1
|
Sun D, Shi X, Shen Y, Liu Y, Luo S, Jin Y, Zhai W, Liu L, Deng Z, Sun C, Liu D, Yang X, Xie Y, Krüger-Haker H, Wu C, Schwarz S, Shen J, Chen Y, Ma S, Wang Y. Comparative efficacy of anaerobic digestion systems in removing antimicrobial resistance genes from swine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136868. [PMID: 39708598 DOI: 10.1016/j.jhazmat.2024.136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Swine farm wastewater is a major reservoir of antimicrobial resistance genes (ARGs). Anaerobic digestion (AD), widely implemented in farms, has been extensively studied for ARG removal. However, a comparative study on ARG removal efficiency across the four principal AD systems - up-flow anaerobic sludge blanket (UASB), continuous stirred tank reactor (CSTR), buried biogas digester (BBD), and septic tank (SPT) - is lacking. Herein, we employed metagenomic sequencing, ultra-performance liquid chromatography-tandem mass spectrometry, as well as atomic absorption spectrometry/atomic fluorescence spectrophotometry, and revealed that UASB and CSTR achieved higher removal efficiencies for both ARGs (67% and 57%) and antibiotic residues (100% and 90%) compared to BBD and SPT. Acinetobacter, Escherichia, Pseudomonas and Streptococcus were the primary ARG hosts, comprising over 65% of the total abundance in influent samples. UASB and CSTR systems demonstrated superior removal efficiencies for both mobile genetic elements (MGEs) and antibiotic residues, both of which had essential impacts on ARG profiles. In addition, heavy metals might contribute to variation in ARGs through horizontal gene transfer. Collectively, the variation in microbial communities and better removal of both MGEs and antibiotic residues contribute to the remarkable ARG removal efficiency of UASB and CSTR, therefore, advocating for the widespread adoption of these two AD systems in swine farms.
Collapse
Affiliation(s)
- Da Sun
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaomin Shi
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yingbo Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weishuai Zhai
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhaoju Deng
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Yang
- Hainan Animal Disease Control Center, Haikou 571100, China
| | - Youzhi Xie
- Hainan Animal Disease Control Center, Haikou 571100, China
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Congming Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stefan Schwarz
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Jianzhong Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yang Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Li Y, Zhang Y, Liu X, Zhou X, Ye T, Fu Q, Du M, Lu Q, Zheng Y, Wang D. Per- and polyfluoroalkyl substances exacerbate the prevalence of plasmid-borne antibiotic resistance genes by enhancing natural transformation,in vivo stability, and expression in bacteria. WATER RESEARCH 2024; 272:122972. [PMID: 39706060 DOI: 10.1016/j.watres.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) as emerging pollutants are ubiquitous and disrupt biological processes across water boundaries. Their coexistence with antibiotic resistance genes (ARGs) in water matrix is associated with the spread of ARGs via conjugative transfer, posing a threat to public health. However, their role in natural transformation-where microorganisms actively take up extracellular ARGs (eARGs)-and the subsequent persistence and expression of ARGs after transformation remains poorly understood. Here, we demonstrated that environmentally relevant concentrations (0.1-10 µg/L) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), two typical PFAS, increased transformation frequencies by 2.54- and 3.26-fold, respectively. This increase was driven by increased cell envelope permeability, biofilm formation, reactive oxygen species (ROS) production, and upregulation of DNA uptake genes. At higher concentrations (100 µg/L), PFAS inhibited transformation. Nevertheless, PFOA and PFOS at all tested concentrations promoted long-term plasmid in vivo stability, reducing plasmid loss rates from 68.5% to 6% and 38.7%, respectively. Furthermore, they induced ARGs expression in transformants by up to 1.33- and 1.37-fold. Our findings revealed that PFOA and PFOS impacted the spread, persistence, and expression of ARGs, from extracellular uptake to intracellular activity in bacteria. These results highlight the underestimated environmental health risks posed by PFAS and underscore the intricate chemical and biological co-contamination in aquatic ecosystems and wastewater treatment.
Collapse
Affiliation(s)
- Yingbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yunxuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Xiangming Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Tao Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Xu Y, Yu W, Wang X, Tao K, Bian Z, Wang H, Wei Y. Impact of low-dose free chlorine on the conjugative transfer of antibiotic resistance genes in wastewater effluents: Identifying key environmental factors for predictive modeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136824. [PMID: 39667151 DOI: 10.1016/j.jhazmat.2024.136824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/13/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Reclaimed water disinfection results in the coexistence of antibiotic resistance genes (ARGs) and low-dose free chlorine in receiving environments. However, the impact of low-dose free chlorine on ARGs conjugative transfer and the key factors influencing the transfer under complex environmental conditions remain unclear, hindering the establishment of an effective monitoring system for resistance pollution in reclaimed water. This study investigated ARGs conjugative transfer under the influence of free chlorine at environmentally relevant concentrations and key interactive factors using machine learning models. The results showed that low-dose free chlorine (0.05-0.3 mg/L) promoted ARGs conjugative transfer, with 0.15 mg/L having a greater promoting effect than free chlorine concentrations of 0.05 and 0.3 mg/L. Additionally, different exposure patterns of low-dose chlorine affected ARGs conjugative transfer, with intermittent exposure posing a higher risk of ARGs dissemination. SVM linear model performed best in predicting ARGs conjugative transfer (RMSE=0.012, R2=0.975), and the SHapley Additive Explanations (SHAP) method revealed that key factors such as HCO3-, SAA, NO3-, and HA had positive SHAP values, indicating a positive influence on ARGs transfer under low-dose chlorine, making them the key features for predicting the ARGs conjugative transfer under the low-dose chlorine exposure. This study also revealed potential mechanisms of ARGs transfer under continuous low-dose free chlorine exposure, including intracellular reactive oxygen species (ROS), enzyme activity, cell membrane permeability, and gene expression. The integration of the machine learning model and post-hoc interpretation methods clarified the key drivers of ARGs conjugative transfer in reclaimed water-replenished environments, providing new insights for the safe reuse of reclaimed water and the development of river monitoring indicators.
Collapse
Affiliation(s)
- Ye Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wenchao Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiaowen Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Kang Tao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Yuansong Wei
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
4
|
Hou J, Li Y, Liu M, Qu Z, Du Z, An Y, Yang F, Yao Y. Significant effects of bioavailable heavy metals on antibiotic resistome in paddy soils as revealed by metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136587. [PMID: 39579702 DOI: 10.1016/j.jhazmat.2024.136587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Heavy metals (HMs) act as a long-term selective pressure for the emergence and maintenance of antibiotic resistance genes (ARGs) in agricultural soils. However, the effects of HMs on ARG distributions in paddy soils and the underlying mechanisms remain unclear. In this study, 74 soil samples were collected from the paddy fields to explore the impact of HMs on ARG profiles. A total of 468 ARGs were detected in HM-contaminated soils. Variation partitioning analysis (VPA) and redundancy analysis (RDA) demonstrated that the bioavailable HMs contributed more significantly to ARG composition compared to the total HM content (8.59 % vs. 3.97 %). Structural equation models (SEMs) showed that bioavailable HMs affected ARGs mainly by negatively altering the microbial diversity. Furthermore, the co-occurrence analysis of ARGs and metal resistant genes (MRGs) was further performed at the metagenome-assembled genomes (MAGs) level. Consequently, 1145 MAGs that assigned to 29 bacterial phyla were found to concurrently harbor ARGs and MRGs, with the bacterial phyla Pseudomonadota being predominant ARG-MRG-carrying microbes for most coexistence types of ARGs and MRGs, i.e., multidrug-As, polymyxin-Cd, Quinolone-Cd, Beta-lactam-Pb, and multidrug-Zn. Our findings highlight that the extensive coexistence of ARG-MRG in microbial genomes is an important reason for the ARG pollution in HM-contaminated paddy soils.
Collapse
Affiliation(s)
- Jie Hou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ye Li
- School of Environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Mengqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zheng Qu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
5
|
Gao Y, Zhou S, Yang Z, Tang Z, Su Y, Duan Y, Song J, Huang Z, Wang Y. Unveiling the role of uranium in enhancing the transformation of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135624. [PMID: 39208634 DOI: 10.1016/j.jhazmat.2024.135624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Zhengqing Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| |
Collapse
|
6
|
Cao Q, Liu C, Chen L, Qin Y, Wang T, Wang C. Synergistic impacts of antibiotics and heavy metals on Hermetia illucens: Unveiling dynamics in larval gut bacterial communities and microbial metabolites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121632. [PMID: 38950506 DOI: 10.1016/j.jenvman.2024.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Hermetia illucens larvae showcases remarkable bioremediation capabilities for both antibiotics and heavy metal contaminants. However, the distinctions in larval intestinal microbiota arising from the single and combined effects of antibiotics and heavy metals remain poorly elucidated. In this study, we delved into the details of larval intestinal bacterial communities and microbial metabolites when exposed to single and combined contaminants of oxytetracycline (OTC) and hexavalent chromium (Cr(VI)). After conversion, single contaminant-spiked substrate showed 75.5% of OTC degradation and 95.2% of Cr(VI) reductiuon, while combined contaminant-spiked substrate exhibited 71.3% of OTC degradation and 93.4% of Cr(VI) reductiuon. Single and combined effects led to differences in intestinal bacterial communities, mainly reflected in the genera of Enterococcus, Pseudogracilibacillus, Gracilibacillus, Wohlfahrtiimonas, Sporosarcina, Lysinibacillus, and Myroide. Moreover, these effects also induced differences across various categories of microbial metabolites, which categorized into amino acid and its metabolites, benzene and substituted derivatives, carbohydrates and its metabolites, heterocyclic compounds, hormones and hormone-related compounds, nucleotide and its metabolites, and organic acid and its derivatives. In particular, the differences induced OTC was greater than that of Cr(VI), and combined effects increased the complexity of microbial metabolism compared to that of single contaminant. Correlation analysis indicated that the bacterial genera, Preudogracilibacillus, Enterococcus, Sporosarcina, Lysinibacillus, Wohlfahrtiimonas, Ignatzschineria, and Fusobacterium exhibited significant correlation with significant differential metabolites, these might be used as indicators for the resistance and bioremediation of OTC and Cr(VI) contaminants. These findings are conducive to further understanding that the metabolism of intestinal microbiota determines the resistance of Hermetia illucens to antibiotics and heavy metals.
Collapse
Affiliation(s)
- Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
7
|
Liu Y, Song X, Hou X, Wang Y, Cao X. Effect of Mn-HA on ARGs and MRGs in nitrogen-culturing sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121615. [PMID: 38936019 DOI: 10.1016/j.jenvman.2024.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The simultaneous escalation in ARGs (antibiotic resistance genes) and MRGs (metal resistance genes) further complicates the intricate network of factors contributing to the proliferation of microbial resistance. Manganese, which has been reported to affect the resistance of bacteria to antibiotics and metals, plays a vital role in microbial nitrogen metabolism. Moreover, nitrifying and denitrifying populations are potential hosts for ARGs. In this study, manganese was introduced in its prevalent organic chelated form in the environment (Manganese humus chelates, Mn-HA) to a N metabolism sludge to explore the effect of manganese on MRGs and ARGs dissemination. Metagenomics results revealed that manganese availability enhances nitrogen metabolism, while a decrease in ARGs was noted which may be attributed to the inhibition of horizontal gene transfer (HGT), reflected in the reduced integrase -encoded gene int. Population analysis revealed that nitrifier and denitrifier genus harbor MRGs and ARGs, indicating that nitrifier and denitrifier are hosts of MRGs and ARGs. This raises the question of whether the prevalence of ARGs is always increased in metal-contained environments.
Collapse
Affiliation(s)
- Yingying Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Ma Y, Qiao Y, Zhang X, Ye L. Filamentous bacteria-induced sludge bulking can alter antibiotic resistance gene profiles and increase potential risks in wastewater treatment systems. ENVIRONMENT INTERNATIONAL 2024; 190:108920. [PMID: 39094405 DOI: 10.1016/j.envint.2024.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Sludge bulking caused by filamentous bacteria is a prevalent issue in wastewater treatment systems. While previous studies have primarily concentrated on controlling sludge bulking, the biological risks associated with it have been overlooked. This study demonstrates that excessive growth of filamentous bacteria during sludge bulking can significantly increase the abundance of antibiotic resistance genes (ARGs) in activated sludge. Through metagenomic analysis, we identified specific ARGs carried by filamentous bacteria, such as Sphaerotilus and Thiothrix, which are responsible for bulking. Additionally, by examining over 1,000 filamentous bacterial genomes, we discovered a diverse array of ARGs across different filamentous bacteria derived from wastewater treatment systems. Our findings indicate that 74.84% of the filamentous bacteria harbor at least one ARG, with the occurrence frequency of ARGs in these bacteria being approximately 1.5 times higher than that in the overall bacterial population in activated sludge. Furthermore, genomic and metagenomic analyses have shown that the ARGs in filamentous bacteria are closely linked to mobile genetic elements and are frequently found in potentially pathogenic bacteria, highlighting potential risks posed by these filamentous bacteria. These insights enhance our understanding of ARGs in activated sludge and underscore the importance of risk management in wastewater treatment systems.
Collapse
Affiliation(s)
- Yanyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yiheng Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Hu Q, Zhang L, Yang R, Tang J, Dong G. Quaternary ammonium biocides promote conjugative transfer of antibiotic resistance gene in structure- and species-dependent manner. ENVIRONMENT INTERNATIONAL 2024; 189:108812. [PMID: 38878503 DOI: 10.1016/j.envint.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/19/2024]
Abstract
The linkage between biocides and antibiotic resistance has been widely suggested in laboratories and various environments. However, the action mechanism of biocides on antibiotic resistance genes (ARGs) spread is still unclear. Thus, 6 quaternary ammonium biocides (QACs) with different bonded substituents or alkyl chain lengths were selected to assess their effects on the conjugation transfer of ARGs in this study. Two conjugation models with the same donor (E. coli DH5α (RP4)) into two receptors, E. coli MG1655 and pathogenic S. sonnei SE6-1, were constructed. All QACs were found to significantly promote intra- and inter-genus conjugative transfer of ARGs, and the frequency was highly impacted by their structure and receptors. At the same environmental exposure level (4 × 10-1 mg/L), didecyl dimethyl ammonium chloride (DDAC (C10)) promoted the most frequency of conjugative transfer, while benzathine chloride (BEC) promoted the least. With the same donor, the enhanced frequency of QACs of intra-transfer is higher than inter-transfer. Then, the acquisition mechanisms of two receptors were further determined using biochemical combined with transcriptome analysis. For the recipient E. coli, the promotion of the intragenus conjugative transfer may be associated with increased cell membrane permeability, reactive oxygen species (ROS) production and proton motive force (PMF)-induced enhancement of flagellar motility. Whereas, the increase of cell membrane permeability and decreased flagellar motility due to PMF disruption but encouraged biofilm formation, maybe the main reasons for promoting intergenus conjugative transfer in the recipient S. sonnei. As one pathogenic bacterium, S. sonnei was first found to acquire ARGs by biocide exposure.
Collapse
Affiliation(s)
- Qin Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| | - Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jialin Tang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Guoliang Dong
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
10
|
Wen X, Xu J, Worrich A, Li X, Yuan X, Ma B, Zou Y, Wang Y, Liao X, Wu Y. Priority establishment of soil bacteria in rhizosphere limited the spread of tetracycline resistance genes from pig manure to soil-plant systems based on synthetic communities approach. ENVIRONMENT INTERNATIONAL 2024; 187:108732. [PMID: 38728817 DOI: 10.1016/j.envint.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Resources and Environment, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Resources and Environment, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany.
| | - Xianghui Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Resources and Environment, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingyun Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Resources and Environment, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Resources and Environment, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Resources and Environment, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Resources and Environment, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong 525000, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Lin X, Han R, Liang T, Zhang C, Xu Y, Peng H, Zhou X, Huang L. In vitro assessment of the bacterial stress response and resistance evolution during multidrug-resistant bacterial invasion of the Xenopus tropicalis intestinal tract under typical stresses. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133599. [PMID: 38280323 DOI: 10.1016/j.jhazmat.2024.133599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
The intestinal microbiome might be both a sink and source of resistance genes (RGs). To investigate the impact of environmental stress on the disturbance of exogenous multidrug-resistant bacteria (mARB) within the indigenous microbiome and proliferation of RGs, an intestinal conjugative system was established to simulate the invasion of mARB into the intestinal microbiota in vitro. Oxytetracycline (OTC) and heavy metals (Zn, Cu, Pb), commonly encountered in aquaculture, were selected as typical stresses for investigation. Adenosine 5'-triphosphate (ATP), hydroxyl radical (OH·-) and extracellular polymeric substance (EPS) were measured to investigate their influence on the acceptance of RGs by intestinal bacteria. The results showed that the transfer and diffusion of RGs under typical combined stressors were greater than those under a single stressor. Combined effect of OTC and heavy metals (Zn, Cu) significantly increased the activity and extracellular EPS content of bacteria in the intestinal conjugative system, increasing intI3 and RG abundance. OTC induced a notable inhibitory response in Citrobacter and exerted the proportion of Citrobacter and Carnobacterium in microbiota. The introduction of stressors stimulates the proliferation and dissemination of RGs within the intestinal environment. These results enhance our comprehension of the typical stresses effect on the RGs dispersal in the intestine.
Collapse
Affiliation(s)
- Xiaojun Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Jieyang 515200, PR China; School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, PR China
| | - Ruiqi Han
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, PR China
| | - Taojie Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, PR China
| | - Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, PR China
| | - Yanbin Xu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Jieyang 515200, PR China; School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, PR China.
| | - Huishi Peng
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, PR China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, PR China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, PR China
| |
Collapse
|