidic bonds. The Carbohydrate-Active enZymes (CAZy) classification organizes GHs into families based on sequence data and function, with fewer than 1% of the predicted proteins characterized biochemically. Consideration of genomic context can provide clues to infer possible enzyme activities for proteins of unknown function. We used the MultiGeneBLAST tool to discover a gene cluster in Marinovum sp., a member of the marine Roseobacter clade, that encodes homologues of enzymes belonging to the sulfoquinovose monooxygenase pathway for sulfosugar catabolism. This cluster lacks a gene encoding a classical family GH31 sulfoquinovosidase candidate, but which instead includes an uncharacterized family GH13 protein (MsGH13) that we hypothesized could be a non-classical sulfoquinovosidase. Surprisingly, recombinant MsGH13 lacks sulfoquinovosidase activity and is a broad-spectrum α-glucosidase that is active on a diverse array of α-linked disaccharides, including maltose, sucrose, nigerose, trehalose, isomaltose, and kojibiose. Using AlphaFold, a 3D model for the MsGH13 enzyme was constructed that predicted its active site shared close similarity with an α-glucosidase from Halomonas sp. H11 of the same GH13 subfamily that shows narrower substrate specificity.
Collapse
Affiliation(s)
- Jinling Li
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Janice W-Y Mui
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bruna M da Silva
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
- School of Computing and Information Systems, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
- School of Computing and Information Systems, University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Niccolay Madiedo Soler
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Ethan D Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
5
|
Kaur A, Pickles IB, Sharma M, Madeido Soler N, Scott NE, Pidot SJ, Goddard-Borger ED, Davies GJ, Williams SJ. Widespread Family of NAD +-Dependent Sulfoquinovosidases at the Gateway to Sulfoquinovose Catabolism. J Am Chem Soc 2023; 145:28216-28223. [PMID: 38100472 PMCID: PMC10755693 DOI: 10.1021/jacs.3c11126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The sulfosugar sulfoquinovose (SQ) is produced by photosynthetic plants, algae, and cyanobacteria on a scale of 10 billion tons per annum. Its degradation, which is essential to allow cycling of its constituent carbon and sulfur, involves specialized glycosidases termed sulfoquinovosidases (SQases), which release SQ from sulfolipid glycoconjugates, so SQ can enter catabolism pathways. However, many SQ catabolic gene clusters lack a gene encoding a classical SQase. Here, we report the discovery of a new family of SQases that use an atypical oxidoreductive mechanism involving NAD+ as a catalytic cofactor. Three-dimensional X-ray structures of complexes with SQ and NAD+ provide insight into the catalytic mechanism, which involves transient oxidation at C3. Bioinformatic survey reveals this new family of NAD+-dependent SQases occurs within sulfoglycolytic and sulfolytic gene clusters that lack classical SQases and is distributed widely including within Roseobacter clade bacteria, suggesting an important contribution to marine sulfur cycling.
Collapse
Affiliation(s)
- Arashdeep Kaur
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Isabelle B. Pickles
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Mahima Sharma
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Niccolay Madeido Soler
- ACRF
Chemical Biology Division, The Walter and
Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nichollas E. Scott
- Department
of Microbiology and Immunology, University
of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sacha J. Pidot
- Department
of Microbiology and Immunology, University
of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ethan D. Goddard-Borger
- ACRF
Chemical Biology Division, The Walter and
Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Spencer J. Williams
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Sun W, Xu Y, Liang Y, Yu Q, Gao H. A novel bacterial sulfite dehydrogenase that requires three c-type cytochromes for electron transfer. Appl Environ Microbiol 2023; 89:e0110823. [PMID: 37732808 PMCID: PMC10617556 DOI: 10.1128/aem.01108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
c-type Cytochromes (c-Cyts), primarily as electron carriers and oxidoreductases, play a key role in energy transduction processes in virtually all living organisms. Many bacteria, such as Shewanella oneidensis, are particularly rich in c-Cyts, supporting respiratory versatility not seen in eukaryotes. Unfortunately, a large number of c-Cyts are underexplored, and their biological functions remain unknown. In this study, we identify SorCABD of S. oneidensis as a novel sulfite dehydrogenase (SDH), which catalyzes the oxidation of sulfite to sulfate. In addition to catalytic subunit SorA, this enzymatic complex includes three c-Cyt subunits, which all together carry out electron transfer. The electrons extracted from sulfite oxidation are ultimately delivered to oxygen, leading to oxygen reduction, a process relying on terminal oxidase cyt cbb3. Genomic analysis suggests that the homologs of this SDH are present in a small number of bacterial genera, Shewanella and Vibrio in particular. Because these bacteria are generally capable of reducing sulfite under anaerobic conditions, the co-existence of a sulfite oxidation system implies that they may play especially important roles in the transformation of sulfur species in natural environments.Importancec-type Cytochromes (c-Cyts) endow bacteria with high flexibility in their oxidative/respiratory systems, allowing them to extracellularly transform diverse inorganic and organic compounds for survival and growth. However, a large portion of the bacterial c-Cyts remain functionally unknown. Here, we identify three c-Cyts that work together as essential electron transfer partners for the catalytic subunit of a novel SDH in sulfite oxidation in Shewanella oneidensis. This characteristic makes S. oneidensis the first organism known to be capable of oxidizing and reducing sulfite. The findings suggest that Shewanella, along with a small number of other aquatic bacteria, would serve as a particular driving force in the biogeochemical sulfur cycle in nature.
Collapse
Affiliation(s)
- Weining Sun
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanyou Xu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yawen Liang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Ye Z, Wei Y, Jiang L, Zhang Y. Oxygenolytic sulfoquinovose degradation by an iron-dependent alkanesulfonate dioxygenase. iScience 2023; 26:107803. [PMID: 37731605 PMCID: PMC10507154 DOI: 10.1016/j.isci.2023.107803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Sulfoquinovose (6-deoxy-6-sulfo-D-glucose, SQ), the polar head group of sulfolipids in plants, is abundant in nature. Many bacteria degrade SQ through pathways termed sulfoglycolysis producing C3 or C2 sulfonates, while certain bacteria degrade SQ through direct oxygenolytic cleavage of the SQ C-S bond, catalyzed by a flavin-dependent alkanesulfonate monooxygenase (sulfo-ASMO pathway). Here we report bioinformatics and biochemical studies revealing an alternative mechanism for oxygenolytic cleavage of the SQ C-S bond, catalyzed by an iron and α-ketoglutarate-dependent alkanesulfonate dioxygenase (SqoD, sulfo-ASDO pathway). In both the ASMO and ASDO pathways, the product 6-dehydroglucose is reduced to glucose by NAD(P)H-dependent SquF. Marinomonas ushuaiensis, a marine bacterium, which harbors the sulfo-ASDO gene cluster is shown utilizing SQ as a carbon source for growth, accompanied by increased transcription of SqoD. The sulfo-ASDO pathway highlights the range of microbial strategies for degradation of this ubiquitous sulfo-sugar, with potential implications for sulfur recycling in different biological environments.
Collapse
Affiliation(s)
- Zonghua Ye
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| |
Collapse
|
8
|
Chu R, Wei Y, Liu J, Li B, Zhang J, Zhou Y, Du Y, Zhang Y. A Variant of the Sulfoglycolytic Transketolase Pathway for the Degradation of Sulfoquinovose into Sulfoacetate. Appl Environ Microbiol 2023; 89:e0061723. [PMID: 37404184 PMCID: PMC10370302 DOI: 10.1128/aem.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Sulfoquinovose (SQ, 6-deoxy-6-sulfo-glucose) constitutes the polar head group of plant sulfolipids and is one of the most abundantly produced organosulfur compounds in nature. Degradation of SQ by bacterial communities contributes to sulfur recycling in many environments. Bacteria have evolved at least four mechanisms for glycolytic degradation of SQ, termed sulfoglycolysis, producing C3 sulfonate (dihydroxypropanesulfonate and sulfolactate) and C2 sulfonate (isethionate) by-products. These sulfonates are further degraded by other bacteria, leading to the mineralization of the sulfonate sulfur. The C2 sulfonate sulfoacetate is widespread in the environment and is also thought to be a product of sulfoglycolysis, although the mechanistic details are yet unknown. Here, we describe a gene cluster in an Acholeplasma sp., from a metagenome derived from deeply circulating subsurface aquifer fluids (GenBank accession no. QZKD01000037), encoding a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway that produces sulfoacetate instead of isethionate as a by-product. We report the biochemical characterization of a coenzyme A (CoA)-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL), which collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria, adding to the variety of mechanisms by which bacteria metabolize this ubiquitous sulfo-sugar. IMPORTANCE Many bacteria utilize environmentally widespread C2 sulfonate sulfoacetate as a sulfur source, and the disease-linked human gut sulfate- and sulfite-reducing bacteria can use it as a terminal electron receptor for anaerobic respiration generating toxic H2S. However, the mechanism of sulfoacetate formation is unknown, although it has been proposed that sulfoacetate originates from bacterial degradation of sulfoquinovose (SQ), the polar head group of sulfolipids present in all green plants. Here, we describe a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway. Unlike the regular sulfo-TK pathway that produces isethionate, our biochemical assays with recombinant proteins demonstrated that a CoA-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL) in this variant pathway collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria and interpreted the widespread existence of sulfoacetate.
Collapse
Affiliation(s)
- Ruoxing Chu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jiayi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Boran Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianing Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Wei Y, Feng LJ, Yuan XZ, Wang SG, Xia PF. Developing a Base Editing System for Marine Roseobacter Clade Bacteria. ACS Synth Biol 2023. [PMID: 37436915 DOI: 10.1021/acssynbio.3c00259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The Roseobacter clade bacteria are of great significance in marine ecology and biogeochemical cycles, and they are potential microbial chassis for marine synthetic biology due to their versatile metabolic capabilities. Here, we adapted a CRISPR-Cas-based system, base editing, with the combination of nuclease-deactivated Cas9 and deaminase for Roseobacter clade bacteria. Taking the model roseobacter Roseovarius nubinhibens as an example, we achieved precise and efficient genome editing at single-nucleotide resolution without generating double-strand breaks or requesting donor DNAs. Since R. nubinhibens can metabolize aromatic compounds, we interrogated the key genes in the β-ketoadipate pathway with our base editing system via the introduction of premature STOP codons. The essentiality of these genes was demonstrated, and for the first time, we determined PcaQ as a transcription activator experimentally. This is the first report of CRISPR-Cas-based genome editing in the entire clade of Roseobacter bacteria. We believe that our work provides a paradigm for interrogating marine ecology and biogeochemistry with direct genotype-and-phenotype linkages and potentially opens a new avenue for the synthetic biology of marine Roseobacter bacteria.
Collapse
Affiliation(s)
- Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li-Juan Feng
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Xian-Zheng Yuan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao 266237, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Tang K, Liu L. Bacteria are driving the ocean's organosulfur cycle. Trends Microbiol 2023:S0966-842X(23)00156-7. [PMID: 37280134 DOI: 10.1016/j.tim.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Bacteria are key players in the marine sulfur cycle, from the sunlit ocean surface to the dark abyssal depths. Here, we provide a brief overview of the interlinked metabolic processes of organosulfur compounds, an elusive sulfur cycling process that exists in the dark ocean, and the current challenges that limit our understanding of this key nutrient cycle.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| |
Collapse
|