1
|
Emekli AS, Dörtkol ŞO, Savaş M, Öz F, İşcen P, Topaloğlu P, Tarhan G, Soylu S, Yılmaz V, Küçükali Cİ, Tüzün E, Yapıcı Z. Effects of immune modulatory treatment on language and psychiatric profile in patients with electrical status epilepticus in sleep (ESES). Epilepsy Behav 2024; 163:110225. [PMID: 39708504 DOI: 10.1016/j.yebeh.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Electrical status epilepticus in sleep (ESES) is an electrographic pattern associated with cognitive impairment. Our study aimed to prospectively evaluate the psychiatric findings and language skills in patients diagnosed with ESES and to determine the immune modulatory treatment-responsive subgroups. We assessed the patients for psychiatric features and language skills at the baseline and 12 months after. Psychiatric disorders were screened according to DSM-V criteria. We implemented standardized tests including Clinical Global Impressions-Severity Scale (CGI-S), Revised-Children Anxiety and Depression Scale, Children's Sleep Habits Questionnaire-Abbreviated, Aberrant Behavior Checklist (ABC), and Childhood Autism Rating Scale. We used tests adapted/developed for Turkish language including Test of Language Development-Primary-Fourth Edition: Turkish (TOLDP-4:T), Turkish Non-word Repetition Test (TNRT), Turkish Multilingual Sentence Repetition Test (MultiSIT-TR) and Turkish Communication Development Inventory (TCDI). Disability was evaluated by Pediatric Evaluation of Disability Inventory (PEDI). Thirty-nine patients were included. Psychiatric evaluation revealed attention deficit hyperactivity disorder-like symptoms in 25 patients, intellectual disability in 12, and specific learning disability in 8. Patients were treated with corticosteroids or IVIg in addition to anti-seizure medication. The spike wave indexes improved significantly at the end of follow-up period (80 % (65-91) vs. 37 % (24-65), p < 0.001). After 12 months, statistically significant improvement was found in ABC, CGI-S, TOLDP-4:T, TNRT, MultiSIT-TR, TCDI, and PEDI scores (p < 0.05). Patients with improvement in psychiatric symptoms had earlier age. Phonologic working memory performance was significantly preserved and improved compared to other language domains. Immune modulatory treatments may contribute to improvement of psychiatric symptoms and language skills. Preservation of phonologic working memory and grammar performance might be a valuable feature to differentiate ESES-related language impairment.
Collapse
Affiliation(s)
- Ahmed Serkan Emekli
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Şevket Ozan Dörtkol
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Merve Savaş
- Department of Speech and Language Therapy, Faculty of Health Sciences, Atlas University, Istanbul, Türkiye
| | - Fırat Öz
- Department of Child and Adolescent Psychiatry, Siirt Training and Research Hospital, Siirt, Türkiye
| | - Pınar İşcen
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Pınar Topaloğlu
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Güllü Tarhan
- Department of Neurology, Erenköy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Türkiye
| | - Selen Soylu
- Department of Neurosciences, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Türkiye
| | - Vuslat Yılmaz
- Department of Neurosciences, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Türkiye
| | - Cem İsmail Küçükali
- Department of Neurosciences, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Türkiye
| | - Erdem Tüzün
- Department of Neurosciences, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Türkiye
| | - Zuhal Yapıcı
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
2
|
Abd El Baky H, Weinstock NI, Khan Sial GZ, Hicar MD. Comparison of B Cell Variable Region Gene Segment Characteristics in Neuro-autoantibodies. Immunohorizons 2024; 8:740-748. [PMID: 39446034 PMCID: PMC11532373 DOI: 10.4049/immunohorizons.2400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Autoimmune pediatric neurologic diseases have variable phenotypes and presentations, making diagnosis challenging. The pathologic mechanisms are also distinct, including cell-mediated and Ab-mediated autoimmunity, paraneoplastic syndromes, and postinfectious processes. In recent years a number of studies have described the characteristics of the autoantibodies involved in a number of these diseases. Some of the described Abs use a restricted set of variable gene segments. We sought to compare the Ab characteristics of autoantibodies related to some of the more common disorders to discover whether specific Ab signatures are universally associated with neuroautoimmune diseases. We initially performed a literature review to summarize the Ab characteristics of autoantibodies related to some of the more common disorders, including N-methyl-d-aspartate receptor (NMDAR) and leucine-rich, glioma-inactivated 1 (LGI-1). Next, we performed data analysis from selected studies that sequenced Ig genes to further characterize NMDAR and LGI-1 autoantibodies including CDR3 length distribution, variable gene sequence usage, and isotype use. We found that CDR3 length of NMDAR autoantibodies was normally distributed whereas the CDR3 length distribution of LGI-1 autoantibodies was skewed, suggesting that there is no global structural restriction on types of autoantibodies that can cause encephalitis. We also found that IgG1-IgG3 were the main NMDAR autoantibody isotypes detected, while IgG4 was the major isotype used in autoantibodies from LGI-1 encephalitis. These findings are useful for our understanding of autoimmune encephalitis and will help facilitate better diagnosis and treatment of these conditions in the future.
Collapse
Affiliation(s)
| | - Nadav I. Weinstock
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gull Zareen Khan Sial
- Department of Child Neurology, University of Pittsburgh Medical Center, Harrisburg Hospital, Harrisburg, PA
| | - Mark D. Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY
| |
Collapse
|
3
|
Ciolino A, Ferreira ML, Loyacono N. Groups and Subgroups in Autism Spectrum Disorder (ASD) Considering an Advanced Integrative Model (AIM). J Pers Med 2024; 14:1031. [PMID: 39452538 PMCID: PMC11508306 DOI: 10.3390/jpm14101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is related to social communication difficulties, repetitive behaviors, and highly restricted interests beginning early in life. Currently, ASD is more diagnosed than in the past, and new models are needed. The Advanced Integrative Model (AIM) is a new model in which genes and concomitant medical problems to diagnosis (CMPD) and the impact of their rigorous and adequate treatment are considered. METHODS The role of a dynamic encephalopathy from which the individual response, susceptibilities in the brain and outside the brain, gut barrier and brain-blood-barrier permeabilities, and the plastic nature of the brain is proposed as a tool for diagnosis. The concomitant medical problems (CMP) are those at and outside the brain. The individual response to treatments of CMP is analyzed. RESULTS The AIM allows for classification into 3 main groups and 24 subgroups. CONCLUSIONS The groups and subgroups in ASD are obtained taking into account CMPD treatments and individual response.
Collapse
Affiliation(s)
- Andrés Ciolino
- Planta Piloto de Ingeniería Química–PLAPIQUI (UNS–CONICET), Camino La Carrindanga Km 7, CC 717, Bahía Blanca 8000, Argentina;
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, Cuerpo C’-Primer Piso, Bahía Blanca 8000, Argentina
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química–PLAPIQUI (UNS–CONICET), Camino La Carrindanga Km 7, CC 717, Bahía Blanca 8000, Argentina;
- Departamento de Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Nicolás Loyacono
- Sociedad Argentina de Neurodesarrollo y Trastornos Asociados (SANyTA), Migueletes 681, Piso 2, Departamento 2, Ciudad Autónoma de Buenos Aires C1426BUE, Argentina;
| |
Collapse
|
4
|
Leonardi L, Perna C, Bernabei I, Fiore M, Ma M, Frankovich J, Tarani L, Spalice A. Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS): Immunological Features Underpinning Controversial Entities. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1043. [PMID: 39334578 PMCID: PMC11430956 DOI: 10.3390/children11091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS), represent an overlapping group of disorders which is characterized by acute-onset obsessive compulsive disorders, eating restriction, tics, cognitive and behavioral deterioration which typically follows a relapsing-remitting course but some patients have a primary or secondary persistent progress. This condition is likely caused by heterogeneous inflammatory mechanisms (autoantibodies, complement activation, pro-inflammatory cytokine production) involving the basal ganglia as evidenced by imaging studies (patients vs. controls), sleep studies that found movements and/or atonia during REM sleep, and neurological soft signs that go along with basal ganglia dysfunction. The condition causes significant psychiatric and behavioral symptoms, caregiver burden and sleep abnormalities. Autoantibodies resulting from molecular mimicry of infectious agents (namely group A Streptococcus) and neuronal autoantigens that map to the basal ganglia play also a subtle role. This narrative review aims to describe the key immunological features documented thus far and that likely play a role in the pathogenesis and clinical manifestations of this disorder.
Collapse
Affiliation(s)
- Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Camilla Perna
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Irene Bernabei
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00185 Rome, Italy
| | - Meiqian Ma
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jennifer Frankovich
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Alberto Spalice
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
5
|
Shi A, Liu D, Wu H, Zhu R, Deng Y, Yao L, Xiao Y, Lorimer GH, Ghiladi RA, Xu X, Zhang R, Xu H, Wang J. Serum binding folate receptor autoantibodies lower in autistic boys and positively-correlated with folate. Biomed Pharmacother 2024; 172:116191. [PMID: 38320332 DOI: 10.1016/j.biopha.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Folate receptor autoantibody (FRAA) has caught increasing attention since its discovery in biological fluids of patients with autism spectrum disorder (ASD), but quantification and understanding of its function are still in their infancy. In this study, we aimed to quantify serum binding-FRAA and explore its relation with serum folate, vitamin B12 (VB12) and ferritin. We quantitated serum binding-FRAA in 132 ASD children and 132 typically-developing (TD) children, as well as serum levels of folate, VB12 and ferritin. The results showed that serum binding-FRAA in the ASD group was significantly lower than that in the TD group (p < 0.0001). Further analysis showed that the difference between these two groups was attributed to boys in each group, not girls. There was no statistically significant difference in folate levels between the ASD and TD groups (p > 0.05). However, there was significant difference in boys between these two groups, not girls. Additionally, the combination of nitrite and binding-FRAA showed potential diagnostic value in patients with ASD (AUC > 0.7). Moreover, in the ASD group, the level of folate was consistent with that of binding-FRAA, whereas in the TD group, the binding-FRAA level was high when the folate level was low. Altogether, these differences revealed that the low serum FRAA in autistic children was mediated by multiple factors, which deserves more comprehensive investigation with larger population and mechanistic studies.
Collapse
Affiliation(s)
- Ai Shi
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Di Liu
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Huiwen Wu
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Rui Zhu
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Ying Deng
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Lulu Yao
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Yaqian Xiao
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | | | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, North Carolina, USA
| | - Xinjie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
| | - Haiqing Xu
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei Province, China.
| | - Jun Wang
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
6
|
Frye RE, McCarty PJ, Werner BA, Scheck AC, Collins HL, Adelman SJ, Rossignol DA, Quadros EV. Binding Folate Receptor Alpha Autoantibody Is a Biomarker for Leucovorin Treatment Response in Autism Spectrum Disorder. J Pers Med 2024; 14:62. [PMID: 38248763 PMCID: PMC10820361 DOI: 10.3390/jpm14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Autism spectrum disorder (ASD) affects up to 1 in 36 children in the United States. It is a heterogeneous neurodevelopmental disorder with life-long consequences. Patients with ASD and folate pathway abnormalities have demonstrated improved symptoms after treatment with leucovorin (folinic acid), a reduced form of folate. However, biomarkers for treatment response have not been well investigated and clinical trials are lacking. In this retrospective analysis, a cohort of prospectively collected data from 110 consecutive ASD clinic patients [mean (SD) age: 10.5 (6.2) years; 74% male] was examined. These patients all underwent testing for folate receptor alpha autoantibodies (FRAAs) and soluble folate binding proteins (sFBPs) biomarkers and were treated with leucovorin, if appropriate. Analyses examined whether these biomarkers could predict response to leucovorin treatment as well as the severity of ASD characteristics at baseline. The social responsiveness scale (SRS), a measure of core ASD symptoms, and the aberrant behavior checklist (ABC), a measure of disruptive behavior, were collected at each clinic visit. Those positive for sFBPs had more severe ASD symptoms, and higher binding FRAA titers were associated with greater ABC irritability. Treatment with leucovorin improved most SRS subscales with higher binding FRAA titers associated with greater response. Leucovorin treatment also improved ABC irritability. These results confirm and expand on previous studies, underscore the need for biomarkers to guide treatment of folate pathways in ASD, and suggest that leucovorin may be effective for children with ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- Rossignol Medical Center, Phoenix, AZ 85050, USA
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA;
| | | | | | - Adrienne C. Scheck
- Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA;
| | - Heidi L. Collins
- Vascular Strategies LLC, Plymouth Meeting, PA 19462, USA; (H.L.C.); (S.J.A.)
| | - Steven J. Adelman
- Vascular Strategies LLC, Plymouth Meeting, PA 19462, USA; (H.L.C.); (S.J.A.)
| | - Daniel A. Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA;
- Rossignol Medical Center, Aliso Viejo, CA 92656, USA
| | - Edward V. Quadros
- Department of Medicine, State University of New York—Downstate, Brooklyn, NY 11203, USA;
| |
Collapse
|
7
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
8
|
Al-Beltagi M. Pre-autism: What a paediatrician should know about early diagnosis of autism. World J Clin Pediatr 2023; 12:273-294. [PMID: 38178935 PMCID: PMC10762597 DOI: 10.5409/wjcp.v12.i5.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
Autism, also known as an autism spectrum disorder, is a complex neurodevelopmental disorder usually diagnosed in the first three years of a child's life. A range of symptoms characterizes it and can be diagnosed at any age, including adolescence and adulthood. However, early diagnosis is crucial for effective management, prognosis, and care. Unfortunately, there are no established fetal, prenatal, or newborn screening programs for autism, making early detection difficult. This review aims to shed light on the early detection of autism prenatally, natally, and early in life, during a stage we call as "pre-autism" when typical symptoms are not yet apparent. Some fetal, neonatal, and infant biomarkers may predict an increased risk of autism in the coming baby. By developing a biomarker array, we can create an objective diagnostic tool to diagnose and rank the severity of autism for each patient. These biomarkers could be genetic, immunological, hormonal, metabolic, amino acids, acute phase reactants, neonatal brainstem function biophysical activity, behavioral profile, body measurements, or radiological markers. However, every biomarker has its accuracy and limitations. Several factors can make early detection of autism a real challenge. To improve early detection, we need to overcome various challenges, such as raising community awareness of early signs of autism, improving access to diagnostic tools, reducing the stigma attached to the diagnosis of autism, and addressing various culturally sensitive concepts related to the disorder.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
9
|
Hardin H, Shao W, Bernstein JA. An updated review of pediatric autoimmune neuropsychiatric disorders associated with Streptococcus/pediatric acute-onset neuropsychiatric syndrome, also known as idiopathic autoimmune encephalitis: What the allergist should know. Ann Allergy Asthma Immunol 2023; 131:567-575. [PMID: 37634580 DOI: 10.1016/j.anai.2023.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Pediatric acute-onset neuropsychiatric syndrome, further subcategorized as pediatric autoimmune neuropsychiatric disorders associated with streptococcus, is a form of idiopathic autoimmune encephalitis (IAE). Poststreptococcal autoimmunity seen in Idiopathic autoimmune encephalitis manifests as various neuropsychiatric symptoms such as obsessive rituals, tics, anxiety, depression, and many others. Idiopathic autoimmune encephalitis has clinically heterogeneous phenotypes that make accurate diagnosing difficult, although diagnostic testing such as the Cunningham Panel increases the likelihood of finding effective treatments. Current recommended treatments include psychiatric medication, behavioral intervention, antibiotics, anti-inflammatory therapy, and immunomodulating therapy. OBJECTIVE To provide an updated review on the diagnosis, management, and treatment of pediatric autoimmune neuropsychiatric disorder associated with streptococcus and pediatric autoimmune neuropsychiatric syndrome, also referred to as IAE. RESULTS Information from 47 sources was used to outline current knowledge of IAE pathophysiology, clinical manifestations, and epidemiology, and to outline diagnostic recommendations and current treatment guidelines. Gaps in knowledge, in addition to current controversy, were also outlined to provide a thorough background of this condition and future needs for IAE research. CONCLUSION Owing to the complexity and variability in ways patients with IAE may present to the allergist/immunologist office, an interdisciplinary approach is imperative to provide patients with the best medical care. Still, more research is needed to further elucidate the mechanism(s) and optimal treatment algorithm for IAE to facilitate broader recognition and acceptance of this condition by the medical community.
Collapse
Affiliation(s)
- Hannah Hardin
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Wenhai Shao
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
10
|
Vreeland A, Calaprice D, Or-Geva N, Frye RE, Agalliu D, Lachman HM, Pittenger C, Pallanti S, Williams K, Ma M, Thienemann M, Gagliano A, Mellins E, Frankovich J. Postinfectious Inflammation, Autoimmunity, and Obsessive-Compulsive Disorder: Sydenham Chorea, Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection, and Pediatric Acute-Onset Neuropsychiatric Disorder. Dev Neurosci 2023; 45:361-374. [PMID: 37742615 DOI: 10.1159/000534261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
Postinfectious neuroinflammation has been implicated in multiple models of acute-onset obsessive-compulsive disorder including Sydenham chorea (SC), pediatric acute-onset neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). These conditions are associated with a range of autoantibodies which are thought to be triggered by infections, most notably group A streptococci (GAS). Based on animal models using huma sera, these autoantibodies are thought to cross-react with neural antigens in the basal ganglia and modulate neuronal activity and behavior. As is true for many childhood neuroinflammatory diseases and rheumatological diseases, SC, PANS, and PANDAS lack clinically available, rigorous diagnostic biomarkers and randomized clinical trials. In this review article, we outline the accumulating evidence supporting the role neuroinflammation plays in these disorders. We describe work with animal models including patient-derived anti-neuronal autoantibodies, and we outline imaging studies that show alterations in the basal ganglia. In addition, we present research on metabolites, which are helpful in deciphering functional phenotypes, and on the implication of sleep in these disorders. Finally, we encourage future researchers to collaborate across medical specialties (e.g., pediatrics, psychiatry, rheumatology, immunology, and infectious disease) in order to further research on clinical syndromes presenting with neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Allison Vreeland
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Palo Alto, California, USA
| | | | - Noga Or-Geva
- Interdepartmental Program in Immunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, Arizona, USA
| | - Dritan Agalliu
- Department of Neurology, Pathology and Cell Biology, Columbia University Irving School of Medicine, New York, New York, USA
| | - Herbert M Lachman
- Departments of Psychiatry, Medicine, Genetics, and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher Pittenger
- Departments of Psychiatry and Psychology, Child Study Center and Center for Brain and Mind Health, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Kyle Williams
- Department of Psychiatry Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meiqian Ma
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Pediatric Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Margo Thienemann
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Palo Alto, California, USA
| | - Antonella Gagliano
- Division of Child Neurology and Psychiatry, Pediatric Department of Policlinico G. Matino, University of Messina, Messina, Italy
| | - Elizabeth Mellins
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jennifer Frankovich
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Pediatric Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
11
|
Panzer K, Harmon A, Lerebours R, Sikich L, Pullen S, Van Mater H. Retrospective Comparison of Patients Evaluated for Pediatric Autoimmune Encephalitis with Typical and Atypical Premorbid Neuropsychiatric Development. J Autism Dev Disord 2023:10.1007/s10803-023-06065-9. [PMID: 37493863 DOI: 10.1007/s10803-023-06065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE Patients with neurodevelopmental disorders (NDD) (i.e. autism, developmental delay, early-onset psychiatric or seizure disorders) increasingly seek evaluation of new or exacerbated symptoms concerning for autoimmune encephalitis (AE). Clinical AE evaluation can be challenging in NDD patients with symptom overlap between anti-neuronal autoimmunity and baseline atypical neurodevelopment. This study sought to explore differences in AE features by neurodevelopmental status. METHODS This retrospective chart review included 67 children with typical development (TD) or NDD evaluated for AE at the authors' institution. AE diagnosis included seronegative AE or seropositive AE with anti-NMDAR or anti-GAD antibodies. Reported AE clinical domains, symptom onset acuity, and treatment response were compared between three groups: (1) TD children with AE (TD-AE, N = 24); (2) NDD children with AE (NDD-AE, N = 21); and (3) NDD children with a non-AE diagnosis following appropriate workup (NDD-nonAE, N = 22). RESULTS Children with AE had a greater number of reported clinical domains than non-AE children with NDD (p < 0.0001) regardless of baseline developmental status. There were no observed differences in reported domains between TD-AE and NDD-AE groups. Onset acuity differed across the three groups (p = 0.04). No treatment response differences were observed between groups. CONCLUSION NDD children with AE had a comparable number of reported clinical domains relative to TD children and a similar treatment response. NDD patients with AE had a greater number of reported clinical domains than their NDD peers without an AE diagnosis. These findings suggest that AE is a multi-domain process in both TD and NDD children.
Collapse
Affiliation(s)
- Kira Panzer
- Duke University School of Medicine, Durham, NC, USA
| | - Alexis Harmon
- Department of Pediatrics, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | - Reginald Lerebours
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Linmarie Sikich
- Department of Psychiatry and Behavioral Sciences, Division of Child and Family Mental Health & Community Psychiatry, Duke University School of Medicine, Durham, NC, USA
| | - Samuel Pullen
- Department of Psychiatry and Behavioral Sciences, Division of Child and Family Mental Health & Community Psychiatry, Duke University School of Medicine, Durham, NC, USA
- Novant Health, Psychiatry and Mental Health Institute, Winston-Salem, NC, USA
| | - Heather Van Mater
- Department of Pediatrics, Division of Rheumatology, Duke University School of Medicine, T0909 Children's Health Center, Box3212, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Al-Beltagi M, Saeed NK, Elbeltagi R, Bediwy AS, Aftab SAS, Alhawamdeh R. Viruses and autism: A Bi-mutual cause and effect. World J Virol 2023; 12:172-192. [PMID: 37396705 PMCID: PMC10311578 DOI: 10.5501/wjv.v12.i3.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 06/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous, multi-factorial, neurodevelopmental disorders resulting from genetic and environmental factors interplay. Infection is a significant trigger of autism, especially during the critical developmental period. There is a strong interplay between the viral infection as a trigger and a result of ASD. We aim to highlight the mutual relationship between autism and viruses. We performed a thorough literature review and included 158 research in this review. Most of the literature agreed on the possible effects of the viral infection during the critical period of development on the risk of developing autism, especially for specific viral infections such as Rubella, Cytomegalovirus, Herpes Simplex virus, Varicella Zoster Virus, Influenza virus, Zika virus, and severe acute respiratory syndrome coronavirus 2. Viral infection directly infects the brain, triggers immune activation, induces epigenetic changes, and raises the risks of having a child with autism. At the same time, there is some evidence of increased risk of infection, including viral infections in children with autism, due to lots of factors. There is an increased risk of developing autism with a specific viral infection during the early developmental period and an increased risk of viral infections in children with autism. In addition, children with autism are at increased risk of infection, including viruses. Every effort should be made to prevent maternal and early-life infections and reduce the risk of autism. Immune modulation of children with autism should be considered to reduce the risk of infection.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Pathology Department, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Microbiology Section, Pathology Department, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonolgy, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Syed A Saboor Aftab
- Endocrinology and DM, William Harvey Hospital (Paula Carr Centre), Ashford TN24 0LZ, Kent, United Kingdom
| | - Rawan Alhawamdeh
- Pediatrics Research and Development, Genomics Creativity and Play Center, Manama 0000, Bahrain
| |
Collapse
|
13
|
Gagliano A, Carta A, Tanca MG, Sotgiu S. Pediatric Acute-Onset Neuropsychiatric Syndrome: Current Perspectives. Neuropsychiatr Dis Treat 2023; 19:1221-1250. [PMID: 37251418 PMCID: PMC10225150 DOI: 10.2147/ndt.s362202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) features a heterogeneous constellation of acute obsessive-compulsive disorder (OCD), eating restriction, cognitive, behavioral and/or affective symptoms, often followed by a chronic course with cognitive deterioration. An immune-mediated etiology is advocated in which the CNS is hit by different pathogen-driven (auto)immune responses. This narrative review focused on recent clinical (ie, diagnostic criteria, pre-existing neurodevelopmental disorders, neuroimaging) and pathophysiological (ie, CSF, serum, genetic and autoimmune findings) aspects of PANS. We also summarized recent points to facilitate practitioners with the disease management. Relevant literature was obtained from PubMed database which included only English-written, full-text clinical studies, case reports, and reviews. Among a total of 1005 articles, 205 were pertinent to study inclusion. Expert opinions are converging on PANS as the effect of post-infectious events or stressors leading to "brain inflammation", as it is well-established for anti-neuronal psychosis. Interestingly, differentiating PANS from either autoimmune encephalitides and Sydenham's chorea or from alleged "pure" psychiatric disorders (OCD, tics, Tourette's syndrome), reveals several overlaps and more analogies than differences. Our review highlights the need for a comprehensive algorithm to help both patients during their acute distressing phase and physicians during their treatment decision. A full agreement on the hierarchy of each therapeutical intervention is missing owing to the limited number of randomized controlled trials. The current approach to PANS treatment emphasizes immunomodulation/anti-inflammatory treatments in association with both psychotropic and cognitive-behavioral therapies, while antibiotics are suggested when an active bacterial infection is established. A dimensional view, taking into account the multifactorial origin of psychiatric disorders, should suggest neuro-inflammation as a possible shared substrate of different psychiatric phenotypes. Hence, PANS and PANS-related disorders should be considered as a conceptual framework describing the etiological and phenotypical complexity of many psychiatric disorders.
Collapse
Affiliation(s)
- Antonella Gagliano
- Department of Health Science, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Department of Biomedical Sciences, University of Cagliari & "A. Cao" Paediatric Hospital, Child & Adolescent Neuropsychiatry Unit, Cagliari, Italy
| | - Alessandra Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Unit of Child Neuropsychiatry, Sassari, Italy
| | - Marcello G Tanca
- Department of Biomedical Sciences, University of Cagliari & "A. Cao" Paediatric Hospital, Child & Adolescent Neuropsychiatry Unit, Cagliari, Italy
| | - Stefano Sotgiu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Unit of Child Neuropsychiatry, Sassari, Italy
| |
Collapse
|
14
|
Frye RE, Lane A, Worner A, Werner BA, McCarty PJ, Scheck AC, Collins HL, Adelman SJ, Quadros EV, Rossignol DA. The Soluble Folate Receptor in Autism Spectrum Disorder: Relation to Autism Severity and Leucovorin Treatment. J Pers Med 2022; 12:2033. [PMID: 36556254 PMCID: PMC9786140 DOI: 10.3390/jpm12122033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with life-long consequences that affects up to 1 in 44 children. Treatment with leucovorin (folinic acid), a reduced form of folate, has been shown to improve symptoms in those with ASD and folate pathway abnormalities in controlled clinical trials. Although soluble folate binding proteins (sFBPs) have been observed in the serum of some patients with ASD, the significance of this finding has not been studied. Here, we present a cohort of ASD patients with sFBPs. These patients had severe ASD and were medically complex. Using baseline controlled open-label methodology and standardized assessments, these patients were found to improve in both core and associated ASD symptoms with leucovorin treatment. No adverse effects were related to leucovorin treatment. This is the first report of the sFBPs in ASD. This study complements ongoing controlled clinical trials and suggests that leucovorin may be effective for children with ASD who are positive for sFBPs. Further, sFBPs might be important biomarkers for treatment response to leucovorin in children with ASD. This study paves the way for further controlled studies for patients with sFBPs.
Collapse
Affiliation(s)
- Richard E. Frye
- Rossignol Medical Center, Phoenix, AZ 85050, USA
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
| | - Alison Lane
- Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix AZ 85004, USA
- Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Ashley Worner
- Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix AZ 85004, USA
- Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | | | | | - Adrienne C. Scheck
- Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix AZ 85004, USA
- Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | | | | | | | - Daniel A. Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Aliso Viejo, CA 92656, USA
| |
Collapse
|
15
|
Sherman HT, Liu K, Kwong K, Chan ST, Li AC, Kong XJ. Carbon monoxide (CO) correlates with symptom severity, autoimmunity, and responses to probiotics treatment in a cohort of children with autism spectrum disorder (ASD): a post-hoc analysis of a randomized controlled trial. BMC Psychiatry 2022; 22:536. [PMID: 35941573 PMCID: PMC9358122 DOI: 10.1186/s12888-022-04151-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation, autoimmunity, and gut-brain axis have been implicated in the pathogenesis of autism spectrum disorder (ASD). Carboxyhemoglobin (SpCO) as a non-invasive measurement of inflammation has not been studied in individuals with ASD. We conducted this post-hoc study based on our published clinical trial to explore SpCO and its association with ASD severity, autoimmunity, and response to daily Lactobacillus plantarum probiotic supplementation. METHODS In this study, we included 35 individuals with ASD aged 3-20 years from a previously published clinical trial of the probiotic Lactobacillus plantarum. Subjects were randomly assigned to receive daily Lactobacillus plantarum probiotic (6 × 1010 CFUs) or a placebo for 16 weeks. The outcomes in this analysis include Social Responsiveness Scale (SRS), Aberrant Behavior Checklist second edition (ABC-2), Clinical Global Impression (CGI) scale, SpCO measured by CO-oximetry, fecal microbiome by 16 s rRNA sequencing, blood serum inflammatory markers, autoantibodies, and oxytocin (OT) by ELISA. We performed Kendall's correlation to examine their interrelationships and used Wilcoxon rank-sum test to compare the means of all outcomes between the two groups at baseline and 16 weeks. RESULTS Elevated levels of serum anti-tubulin, CaM kinase II, anti-dopamine receptor D1 (anti-D1), and SpCO were found in the majority of ASD subjects. ASD severity is correlated with SpCO (baseline, R = 0.38, p = 0.029), anti-lysoganglioside GM1 (R = 0.83, p = 0.022), anti-tubulin (R = 0.69, p = 0.042), and anti-D1 (R = 0.71, p = 0.045) in treatment group. CONCLUSIONS The findings of the present study suggests that the easily administered and non-invasive SpCO test offers a potentially promising autoimmunity and inflammatory biomarker to screen/subgroup ASD and monitor the treatment response to probiotics. Furthermore, we propose that the associations between autoantibodies, gut microbiome profile, serum OT level, GI symptom severity, and ASD core symptom severity scores are specific to the usage of probiotic treatment in our subject cohort. Taken together, these results warrant further studies to improve ASD early diagnosis and treatment outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT03337035 , registered November 8, 2017.
Collapse
Affiliation(s)
- Hannah Tayla Sherman
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Kevin Liu
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Kenneth Kwong
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Suk-Tak Chan
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Alice Chukun Li
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, USA. .,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
16
|
Jensen AR, Lane AL, Werner BA, McLees SE, Fletcher TS, Frye RE. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol Diagn Ther 2022; 26:483-495. [PMID: 35759118 PMCID: PMC9411091 DOI: 10.1007/s40291-022-00600-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Autism spectrum disorder is an increasingly prevalent neurodevelopmental disorder in the world today, with an estimated 2% of the population being affected in the USA. A major complicating factor in diagnosing, treating, and understanding autism spectrum disorder is that defining the disorder is solely based on the observation of behavior. Thus, recent research has focused on identifying specific biological abnormalities in autism spectrum disorder that can provide clues to diagnosis and treatment. Biomarkers are an objective way to identify and measure biological abnormalities for diagnostic purposes as well as to measure changes resulting from treatment. This current opinion paper discusses the state of research of various biomarkers currently in development for autism spectrum disorder. The types of biomarkers identified include prenatal history, genetics, neurological including neuroimaging, neurophysiologic, and visual attention, metabolic including abnormalities in mitochondrial, folate, trans-methylation, and trans-sulfuration pathways, immune including autoantibodies and cytokine dysregulation, autonomic nervous system, and nutritional. Many of these biomarkers have promising preliminary evidence for prenatal and post-natal pre-symptomatic risk assessment, confirmation of diagnosis, subtyping, and treatment response. However, most biomarkers have not undergone validation studies and most studies do not investigate biomarkers with clinically relevant comparison groups. Although the field of biomarker research in autism spectrum disorder is promising, it appears that it is currently in the early stages of development.
Collapse
Affiliation(s)
- Amanda R Jensen
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Alison L Lane
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Brianna A Werner
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Sallie E McLees
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Tessa S Fletcher
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard E Frye
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.
| |
Collapse
|
17
|
Abstract
Innate and adaptive immunity are essential for neurodevelopment and central nervous system (CNS) homeostasis; however, the fragile equilibrium between immune and brain cells can be disturbed by any immune dysregulation and cause detrimental effects. Accumulating evidence indicates that, despite the blood-brain barrier (BBB), overactivation of the immune system leads to brain vulnerability that increases the risk of neuropsychiatric disorders, particularly upon subsequent exposure later in life. Disruption of microglial function in later life can be triggered by various environmental and psychological factors, including obesity-driven chronic low-grade inflammation and gut dysbiosis. Increased visceral adiposity has been recognized as an important risk factor for multiple neuropsychiatric conditions. The review aims to present our current understanding of the topic.
Collapse
|
18
|
A Personalized Multidisciplinary Approach to Evaluating and Treating Autism Spectrum Disorder. J Pers Med 2022; 12:jpm12030464. [PMID: 35330464 PMCID: PMC8949394 DOI: 10.3390/jpm12030464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder without a known cure. Current standard-of-care treatments focus on addressing core symptoms directly but have provided limited benefits. In many cases, individuals with ASD have abnormalities in multiple organs, including the brain, immune and gastrointestinal system, and multiple physiological systems including redox and metabolic systems. Additionally, multiple aspects of the environment can adversely affect children with ASD including the sensory environment, psychosocial stress, dietary limitations and exposures to allergens and toxicants. Although it is not clear whether these medical abnormalities and environmental factors are related to the etiology of ASD, there is evidence that many of these factors can modulate ASD symptoms, making them a potential treatment target for improving core and associated ASD-related symptoms and improving functional limitation. Additionally, addressing underlying biological disturbances that drive pathophysiology has the potential to be disease modifying. This article describes a systematic approach using clinical history and biomarkers to personalize medical treatment for children with ASD. This approach is medically comprehensive, making it attractive for a multidisciplinary approach. By concentrating on treatable conditions in ASD, it is possible to improve functional ability and quality of life, thus providing optimal outcomes.
Collapse
|
19
|
Endres D, Pollak TA, Bechter K, Denzel D, Pitsch K, Nickel K, Runge K, Pankratz B, Klatzmann D, Tamouza R, Mallet L, Leboyer M, Prüss H, Voderholzer U, Cunningham JL, Domschke K, Tebartz van Elst L, Schiele MA. Immunological causes of obsessive-compulsive disorder: is it time for the concept of an "autoimmune OCD" subtype? Transl Psychiatry 2022; 12:5. [PMID: 35013105 PMCID: PMC8744027 DOI: 10.1038/s41398-021-01700-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a highly disabling mental illness that can be divided into frequent primary and rarer organic secondary forms. Its association with secondary autoimmune triggers was introduced through the discovery of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infection (PANDAS) and Pediatric Acute onset Neuropsychiatric Syndrome (PANS). Autoimmune encephalitis and systemic autoimmune diseases or other autoimmune brain diseases, such as multiple sclerosis, have also been reported to sometimes present with obsessive-compulsive symptoms (OCS). Subgroups of patients with OCD show elevated proinflammatory cytokines and autoantibodies against targets that include the basal ganglia. In this conceptual review paper, the clinical manifestations, pathophysiological considerations, diagnostic investigations, and treatment approaches of immune-related secondary OCD are summarized. The novel concept of "autoimmune OCD" is proposed for a small subgroup of OCD patients, and clinical signs based on the PANDAS/PANS criteria and from recent experience with autoimmune encephalitis and autoimmune psychosis are suggested. Red flag signs for "autoimmune OCD" could include (sub)acute onset, unusual age of onset, atypical presentation of OCS with neuropsychiatric features (e.g., disproportionate cognitive deficits) or accompanying neurological symptoms (e.g., movement disorders), autonomic dysfunction, treatment resistance, associations of symptom onset with infections such as group A streptococcus, comorbid autoimmune diseases or malignancies. Clinical investigations may also reveal alterations such as increased levels of anti-basal ganglia or dopamine receptor antibodies or inflammatory changes in the basal ganglia in neuroimaging. Based on these red flag signs, the criteria for a possible, probable, and definite autoimmune OCD subtype are proposed.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Karl Bechter
- Department for Psychiatry and Psychotherapy II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Dominik Denzel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karoline Pitsch
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Pankratz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Klatzmann
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Ryad Tamouza
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Luc Mallet
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Ulrich Voderholzer
- Schoen Clinic Roseneck, Prien am Chiemsee, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Munich, Germany
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacol Ther 2021; 230:107939. [PMID: 34174273 DOI: 10.1016/j.pharmthera.2021.107939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with a complex underlying genetic architecture. There are currently no known pharmacologic treatments for the core ASD symptoms of social deficits and restricted/ repetitive behavior. However, there are dozens of clinical trials currently underway that are testing the impact of novel and existing agents on core and associated symptoms in ASD. METHODS We present a narrative synthesis of the historical and contemporary challenges to drug discovery in ASD. We then provide an overview of novel treatments currently under investigation from a genomics and systems biology perspective. RESULTS Data driven network and cluster analyses suggest alterations in transcriptional regulation, chromatin remodelling, synaptic transmission, neuropeptide signalling, and/or immunological mechanisms may contribute to or underlie the development of ASD. Agents and upcoming trials targeting each of the above listed systems are reviewed. CONCLUSION Identifying effective pharmacologic treatments for the core and associated symptom domains in ASD will require further collaboration and innovation in the areas of outcome measurement, biomarker research, and genomics, as well as systematic efforts to identify and treat subgroups of individuals with ASD who may be differentially responsive to specific treatments.
Collapse
|
21
|
Accurate assessment of low-function autistic children based on EEG feature fusion. J Clin Neurosci 2021; 90:351-358. [PMID: 34275574 DOI: 10.1016/j.jocn.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
Autism spectrum disorder (ASD) is a very serious neurodevelopmental disorder and diagnosis mainly depends on the clinical scale, which has a certain degree of subjectivity. It is necessary to make accurate evaluation by objective indicators. In this study, we enrolled 96 children aged from 3 to 6 years: 48 low-function autistic children (38 males and 10 females; mean±SD age: 4.9±1.1 years) and 48 typically developing (TD) children (38 males and 10 females; mean±SD age: 4.9 ± 1.2 years) to participate in our experiment. We investigated to fuse multi-features (entropy, relative power, coherence and bicoherence) to distinguish low-function autistic children and TD children accurately. Minimum redundancy maximum correlation algorithm was used to choose the features and support vector machine was used for classification. Ten-fold cross validation was used to test the accuracy of the model. Better classification result was obtained. We tried to provide a reliable basis for clinical evaluation and diagnosis for ASD.
Collapse
|
22
|
A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. J Pers Med 2021; 11:jpm11060488. [PMID: 34070826 PMCID: PMC8229039 DOI: 10.3390/jpm11060488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 2% of children in the United States. Growing evidence suggests that immune dysregulation is associated with ASD. One immunomodulatory treatment that has been studied in ASD is intravenous immunoglobulins (IVIG). This systematic review and meta-analysis examined the studies which assessed immunoglobulin G (IgG) concentrations and the therapeutic use of IVIG for individuals with ASD. Twelve studies that examined IgG levels suggested abnormalities in total IgG and IgG 4 subclass concentrations, with concentrations in these IgGs related to aberrant behavior and social impairments, respectively. Meta-analysis supported possible subsets of children with ASD with low total IgG and elevated IgG 4 subclass but also found significant variability among studies. A total of 27 publications reported treating individuals with ASD using IVIG, including four prospective, controlled studies (one was a double-blind, placebo-controlled study); six prospective, uncontrolled studies; 2 retrospective, controlled studies; and 15 retrospective, uncontrolled studies. In some studies, clinical improvements were observed in communication, irritability, hyperactivity, cognition, attention, social interaction, eye contact, echolalia, speech, response to commands, drowsiness, decreased activity and in some cases, the complete resolution of ASD symptoms. Several studies reported some loss of these improvements when IVIG was stopped. Meta-analysis combining the aberrant behavior checklist outcome from two studies demonstrated that IVIG treatment was significantly associated with improvements in total aberrant behavior and irritability (with large effect sizes), and hyperactivity and social withdrawal (with medium effect sizes). Several studies reported improvements in pro-inflammatory cytokines (including TNF-alpha). Six studies reported improvements in seizures with IVIG (including patients with refractory seizures), with one study reporting a worsening of seizures when IVIG was stopped. Other studies demonstrated improvements in recurrent infections, appetite, weight gain, neuropathy, dysautonomia, and gastrointestinal symptoms. Adverse events were generally limited but included headaches, vomiting, worsening behaviors, anxiety, fever, nausea, fatigue, and rash. Many studies were limited by the lack of standardized objective outcome measures. IVIG is a promising and potentially effective treatment for symptoms in individuals with ASD; further research is needed to provide solid evidence of efficacy and determine the subset of children with ASD who may best respond to this treatment as well as to investigate biomarkers which might help identify responsive candidates.
Collapse
|
23
|
Pavăl D, Micluția IV. The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Dev Neurosci 2021; 43:73-83. [PMID: 34010842 DOI: 10.1159/000515751] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. Despite intensive research, its etiopathogenesis remains largely unclear. Although studies consistently reported dopaminergic anomalies, a coherent dopaminergic model of ASD was lacking until recently. In 2017, we provided a theoretical framework for a "dopamine hypothesis of ASD" which proposed that autistic behavior arises from a dysfunctional midbrain dopaminergic system. Namely, we hypothesized that malfunction of 2 critical circuits originating in the midbrain, that is, the mesocorticolimbic and nigrostriatal pathways, generates the core behavioral features of ASD. Moreover, we provided key predictions of our model along with testing means. Since then, a notable number of studies referenced our work and numerous others provided support for our model. To account for these developments, we review all these recent data and discuss their implications. Furthermore, in the light of these new insights, we further refine and reconceptualize our model, debating on the possibility that various etiologies of ASD converge upon a dysfunctional midbrain dopaminergic system. In addition, we discuss future prospects, providing new means of testing our hypothesis, as well as its limitations. Along these lines, we aimed to provide a model which, if confirmed, could provide a better understanding of the etiopathogenesis of ASD along with new therapeutic strategies.
Collapse
Affiliation(s)
- Denis Pavăl
- Psychiatry Clinic, Emergency County Hospital, Cluj-Napoca, Romania
| | - Ioana Valentina Micluția
- Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Al-Beltagi M. Autism medical comorbidities. World J Clin Pediatr 2021; 10:15-28. [PMID: 33972922 PMCID: PMC8085719 DOI: 10.5409/wjcp.v10.i3.15] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Medical comorbidities are more common in children with autism spectrum disorders (ASD) than in the general population. Some genetic disorders are more common in children with ASD such as Fragile X syndrome, Down syndrome, Duchenne muscular dystrophy, neurofibromatosis type I, and tuberous sclerosis complex. Children with autism are also more prone to a variety of neurological disorders, including epilepsy, macrocephaly, hydrocephalus, cerebral palsy, migraine/headaches, and congenital abnormalities of the nervous system. Besides, sleep disorders are a significant problem in individuals with autism, occurring in about 80% of them. Gastrointestinal (GI) disorders are significantly more common in children with ASD; they occur in 46% to 84% of them. The most common GI problems observed in children with ASD are chronic constipation, chronic diarrhoea, gastroesophageal reflux and/or disease, nausea and/or vomiting, flatulence, chronic bloating, abdominal discomfort, ulcers, colitis, inflammatory bowel disease, food intolerance, and/or failure to thrive. Several categories of inborn-errors of metabolism have been observed in some patients with autism including mitochondrial disorders, disorders of creatine metabolism, selected amino acid disorders, disorders of folate or B12 metabolism, and selected lysosomal storage disorders. A significant proportion of children with ASD have evidence of persistent neuroinflammation, altered inflammatory responses, and immune abnormalities. Anti-brain antibodies may play an important pathoplastic mechanism in autism. Allergic disorders are significantly more common in individuals with ASD from all age groups. They influence the development and severity of symptoms. They could cause problematic behaviours in at least a significant subset of affected children. Therefore, it is important to consider the child with autism as a whole and not overlook possible symptoms as part of autism. The physician should rule out the presence of a medical condition before moving on to other interventions or therapies. Children who enjoy good health have a better chance of learning. This can apply to all children including those with autism.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama P.O. Box 26671, Bahrain, Bahrain
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 0000000, Al Gharbia, Egypt
| |
Collapse
|
25
|
Al-Beltagi M. Autism medical comorbidities. World J Clin Pediatr 2021. [PMID: 33972922 DOI: 10.5409/wjcp.v10.i3.15.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Medical comorbidities are more common in children with autism spectrum disorders (ASD) than in the general population. Some genetic disorders are more common in children with ASD such as Fragile X syndrome, Down syndrome, Duchenne muscular dystrophy, neurofibromatosis type I, and tuberous sclerosis complex. Children with autism are also more prone to a variety of neurological disorders, including epilepsy, macrocephaly, hydrocephalus, cerebral palsy, migraine/headaches, and congenital abnormalities of the nervous system. Besides, sleep disorders are a significant problem in individuals with autism, occurring in about 80% of them. Gastrointestinal (GI) disorders are significantly more common in children with ASD; they occur in 46% to 84% of them. The most common GI problems observed in children with ASD are chronic constipation, chronic diarrhoea, gastroesophageal reflux and/or disease, nausea and/or vomiting, flatulence, chronic bloating, abdominal discomfort, ulcers, colitis, inflammatory bowel disease, food intolerance, and/or failure to thrive. Several categories of inborn-errors of metabolism have been observed in some patients with autism including mitochondrial disorders, disorders of creatine metabolism, selected amino acid disorders, disorders of folate or B12 metabolism, and selected lysosomal storage disorders. A significant proportion of children with ASD have evidence of persistent neuroinflammation, altered inflammatory responses, and immune abnormalities. Anti-brain antibodies may play an important pathoplastic mechanism in autism. Allergic disorders are significantly more common in individuals with ASD from all age groups. They influence the development and severity of symptoms. They could cause problematic behaviours in at least a significant subset of affected children. Therefore, it is important to consider the child with autism as a whole and not overlook possible symptoms as part of autism. The physician should rule out the presence of a medical condition before moving on to other interventions or therapies. Children who enjoy good health have a better chance of learning. This can apply to all children including those with autism.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama P.O. Box 26671, Bahrain, Bahrain
| |
Collapse
|
26
|
Balint B, Bhatia KP, Dalmau J. "Antibody of Unknown Significance" (AUS): The Issue of Interpreting Antibody Test Results. Mov Disord 2021; 36:1543-1547. [PMID: 33955060 DOI: 10.1002/mds.28597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Bettina Balint
- Department of Neurology, University Hospital, Heidelberg, Germany.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Josep Dalmau
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Service of Neurology, Hospital Clinic de Barcelona, Barcelona, Spain.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
27
|
Pilli D, Zou A, Dawes R, Lopez JA, Tea F, Liyanage G, Lee FX, Merheb V, Houston SD, Pillay A, Jones HF, Ramanathan S, Mohammad S, Kelleher AD, Alexander SI, Dale RC, Brilot F. Pro-inflammatory dopamine-2 receptor-specific T cells in paediatric movement and psychiatric disorders. Clin Transl Immunology 2020; 9:e1229. [PMID: 33425355 PMCID: PMC7780098 DOI: 10.1002/cti2.1229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives A dysregulated inflammatory response against the dopamine‐2 receptor (D2R) has been implicated in movement and psychiatric disorders. D2R antibodies were previously reported in a subset of these patients; however, the role of T cells in these disorders remains unknown. Our objective was to identify and characterise pro‐inflammatory D2R‐specific T cells in movement and psychiatric disorders. Methods Blood from paediatric patients with movement and psychiatric disorders of suspected autoimmune and neurodevelopmental aetiology (n = 24) and controls (n = 16) was cultured in vitro with a human D2R peptide library, and D2R‐specific T cells were identified by flow cytometric quantification of CD4+CD25+CD134+ T cells. Cytokine secretion was analysed using a cytometric bead array and ELISA. HLA genotypes were examined in D2R‐specific T‐cell‐positive patients. D2R antibody seropositivity was determined using a flow cytometry live cell‐based assay. Results Three immunodominant regions of D2R, amino acid (aa)121–131, aa171–181 and aa396–416, specifically activated CD4+ T cells in 8/24 patients. Peptides corresponding to these regions were predicted to bind with high affinity to the HLA of the eight positive patients and had also elicited the secretion of pro‐inflammatory cytokines IL‐2, IFN‐ γ, TNF, IL‐6, IL‐17A and IL‐17F. All eight patients were seronegative for D2R antibodies. Conclusion Autoreactive D2R‐specific T cells and a pro‐inflammatory Th1 and Th17 cytokine profile characterise a subset of paediatric patients with movement and psychiatric disorders, further underpinning the theory of immune dysregulation in these disorders. These findings offer new perspectives into the neuroinflammatory mechanisms of movement and psychiatric disorders and can influence patient diagnosis and treatment.
Collapse
Affiliation(s)
- Deepti Pilli
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Alicia Zou
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Ruebena Dawes
- Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Genomic Medicine Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Joseph A Lopez
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Fiona Tea
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Ganesha Liyanage
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Medical Sciences Discipline of Applied Medical Science Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Fiona Xz Lee
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Vera Merheb
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Samuel D Houston
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Biomedical Engineering The University of Sydney Sydney NSW Australia
| | - Aleha Pillay
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia
| | - Hannah F Jones
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Shekeeb Mohammad
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | | | - Stephen I Alexander
- Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Centre for Kidney Research Children's Hospital at Westmead Sydney NSW Australia
| | - Russell C Dale
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Discipline of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,School of Medical Sciences Discipline of Applied Medical Science Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| |
Collapse
|
28
|
Extraparenchymal human neurocysticercosis induces autoantibodies against brain tubulin and MOG35–55 in cerebral spinal fluid. J Neuroimmunol 2020; 349:577389. [DOI: 10.1016/j.jneuroim.2020.577389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
|
29
|
Pacheva I, Ivanov I. Targeted Biomedical Treatment for Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4430-4453. [PMID: 31801452 DOI: 10.2174/1381612825666191205091312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND A diagnosis of autism spectrum disorders (ASD) represents presentations with impairment in communication and behaviour that vary considerably in their clinical manifestations and etiology as well as in their likely pathophysiology. A growing body of data indicates that the deleterious effect of oxidative stress, mitochondrial dysfunction, immune dysregulation and neuroinflammation, as well as their interconnections are important aspects of the pathophysiology of ASD. Glutathione deficiency decreases the mitochondrial protection against oxidants and tumor necrosis factor (TNF)-α; immune dysregulation and inflammation inhibit mitochondrial function through TNF-α; autoantibodies against the folate receptors underpin cerebral folate deficiency, resulting in disturbed methylation, and mitochondrial dysfunction. Such pathophysiological processes can arise from environmental and epigenetic factors as well as their combined interactions, such as environmental toxicant exposures in individuals with (epi)genetically impaired detoxification. The emerging evidence on biochemical alterations in ASD is forming the basis for treatments aimed to target its biological underpinnings, which is of some importance, given the uncertain and slow effects of the various educational interventions most commonly used. METHODS Literature-based review of the biomedical treatment options for ASD that are derived from established pathophysiological processes. RESULTS Most proposed biomedical treatments show significant clinical utility only in ASD subgroups, with specified pre-treatment biomarkers that are ameliorated by the specified treatment. For example, folinic acid supplementation has positive effects in ASD patients with identified folate receptor autoantibodies, whilst the clinical utility of methylcobalamine is apparent in ASD patients with impaired methylation capacity. Mitochondrial modulating cofactors should be considered when mitochondrial dysfunction is evident, although further research is required to identify the most appropriate single or combined treatment. Multivitamins/multiminerals formulas, as well as biotin, seem appropriate following the identification of metabolic abnormalities, with doses tapered to individual requirements. A promising area, requiring further investigations, is the utilization of antipurinergic therapies, such as low dose suramin. CONCLUSION The assessment and identification of relevant physiological alterations and targeted intervention are more likely to produce positive treatment outcomes. As such, current evidence indicates the utility of an approach based on personalized and evidence-based medicine, rather than treatment targeted to all that may not always be beneficial (primum non nocere).
Collapse
Affiliation(s)
- Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
30
|
Runge K, Tebartz van Elst L, Maier S, Nickel K, Denzel D, Matysik M, Kuzior H, Robinson T, Blank T, Dersch R, Domschke K, Endres D. Cerebrospinal Fluid Findings of 36 Adult Patients with Autism Spectrum Disorder. Brain Sci 2020; 10:E355. [PMID: 32521749 PMCID: PMC7349103 DOI: 10.3390/brainsci10060355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by difficulties with social interaction, repetitive behavior, and additional features, such as special interests. Its precise etiology is unclear. Recently, immunological mechanisms, such as maternal autoantibodies/infections, have increasingly been the subject of discussion. Cerebrospinal fluid (CSF) investigations play a decisive role in the detection of immunological processes in the brain. This study therefore retrospectively analyzed the CSF findings of adult patients with ASD. CSF basic measures (white blood cell count, total protein, albumin quotient, immunoglobulin G (IgG) index, and oligoclonal bands) and various antineuronal antibody findings of 36 adult patients with ASD, who had received lumbar puncture, were compared with an earlier described mentally healthy control group of 39 patients with idiopathic intracranial hypertension. CSF protein concentrations and albumin quotients of patients with ASD were significantly higher as compared to controls (age corrected: p = 0.003 and p = 0.004, respectively); 17% of the patients with ASD showed increased albumin quotients. After correction for age and gender, the group effect for total protein remained significant (p = 0.041) and showed a tendency for albumin quotient (p = 0.079). In the CSF of two ASD patients, an intrathecal synthesis of anti-glutamate decarboxylase 65 (GAD65) antibodies was found. In total, more of the ASD patients (44%) presented abnormal findings in CSF basic diagnostics compared to controls (18%; p = 0.013). A subgroup of the patients with adult ASD showed indication of a blood-brain barrier dysfunction, and two patients displayed an intrathecal synthesis of anti-GAD65 antibodies; thus, the role of these antibodies in patients with ASD should be further investigated. The results of the study are limited by its retrospective and open design. The group differences in blood-brain barrier markers could be influenced by a different gender distribution between ASD patients and controls.
Collapse
Affiliation(s)
- Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Dominik Denzel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Miriam Matysik
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Hanna Kuzior
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Tilman Robinson
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (T.R.); (R.D.)
| | - Thomas Blank
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| | - Rick Dersch
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (T.R.); (R.D.)
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; (K.R.); (S.M.); (K.N.); (D.D.); (M.M.); (H.K.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany;
| |
Collapse
|
31
|
Pape K, Tamouza R, Leboyer M, Zipp F. Immunoneuropsychiatry - novel perspectives on brain disorders. Nat Rev Neurol 2020; 15:317-328. [PMID: 30988501 DOI: 10.1038/s41582-019-0174-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Immune processes have a vital role in CNS homeostasis, resilience and brain reserve. Our cognitive and social abilities rely on a highly sensitive and fine-tuned equilibrium of immune responses that involve both innate and adaptive immunity. Autoimmunity, chronic inflammation, infection and psychosocial stress can tip the scales towards disruption of higher-order networks. However, not only classical neuroinflammatory diseases, such as multiple sclerosis and autoimmune encephalitis, are caused by immune dysregulation that affects CNS function. Recent insight indicates that similar processes are involved in psychiatric diseases such as schizophrenia, autism spectrum disorder, bipolar disorder and depression. Pathways that are common to these disorders include microglial activation, pro-inflammatory cytokines, molecular mimicry, anti-neuronal autoantibodies, self-reactive T cells and disturbance of the blood-brain barrier. These discoveries challenge our traditional classification of neurological and psychiatric diseases. New clinical paths are required to identify subgroups of neuropsychiatric disorders that are phenotypically distinct but pathogenically related and to pave the way for mechanism-based immune treatments. Combined expertise from neurologists and psychiatrists will foster translation of these paths into clinical practice. The aim of this Review is to highlight outstanding findings that have transformed our understanding of neuropsychiatric diseases and to suggest new diagnostic and therapeutic criteria for the emerging field of immunoneuropsychiatry.
Collapse
Affiliation(s)
- Katrin Pape
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ryad Tamouza
- Inserm, U955, Institut Mondor de la Recherche Biomédicale, Créteil, France.,Fondation FondaMental, Créteil, France.,AP-HP, Department of Psychiatry of Mondor University Hospital, DHU PePsy, University of Paris-Est-Créteil, Créteil, France
| | - Marion Leboyer
- Inserm, U955, Institut Mondor de la Recherche Biomédicale, Créteil, France.,Fondation FondaMental, Créteil, France.,AP-HP, Department of Psychiatry of Mondor University Hospital, DHU PePsy, University of Paris-Est-Créteil, Créteil, France
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
32
|
Endres D, Rauer S, Pschibul A, Süß P, Venhoff N, Runge K, Feige B, Denzel D, Nickel K, Schweizer T, Maier S, Egger K, Domschke K, Meyer PT, Prüss H, Tebartz van Elst L. Novel Antineuronal Autoantibodies With Somatodendritic Staining Pattern in a Patient With Autoimmune Psychosis. Front Psychiatry 2020; 11:627. [PMID: 32848899 PMCID: PMC7424063 DOI: 10.3389/fpsyt.2020.00627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Autoimmune encephalitis, such as anti-NMDA-receptor encephalitis, typically presenting with subacute onset of neuropsychiatric symptoms, can be detected by antineuronal autoantibodies or inflammatory changes in the cerebrospinal fluid (CSF), as well as pathological alterations in electroencephalography (EEG), magnetic resonance imaging (MRI), or [18F]fluorodeoxyglucose positron emission tomography (FDG PET). For patients with predominant psychotic symptoms, the term autoimmune psychosis was proposed. Here, the authors present the case of a patient with probable autoimmune psychosis associated with unknown antineuronal antibodies. CASE PRESENTATION A 18-year-old male patient with preexisting autism spectrum disorder developed a severe catatonic syndrome over 2.5 years. The MRI showed normal findings, the EEG depicted intermittent slowing, and the independent component analyses showed additional sharp spikes. However, FDG PET, the basic laboratory analysis and testing of the serum/CSF for well-characterized antineuronal autoantibodies were unsuspicious. The serum and CSF "tissue-based assay" using indirect immunofluorescence on unfixed murine brain tissue revealed antineuronal autoantibodies against an unknown epitope in granule cells in the cerebellum and to neurites of hippocampal interneurons with a somatodendritic staining pattern. The immunosuppressive treatment with high-dose glucocorticoids, plasma exchange, and rituximab led to partial improvement. CONCLUSION The patient probably suffered from autoantibody-associated autoimmune psychosis. The special features of the case were that the patient (1) presented with mostly inconspicuous basic diagnostics, except for the altered EEG in combination with the detection of CSF autoantibodies directed against a currently unknown epitope, (2) experienced an isolated and long-lasting psychotic course, and (3) had pre-existing autism spectrum disorder. The detection of a probable autoimmune pathophysiology in such cases seems important, as it offers new and more causal immunosuppressive treatment alternatives.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Rauer
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Pschibul
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Denzel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tina Schweizer
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Dudova I, Horackova K, Hrdlicka M, Balastik M. Can Maternal Autoantibodies Play an Etiological Role in ASD Development? Neuropsychiatr Dis Treat 2020; 16:1391-1398. [PMID: 32581542 PMCID: PMC7276202 DOI: 10.2147/ndt.s239504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition with multiple etiologies and risk factors - both genetic and environmental. Recent data demonstrate that the immune system plays an important role in prenatal brain development. Deregulation of the immune system during embryonic development can lead to neurodevelopmental changes resulting in ASD. One of the potential etiologic factors in the development of ASD has been identified as the presence of maternal autoantibodies targeting fetal brain proteins. The type of ASD associated with the presence of maternal autoantibodies has been referred to as maternal antibodies related to ASD (MAR ASD). The link between maternal autoantibodies and ASD has been demonstrated in both clinical studies and animal models, but the exact mechanism of their action in the pathogenesis of ASD has not been clarified yet. Several protein targets of ASD-related maternal autoantibodies have been identified. Here, we discuss the role of microtubule-associated proteins of the collapsin response mediator protein (CRMP) family in neurodevelopment and ASD. CRMPs have been shown to integrate multiple signaling cascades regulating neuron growth, guidance or migration. Their targeting by maternal autoantibodies could change CRMP levels or distribution in the developing nervous system, leading to defects in axon growth/guidance, cortical migration, or dendritic projection, which could play an etiological role in ASD development. In addition, we discuss the future possibilities of MAR ASD treatment.
Collapse
Affiliation(s)
- Iva Dudova
- Department of Child Psychiatry, Charles University Second Faculty of Medicine, Prague, Czech Republic
| | - Klara Horackova
- Department of Psychiatry, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Michal Hrdlicka
- Department of Child Psychiatry, Charles University Second Faculty of Medicine, Prague, Czech Republic
| | - Martin Balastik
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Shimasaki C, Frye RE, Trifiletti R, Cooperstock M, Kaplan G, Melamed I, Greenberg R, Katz A, Fier E, Kem D, Traver D, Dempsey T, Latimer ME, Cross A, Dunn JP, Bentley R, Alvarez K, Reim S, Appleman J. Evaluation of the Cunningham Panel™ in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): Changes in antineuronal antibody titers parallel changes in patient symptoms. J Neuroimmunol 2019; 339:577138. [PMID: 31884258 DOI: 10.1016/j.jneuroim.2019.577138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This retrospective study examined whether changes in patient pre- and post-treatment symptoms correlated with changes in anti-neuronal autoantibody titers and the neuronal cell stimulation assay in the Cunningham Panel in patients with Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection (PANDAS), and Pediatric Acute-onset Neuropsychiatric Syndrome (PANS). METHODS In an analysis of all tests consecutively performed in Moleculera Labs' clinical laboratory from April 22, 2013 to December 31, 2016, we identified 206 patients who were prescribed at least one panel prior to and following treatment, and who met the PANDAS/PANS diagnostic criteria. Patient follow-up was performed to collect symptoms and treatment or medical intervention. Of the 206 patients, 58 met the inclusion criteria of providing informed consent/assent and documented pre- and post-treatment symptoms. Clinician and parent-reported symptoms after treatment or medical intervention were categorized as "Improved/Resolved" (n = 34) or "Not-Improved/Worsened" (n = 24). These were analyzed for any association between changes in clinical status and changes in Cunningham panel test results. Clinical assay performance was also evaluated for reproducibility and reliability. RESULTS Comparison of pre- and post-treatment status revealed that the Cunningham Panel results correlated with changes in patient's neuropsychiatric symptoms. Based upon the change in the number of positive tests, the overall accuracy was 86%, the sensitivity and specificity were 88% and 83% respectively, and the Area Under the Curve (AUC) was 93.4%. When evaluated by changes in autoantibody levels, we observed an overall accuracy of 90%, a sensitivity of 88%, a specificity of 92% and an AUC of 95.7%. Assay reproducibility for the calcium/calmodulin-dependent protein kinase II (CaMKII) revealed a correlation coefficient of 0.90 (p < 1.67 × 10-6) and the ELISA assays demonstrated test-retest reproducibility comparable with other ELISA assays. CONCLUSION This study revealed a strong positive association between changes in neuropsychiatric symptoms and changes in the level of anti-neuronal antibodies and antibody-mediated CaMKII human neuronal cell activation. These results suggest there may be clinical utility in monitoring autoantibody levels and stimulatory activity against these five neuronal antigen targets as an aid in the diagnosis and treatment of infection-triggered autoimmune neuropsychiatric disorders. Future prospective studies should examine the feasibility of predicting antimicrobial and immunotherapy responses with the Cunningham Panel.
Collapse
Affiliation(s)
- Craig Shimasaki
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America.
| | - Richard E Frye
- Barrow Neurological Institute, Phoenix Children's Hospital, 1919 East Thomas Rd, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States of America
| | - Rosario Trifiletti
- The PANS/PANDAS Institute, 545 Island Road, Suite 1D, Ramsey, NJ 07446, United States of America
| | - Michael Cooperstock
- Division of Infectious Diseases, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Gary Kaplan
- The Kaplan Center for Integrative Medicine, 6828 Elm Street, Suite 300, McLean, VA 22101, United States of America
| | - Isaac Melamed
- IMMUNOe Health and Research Centers, 6801 South Yosemite Street, Centennial, CO 80112, United States of America
| | - Rosalie Greenberg
- Medical Arts Psychotherapy Associates, P.A., 33 Overlook Road, Suite 406, Summit, NJ 07901, United States of America
| | - Amiram Katz
- Private Practice Neurology, 325 Boston Post Rd., Suite 1D, Orange, CT 06477, United States of America
| | - Eric Fier
- TherapyWorks ATL, 621 North Avenue NE, Atlanta, GA 30308, United States of America
| | - David Kem
- Section of Endocrinology and Diabetes, University of Oklahoma Department of Medicine, 1000 N Lincoln Blvd., Oklahoma City, OK 73104, United States of America
| | - David Traver
- 1261 E. Hillsdale Blvd., Foster City, CA 94404, United States of America
| | - Tania Dempsey
- Armonk Integrative Medicine, Private Practice, Pediatrics, 99 Business Park Drive, Armonk, NY 10504, United States of America
| | - M Elizabeth Latimer
- Latimer Neurology Center, 1101 30th Street NW Suite #320, Washington, DC 20007, United States of America
| | - Amy Cross
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America
| | - Joshua P Dunn
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America
| | - Rebecca Bentley
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America
| | - Kathy Alvarez
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America; The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Sean Reim
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - James Appleman
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America
| |
Collapse
|
35
|
Frye RE, Vassall S, Kaur G, Lewis C, Karim M, Rossignol D. Emerging biomarkers in autism spectrum disorder: a systematic review. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:792. [PMID: 32042808 DOI: 10.21037/atm.2019.11.53] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) affects approximately 2% of children in the United States (US) yet its etiology is unclear and effective treatments are lacking. Therapeutic interventions are most effective if started early in life, yet diagnosis often remains delayed, partly because the diagnosis of ASD is based on identifying abnormal behaviors that may not emerge until the disorder is well established. Biomarkers that identify children at risk during the pre-symptomatic period, assist with early diagnosis, confirm behavioral observations, stratify patients into subgroups, and predict therapeutic response would be a great advance. Here we underwent a systematic review of the literature on ASD to identify promising biomarkers and rated the biomarkers in regards to a Level of Evidence and Grade of Recommendation using the Oxford Centre for Evidence-Based Medicine scale. Biomarkers identified by our review included physiological biomarkers that identify neuroimmune and metabolic abnormalities, neurological biomarkers including abnormalities in brain structure, function and neurophysiology, subtle behavioral biomarkers including atypical development of visual attention, genetic biomarkers and gastrointestinal biomarkers. Biomarkers of ASD may be found prior to birth and after diagnosis and some may predict response to specific treatments. Many promising biomarkers have been developed for ASD. However, many biomarkers are preliminary and need to be validated and their role in the diagnosis and treatment of ASD needs to be defined. It is likely that biomarkers will need to be combined to be effective to identify ASD early and guide treatment.
Collapse
Affiliation(s)
- Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Deparment of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Sarah Vassall
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Gurjot Kaur
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Christina Lewis
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Mohammand Karim
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Deparment of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
36
|
Whiteley P, Carr K, Shattock P. Is Autism Inborn And Lifelong For Everyone? Neuropsychiatr Dis Treat 2019; 15:2885-2891. [PMID: 31632036 PMCID: PMC6789180 DOI: 10.2147/ndt.s221901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
Autism or autism spectrum disorder (ASD) is described as a lifelong condition with core behavioural symptoms appearing during infancy or early childhood. Genetic and other effects occurring during the earliest times of life are thought to play a significant contributory role to the presentation of autism, denoting that autism is typically seen as an innate or inborn condition. Such descriptions have, and continue to, define autism research and clinical practice. Inspection of the existing research literature, however, suggests that within the vast heterogeneity of autism, not everyone experiences autism in such a prescribed way. Various reports have observed the presentation of "acquired autism" following a period of typical development. Other findings have documented an abatement of clinically relevant autistic features and related comorbid pathology for some. Such reports offer important insights into the heterogeneity and complexity of autism.
Collapse
|
37
|
Bejerot S, Klang A, Hesselmark E. The Cunningham Panel: concerns remain. Transl Psychiatry 2019; 9:224. [PMID: 31506420 PMCID: PMC6736884 DOI: 10.1038/s41398-019-0562-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/17/2019] [Accepted: 07/07/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Susanne Bejerot
- School of Medical Sciences, Örebro University, Örebro, Sweden.
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Center for Psychiatry Research, Department of clinical neuroscience, Karolinska Institutet, Solna, Sweden.
| | - Albin Klang
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Eva Hesselmark
- Center for Psychiatry Research, Department of clinical neuroscience, Karolinska Institutet, Solna, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
38
|
Frye RE. Behaviorally associated changes in neuroconnectivity following autologous umbilical cord blood infusion in young children with autism spectrum disorder. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S123. [PMID: 31576330 PMCID: PMC6685876 DOI: 10.21037/atm.2019.05.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2024]
Affiliation(s)
- Richard E. Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
39
|
Affiliation(s)
- Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA.
| | | |
Collapse
|
40
|
Bejerot S, Hesselmark E. The Cunningham Panel is an unreliable biological measure. Transl Psychiatry 2019; 9:49. [PMID: 30705260 PMCID: PMC6355775 DOI: 10.1038/s41398-019-0413-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Susanne Bejerot
- Department of Psychiatry, School of Medical Sciences, Örebro University, Örebro, 701 82, Sweden.
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Eva Hesselmark
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Solna, Sweden.
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
| |
Collapse
|
41
|
Hafizi S, Tabatabaei D, Lai MC. Review of Clinical Studies Targeting Inflammatory Pathways for Individuals With Autism. Front Psychiatry 2019; 10:849. [PMID: 31824351 PMCID: PMC6886479 DOI: 10.3389/fpsyt.2019.00849] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Immune dysfunction and abnormal immune response may be associated with certain mechanisms underlying autism spectrum disorder (ASD). The early evidence for this link was based on the increased incidence of ASD in children with a history of maternal infection during pregnancy. Observational studies show increased prevalence of immune-related disorders-ranging from atopy, food allergy, viral infections, asthma, primary immunodeficiency, to autoimmune disorders-in individuals with ASD and their families. Evidence of neuroglial activation and focal brain inflammation in individuals with ASD implies that the central nervous system immunity may also be atypical in some individuals with ASD. Also, both peripheral and central inflammatory responses are suggested to be associated with ASD-related behavioral symptoms. Atypical immune responses may be evident in specific ASD subgroups, such as those with significant gastrointestinal symptoms. The present review aimed to evaluate current literature of potential interventions that target inflammatory pathways for individuals with ASD and to summarize whether these interventions were associated with improvement in autism symptoms and adaptation. We found that the current literature on the efficacy of anti-inflammatory interventions in ASD is still limited and large-scale randomized controlled trials are needed to provide robust evidence. We concluded that the role of immune-mediated mechanisms in the emergence of ASD or related challenges may be specific to subsets of individuals (e.g. those with concurrent immunological disorders, developmental regression, or high irritability). These subsets of individuals of ASD might be more likely to benefit from interventions that target immune-mediated mechanisms and with whom next-stage immune-mediated clinical trials could be conducted.
Collapse
Affiliation(s)
- Sina Hafizi
- Department of Psychiatry, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Dina Tabatabaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Meng-Chuan Lai
- Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
42
|
Harville T, Rhodes-Clark B, Bennuri SC, Delhey L, Slattery J, Tippett M, Wynne R, Rose S, Kahler S, Frye RE. Inheritance of HLA-Cw7 Associated With Autism Spectrum Disorder (ASD). Front Psychiatry 2019; 10:612. [PMID: 31572230 PMCID: PMC6749146 DOI: 10.3389/fpsyt.2019.00612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined disorder that is now thought to affect approximately 1 in 69 children in the United States. In most cases, the etiology is unknown, but several studies point to the interaction of genetic predisposition with environmental factors. The immune system is thought to have a causative role in ASD, and specific studies have implicated T lymphocytes, monocytes, natural killer (NK) cells, and certain cytokines. The human leukocyte antigen (HLA) system is involved in the underlying process for shaping an individual's immune system, and specific HLA alleles are associated with specific diseases as risk factors. In this study, we determine whether a specific HLA allele was associated with ASD in a large cohort of patients with ASD. Identifying such an association could help in the identification of immune system components which may have a causative role in specific cohorts of patients with ASD who share similar specific clinical features. Specimens from 143 patients with ASD were analyzed with respect to race and ethnicity. Overall, HLA-Cw7 was present in a much greater frequency than expected in individuals with ASD as compared to the general population. Further, the cohort of patients who express HLA-Cw7 shares specific immune system/inflammatory clinical features including being more likely to have allergies, food intolerances, and chronic sinusitis as compared to those with ASD who did not express HLA-Cw7. HLA-Cw7 has a role in stimulating NK cells. Thus, this finding may indicate that chronic over-activation of NK cells may have a role in the manifestation of ASD in a cohort of patients with increased immune system/inflammatory features.
Collapse
Affiliation(s)
- Terry Harville
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bobbie Rhodes-Clark
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sirish C Bennuri
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Leanna Delhey
- School of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - John Slattery
- BioRosa Technologies Inc, San Francisco, CA, United States
| | - Marie Tippett
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Rebecca Wynne
- National Center for Toxicological Research, Jefferson, AR, United States
| | - Shannon Rose
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Stephen Kahler
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|